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Abstract. Compound riverine and coastal flooding is usually driven by complex interactions among meteorological, 

hydrological, and ocean extremes. However, existing efforts of modeling this phenomenon often rely on models that do not 

integrate hydrological processes across atmosphere-land-river-ocean systems, leading to substantial uncertainties that have 

not been fully examined. To bridge the gap, we leverage the new capabilities of the Energy Exascale Earth System Model 

(E3SM) that enable a multi-component framework that integrates coastal-refined atmospheric, terrestrial, and oceanic 15 

components. We evaluate compound uncertainties arising from two-way land-river-ocean coupling in E3SM, and track the 

cascading meteorological and hydrological uncertainties through ensemble simulations over the Delaware River basin and 

estuary during Hurricane Irene (2011). Our findings highlight the importance of two-way river-ocean coupling to compound 

flood modeling and demonstrate E3SM’s effectiveness in handling multivariate flooding on the coast. Our study shows the 

growing uncertainties that transition from atmospheric forcings to flood distribution and severity. Furthermore, an Artificial 20 

Neural Network based analysis is used to assess the roles of some understudied hydrological drivers, such as infiltration and 

soil moisture, in the generation of compound flooding. The response of compound floods to tropical cyclones (TCs) is found 

to be susceptible to these often overlooked drivers. For instance, flood damage could be tripled if Hurricane Irene was 

preceded by an extreme antecedent soil moisture condition (AMC). The results not only support the use of a multi-

component framework for interactive flooding processes, but also underscore the necessity of broader definitions of 25 

compound flooding that encompasses the simultaneous occurrence of intense precipitation, storm surge, and high AMC 

during TCs. 
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1 Introduction 30 

Compound flooding (CF) is a significant and complex hazard encompassing multiple concurrent drivers such as heavy 

rainfall, storm surges, and rain-on-snow events (Li et al., 2019) that cause severe socioeconomic and environmental damages 

(Zscheischler et al., 2018). In coastal regions, CF often arises from a complex interplay of meteorological, hydrological, 

fluvial, and oceanic processes triggered by tropical cyclones (TCs) (Leonard et al., 2014; Bilskie and Hagen, 2018; Hendry 

et al., 2019; Loveland et al., 2021). Characterized by high wind speeds and low surface atmospheric pressure, TCs can bring 35 

intense rainfall over land and significant storm surge above normal tide levels (Fig. 1). CF poses elevated risks compared to 

single-source pluvial, fluvial, and coastal flooding due to its broader spatial coverage and extended durations (Wahl et al., 

2015; Moftakhari et al., 2017). Sarhadi et al. (2024) suggested that the frequency and intensity of CF events would increase 

by up to fivefold by the end of this century, driven by factors such as intensified TCs and rising sea levels (Feng et al., 2022). 

This bleak projection highlights the critical need for advanced integrated modeling strategies, aiming to effectively mitigate 40 

future flood risks and improve the resilient infrastructure and adaptive community response plans (Bates et al., 2021). 

 
Figure 1: Compound flooding processes in a coastal river basin during a TC event. This conceptual diagram shows the key 
elements contributing to CF, resulting from combined riverine and coastal inundation along the river channels and adjacent 
coastal areas. 45 

Modeling CF is inherently challenging because CF is triggered and governed by the interactions of processes in multiple 

earth system components, including atmosphere, land, river, and ocean (Xu et al., 2023). Traditional modeling approaches 
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that rely on one-way coupling between any two model components thus have a limited ability to capture CF (Santiago-

Collazo et al., 2019). The Energy Exascale Earth System Model (E3SM) represents a significant advancement in Earth 

System modeling (Golaz et al., 2019, 2022). As a state-of-the-science model, E3SM features a tightly integrated multi-50 

component framework that supports dynamic exchanges and propagation of information across its different components, 

such as two-way land-river coupling (Xu et al., 2022b) and two-way river-ocean coupling (Feng et al., 2022). Additionally, 

several other developments were recently implemented that further improve the modeling of coastal CF, including the 

introduction of high-resolution coastal-refined meshes (Feng et al., 2022), the implementation of interactively coupled land-

river-ocean models (Xu et al., 2022b; Feng et al., 2024), and variable-resolution ocean time-stepping (Lilly et al., 2023). 55 

Compared with regional models that may provide more detailed inundation at the street level (Costabile et al., 2023; Ivanov 

et al., 2021), E3SM excels at coupling processes across various earth system components. This capability is crucial for 

capturing the complex responses of earth systems to climate change and projecting climate-driven flood hazards. 

While a coupled model is needed to study CF, this advancement can inevitably introduce additional uncertainties. For 

instance, compared with atmospheric forcing data derived from observations or atmospheric analysis, the E3SM simulated 60 

atmospheric forcings are more uncertain (Hersbach et al., 2020). Atmospheric forcing has critical impacts on the flood 

simulation (Cloke and Pappenberger, 2009; Hjelmstad et al., 2021). The water movement in terrestrial and aquatic 

environments during a TC is strongly influenced by the TC’s track and intensity (Pappenberger et al., 2005; Zhong et al., 

2010). The uncertainty originating from atmospheric forcings would propagate to land, river, and ocean components through 

the multi-component framework (Deb et al., 2023; Blanton et al., 2020). Likewise, the hydrological uncertainties in the land 65 

and river  components (Giuntoli et al., 2018; Feng et al., 2023) and the new coupling schemes (Feng et al., 2024) can also 

propagate and even amplify. Typically, the cascading meteorological uncertainty is handled by the ensemble approach 

(Hamill et al., 2011; Villarini et al., 2019). Multiple realizations of a TC event with perturbed initial conditions and/or model 

physics represent a range of scenarios that evolve differently based on the dynamics of the models (Blanton et al., 2020). 

However, the cascading meteorological uncertainty has not been systematically considered for CF modeling (Xu et al., 70 

2023). It remains unclear whether such uncertainty will amplify or diminish when constrained by the physical processes 

inherent in ESMs.  

Furthermore, the cascading uncertainty changes with the variability and complexity of hydrological drivers represented in 

models, because these factors are critical for determining how precipitation is partitioned into runoff and infiltration. As 

rainfall initially infiltrates the soil, subsurface runoff moves slowly through the soil layers. When the rainfall intensity 75 

exceeds the soil’s absorption capacity, saturation-excess water leads to surface runoff. The rate of infiltration, which 

determines the balance between surface and subsurface runoff, is influenced by soil properties, antecedent moisture 

conditions (AMC) (Ivancic and Shaw, 2015), and land cover types. The runoffs are then routed through river networks, 

resulting in high river discharge (Fig. 1) (Bevacqua et al., 2020). Understanding the hydrological drivers, including the 

sensitivity of flood responses to various hydrological conditions such as AMC and rainfall scenarios, is crucial (Tramblay et 80 

al., 2010). These factors provide key insights for predicting different flood scenarios (Miguez-Macho and Fan, 2012; 
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Schrapffer et al., 2020). In particular, AMC plays a critical role in the generation of peak runoff and modulating riverine 

flooding characteristics during heavy precipitation events (Berghuijs et al., 2019; Nanditha and Mishra, 2022). A saturated 

AMC can significantly amplify flood impacts compared to drier conditions. The relative importance of rainfall and AMC 

varies depending on the watershed area. Soil moisture becomes a more dominant factor in larger watersheds (Ran et al., 85 

2022). However, the role of these hydrologic drivers in cascading uncertainties sourced from atmospheric forcing has not 

been thoroughly explored in the context of CF, partly due to the absence of a tightly coupled modeling system (Jalili Pirani 

and Najafi, 2020).  

While some of the model structure uncertainties, such as mesh resolution, have been extensively discussed (Camacho et al., 

2015; Feng et al., 2019; Willis et al., 2019), the uncertainty relevant to model coupling has rarely been explored because the 90 

coupling capabilities have only recently been developed. Questions are raised regarding the role of model coupling and the 

magnitude of related uncertainty compared to meteorological uncertainty, especially given the characteristic spatiotemporal 

scales invoked in land-river and river-ocean coupling. Addressing these questions is critical to refining the performance of 

interactively coupled Earth System Models (ESMs), which is essential for achieving a more comprehensive understanding of 

the complex interactions and uncertainties associated with CF simulations. Moreover, assessing the enhancements provided 95 

by the two-way coupling schemes sheds light on the application of these couplings in future scenarios. 

The above-mentioned uncertainties are complicated but must be carefully evaluated for ESMs as they will be more 

frequently applied for CF simulations in the context of climate change. This study focuses on exploring and disentangling 

the atmospheric, hydrological, and coupling uncertainties of coastal CF modeling within the coupled E3SM framework. We 

first provide a comprehensive description of the physical processes during a TC-induced CF event. We then evaluate the 100 

model coupling uncertainties and the cascading meteorological uncertainty using a simulation ensemble of a specific TC 

event. Using the atmospheric ensemble as a basis, we generated an expanded ensemble to analyze the relative contributions 

of different hydrological drivers to CF and how these contributions affect the accuracy and reliability of CF simulations. 

Finally, various hydrological and meteorological scenarios are used to delineate a spectrum of plausible CF outcomes in the 

designated region. 105 

2 Materials and Methodology 

2.1 Model Configuration 

This study uses a recently developed configuration of E3SMv2 (Feng et al., 2024) (hereafter “E3SM coastal configuration”), 

which integrates global atmospheric (EAM), land (ELM), river (MOSART), and ocean (MPAS-O) models (Fig. 2a), across 

different coastal-refined meshes to improve the E3SM’s capability in modeling coastal processes. This configuration 110 

incorporates advanced features such as variable-resolution land and river meshes (Liao et al., 2022, 2023a, b), global tide 

model with wetting and drying schemes in the barotropic MPAS-O (Barton et al., 2022; Pal et al., 2023), and two-way land-

river and river-ocean coupling schemes (Xu et al., 2022b; Feng et al., 2024). The novel two-way hydrological coupling 
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between land and river components enables E3SM to capture the infiltration of inundated river water in floodplains and, 

subsequently, the enhancement of subsurface runoff and evapotranspiration from saturated floodplain soils (Xu et al., 115 

2022b). The two-way river-ocean coupling was developed for E3SM to better represent the dynamic interaction between 

rivers and oceans, especially during CF events (Feng et al., 2024). This new approach allows for an accurate representation 

of coastal backwater effects and the mutual influences of river discharge and ocean sea surface height (SSH), providing a 

more realistic assessment of CF hazard risks (Feng et al., 2022). 

Using the E3SM coastal configuration, we first simulated Hurricane Irene, a TC event that occurred in August 2011 and had 120 

large flooding impacts across the Mid-Atlantic region (Fig. 2b). Irene led to significant riverine and coastal flooding in the 

Delaware River Basin (DRB) and Delaware River Estuary (DBE) due to concurrent intense precipitation and storm surge. 

Following Feng et al. (2024), an ensemble of 25 EAM simulations with perturbed model parameters were performed to 

reproduce Irene and associated meteorological outcomes (see Appendix A in Deb et al. (2024)). These “prerun” EAM 

simulations were then prescribed within E3SM to drive the land, river, and ocean components, which together are able to 125 

reproduce the TC characteristics, including the storm track and intensity, as well as the TC impacts on river streamflow and 

SSH as measured by USGS and NOAA gauges (Feng et al., 2024). Fluvial and coastal inundations are simulated in 

MOSART and MPAS-O, respectively. Here, the total simulated inundation extent of Irene is benchmarked against a 250-m 

resolution inundation extent dataset based on satellite imagery (Tellman et al., 2021). The dataset is aggregated onto the 

MOSART mesh for comparison. Within each MOSART cell, we compute the fraction of the observed inundation. The 130 

model performance is evaluated using flood metrics defined by Wing et al. (2017), including hit rate (𝐻𝑅), false rate (𝐹𝑅) 

and success index (𝑆𝐼) 

𝐻𝑅 = !!"!
!!"!#!""!

,                              (1) 

𝐹𝑅 = !!""
!!""#!!"!

,                               (2) 

𝑆𝐼 = !!"!
!!"!#!""!#!!""

,                              (3) 135 

where 𝑀 and 𝐵 are the pixels (or grid cells) from model simulations and benchmark data, respectively. The subscripts 1 and 

0 represent wet (inundated) and dry cells, respectively. In our simulations, a wet cell is identified if the simulated inundation 

fraction is above a small threshold of 0.02. 

2.2 Model Coupling Uncertainty 

The model coupling uncertainty is evaluated using three experiments (Table 1). The first two experiments only integrate 140 

ELM and MOSART, while the third experiment interactively couples MPAS-O with MOSART. All experiments are driven 

by the same EAM ensemble atmospheric forcing. Coastal inundation from MPAS-O at 250-m resolution is aggregated onto 

the coarser MOSART mesh that has the resolution of ~5 km in DRB. Within each MOSART grid cell, the inundation 

fraction is determined by the percentage of MPAS-O cells with a simulated water depth over 1 m. This number is used to 
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reflect adjustments for the MPAS-O inland bottom elevation bias relative to the actual data. Whenever there is a discrepancy 145 

between the inundation area from MOSART and MPAS-O in their overlapped cells near the coastline, the MPAS-O 

inundation is considered more accurate and will be used. The MOSART and MPAS-O simulated inundation extent is first 

evaluated against the benchmark data to justify the necessity of considering both riverine and coastal flooding within the 

coupled ESM. We then compared the streamflow along the Delaware River mainstem and riverine inundation in DRB in 

terms of flood metrics among different experiments to demonstrate the uncertainty of two-way coupling. The comparison of 150 

riverine inundation between Experiments 1 and 2 and between Experiments 1 and 3 shows the uncertainty from two-way 

land-river and river-ocean coupling, respectively. The comparison of total inundation between Experiments 1 and 3 

quantifies the uncertainty if the ocean component is neglected in the CF simulation. 
Table 1 Numerical experiments for quantifying model coupling uncertainty. 

Experiment # Configuration Flooding type 

1 ELM → MOSART riverine 

2 ELM ↔ MOSART riverine 

3 ELM → MOSART ↔ MPAS-O riverine & coastal 

 155 

 
Figure 2: (a) The multi-component E3SM framework and drivers used for analyses within each model component. The black 
arrows represent the data flow via the one-way coupled framework. The white arrows are the new flow directions from the 2-way 
land-river and river-ocean models. (b) Map of Delaware river basin (DRB), Delaware bay estuary (DBE), and the observed (red) 
and modeled (black) Irene tracks. The topographic map in (b) is from the ESRI world topographic map (ESRI, 2012). 160 

(a) (b)
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2.3 Cascading Meteorological Uncertainty 

To understand the evolution of the meteorological uncertainty cascaded from atmospheric simulations through the multi-

component framework, we applied the configuration of Experiment 3 (Table 1) and analyzed the interactions of those 

physically interconnected variables from the atmosphere, land, river, and ocean components of E3SM (Fig. 2a) including 

precipitation (𝑝𝑟𝑒𝑐𝑖𝑝), air pressure (𝑃$%&) and wind speed (𝑈'%()) from EAM; surface runoff (𝑄*+&), subsurface runoff 165 

(𝑄*+,), infiltration (𝑄%(-.) and soil water storage (𝑄*/%.) from ELM; river discharge (𝑄) and riverine inundation area (𝐴&%01&) 

from MOSART; SSH and coastal inundation area (𝐴/21$() from MPAS-O. The flux and state variables are represented by 

their event-accumulated and event-peak values within the Delaware River drainage basin, respectively (Fig. 2b). The 

estimated relationship between these variables represents the impact of one E3SM component on another component. For 

MOSART and MPAS-O, due to two-way river-ocean coupling, mutual relationships can occur between the related variables. 170 

The magnitude of uncertainty amplification or diminishment is quantified using normalized median absolute deviation 

(NMAD): 

NMAD = median(|;#<median(;)|)
median(;)

,           (4) 

and coefficient of variation (CV) 

CV = >
?
,              (5) 175 

where 𝑋% represents a variable 𝑋 modeled at the 𝑖th ensemble run, and µ and 𝜎 are the mean and standard deviation of the 

corresponding variable computed from all ensemble simulations. These two metrics measure the spread of simulations with 

respect to the ensemble median and mean values separately.  

Additionally, structural equation modeling (SEM) is applied as a path analysis method (Wright, 1921) to trace the flow of 

data and uncertainty. SEM estimates the complex relationships between two groups of variables by fitting multivariate 180 

regressions and uses the coefficient of a predictor to represent its contribution to the response variable. The Python library 

semopy is used in our SEM analyses (Igolkina and Meshcheryakov, 2020). 

2.4 Uncertainty of Hydrological Drivers 

The hydrological drivers we selected for uncertainty analysis include surface runoff, subsurface runoff, infiltration, and soil 

water storage. As the influence of these hydrological drivers shifts throughout a TC event due to changes in precipitation 185 

patterns, we chose to examine the cumulative impacts of these drivers across the entire event and track the temporal 

evolution of each driver’s influence. For this purpose, we expand the original EAM simulation ensemble by introducing 

variations in AMC and runoff generation parameters within ELM. This expanded ensemble enables us to apply a machine 

learning approach to compute the permutation importance of each hydrological driver, providing insights into their roles in 

modulating flood risks. We focus exclusively on riverine flooding in this analysis. To avoid the substantial computational 190 

overhead associated with MPAS-O, we impose MPAS-O simulated water level as the coastal boundary condition of 
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MOSART (Feng et al., 2022). This approach represents the coastal backwater effects during CF, comparable to those 

obtained from the two-way river-ocean coupled configuration in Experiment 3 (Feng et al., 2024). 

2.4.1 Expanded Ensemble simulation 

The original EAM ensemble is expanded by first selecting 5 ensemble members that represent a reasonable spread of 195 

precipitation and then running each member with multiple AMC scenarios and different sets of runoff generation parameters. 

Five AMC scenarios were chosen to reflect a broad range of hydrological responses based on historical soil moisture trends, 

spanning from the driest to the wettest states. Specifically, we used the 0th, 25th, 50th, 75th and 100th percentiles of basin-

averaged soil moisture during hurricane seasons from 2005 to 2011 as modeled in a historical ELM simulation (Fig. S1). The 

AMC at 75th percentile aligns with the observed AMC of Irene. Two parameters in ELM (𝑓/01& and 𝑓)&$%(, see Appendix A 200 

for a detailed definition) that determine the runoff generation are considered. Runoff is highly sensitive to both 𝑓/01& and 

𝑓)&$%(, which values usually have to be determined through sensitivity analysis. In the Mid-Atlantic region, as suggested by 

Xu et al. (2022a), we selected 𝑓/01& values at 0.1, 0.5, 1, 2.5 and 5, and 𝑓)&$%( values at 2, 2.25, 2.5, 3 and 5. The peak 

discharge observed in the main channel of the Delaware River indicates that the impacts from changes in atmospheric 

conditions, AMC, and the parameters 𝑓/01&  and 𝑓)&$%(  are widely distributed. These factors contribute to significant 205 

variations in the extent of riverine flooding. (Fig. S2∼S5). 

2.4.2 Quantifying Hydrological Driver Importance 

To quantify the relative importance of each hydrological driver of CF, we employed a two-stage Artificial neural network 

(ANN) approach (Fig. 3). Compared to traditional regression models, ANN is particularly advantageous for capturing the 

complex, nonlinear relationships that exist between the diverse hydrological drivers and the resulting impacts on river 210 

systems (Goodfellow et al., 2016; LeCun et al., 2015; Tsang et al., 2017).  

The first ANN model emulates the relationships between the hydrological drivers of 𝑄*+& , 𝑄*+, , 𝑄%(-.  and 𝑄*/%.  and 

perturbation parameters. Here, the input features are precipitation, AMC, 𝑓/01&  and 𝑓)&$%( , and the outputs are the 

aforementioned hydrological drivers. Then, these outputs become the input features for the second ANN, which emulates the 

relationships between river discharge and inundation area and these input features. To perform a detailed analysis, we first 215 

assessed the event-accumulated impacts of these drivers by aggregating data over the entire TC event. We also examined 

fine temporal impacts by using the second ANN on a daily basis. This allows us to understand not only the overall effect of 

each driver but also their day-to-day variations throughout the event. The relative importance of the input features on the 

output features is quantified using permutation importance. For more details about the ANN model setup and permutation 

importance calculation, please refer to Appendix B.  220 
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Figure 3: The densely connected ANNs for quantifying the relative importance of hydrological drivers to river discharge 𝑸 and 
inundation area 𝑨𝒓𝒊𝒗𝒆𝒓. Only 4 neurons per hidden layer are shown for illustration purposes. AMC refers to antecedent soil 
moisture condition. 

3 Results 225 

3.1 Model Coupling Uncertainty 

The coastal configuration of E3SM (Experiment 3) effectively simulates compound riverine and coastal inundation through 

the coupled MOSART and MPAS-O models (Fig. 4). MOSART successfully predicts riverine flooding along the lower 

Delaware River and several upstream tributaries. However, it tends to overestimate the maximum extent of flooding along 

the Delaware River mainstem and some tributaries (Fig. 4a). Occasionally, some observed inundated cells in the upstream 230 

are captured by the model. Such bias is likely caused by the coarse spatial resolution of the river mesh, inaccurate river 

network delineation, and missing processes such as damming and flood defense constructions. Despite refinement, the mesh 

and river network still do not achieve the detail provided by regional high-resolution models (Dullo et al., 2021). More 

importantly, although MOSART is capable of simulating extensive riverine inundation in coastal regions, it cannot simulate 

the finer details of inundation immediately adjacent to the coastline (Fig. 4a), where coastal tide and storm surge play a 235 

significant role. To accurately represent these near-coastline inundations, it is essential to integrate MPAS-O (Fig. 4b), which 

is specifically designed to account for the dynamic interactions between tide and storm surge along the shoreline. 

Comparison of flood metrics also confirms the importance of incorporating both riverine and coastal dynamics through a 

river-ocean coupled configuration (Fig. 5). Compared to Experiment 1 (Table 1) which does not activate MPAS-O, the river-

ocean coupled configuration in Experiment 3 remarkably improves 𝐻𝑅  and 𝑆𝐼  by twofold with more than doubled the 240 
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predicted flooded area (𝐹𝐴) and reduces 𝐹𝑅 by ~0.1. The change in flood metrics implies that a significant portion (>70%) 

of the compound flooded area during Irene is accounted for by coastal flooding, which could be otherwise neglected if the 

ocean model is not coupled. However, the integration of MPAS-O does not reduce the MOSART-overpredicted flooded 

regions significantly, as suggested by the change of 𝐹𝑅. It is nonetheless generally more prudent to overestimate rather than 

underestimate potential flooding from a flood hazard risk assessment perspective. These findings highlight the synergistic 245 

nature of river and ocean modeling in improving CF simulations in E3SM. 

 
Figure 4: (a) MOSART simulated riverine inundation (red) against satellite-measured inundation (magenta box). The black 
dashed box highlights the lower Delaware River reach. (b) E3SM simulated riverine (red) and coastal (blue) total inundation 
against satellite data (magenta box). The black dashed box represents the coastline of DBE where extensive coastal inundation 250 
occurred. In both panels, dark and light colors represent the minimum and maximum inundated extent from the ensemble 
simulations, respectively. 

(a) (b)
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Figure 5: Flood metrics (𝑯𝑹, 𝑭𝑹, 𝑺𝑰) and flooded area (FA) used to compare riverine flooding in Experiments 1~3 and the 
combined riverine and coastal flooding in Experiment 3. Whiskers extend to 1.5 times the interquartile range from the quartile 255 
boundaries. 

The comparison of Experiments 1∼3 (Table 1) demonstrates the distinct role of land-river-ocean coupling in influencing CF 

(Fig. 6). Specifically, the implementation of two-way land-river coupling leads to a noticeable decrease in peak discharge 

along the Delaware River mainstem by 10∼50 m3/s which slightly increases towards the river outlet (Fig. 6a). Consequently, 

the simulated flooded area across the watershed is reduced in Experiment 2 compared to Experiment 1 (Fig. 6b). These 260 

reductions, despite being sporadic in upstream regions, are predominantly observed in the Lower Delaware River reach and 

near the coastline (Fig. 6b). This expected change is attributed to the two-way interaction of land and river hydrology 

implemented in Experiment 2, in which floodplain inundated water from MOSART is transferred to ELM, thereby reducing 

water storage within the channel and flood extent (Luo et al., 2017). Conversely, the influence of two-way river-ocean 

coupling (Experiment 3) appears to be mainly confined to the river reaches close to the outlet (Fig. 6c), where it significantly 265 

increases local streamflow (Fig. 6a). This is a result of more accurately representing the water and momentum fluxes 

between the river and ocean as well as coastal backwater effects. The elevated water levels due to tide and storm surge force 

an upstream propagation of ocean water into the river channel, leading to a subsequent increase in both river discharge and 

riverine flooded area in the low-lying regions (Feng et al., 2022).  
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 270 
Figure 6: Comparison of flood impacts of model coupling. (a) Peak discharge along the Delaware River mainstem simulated by 1-
way, 2-way land-river and river-ocean coupled simulations in Experiments 1, 2 and 3 (Table 1), respectively. Spatial maps of 
change in inundation of (b) two-way land river coupled simulations and (c) two-way river-ocean coupled simulations relative to 1-
way coupled simulation in Figure 4a. Blue indicates reduced flooded area within the corresponding cell, while red implies an 
increase in flooded area. 275 

The influence of the new two-way coupling schemes on the flood metrics is less significant than discharge, but insightful 

(Fig. 5). Comparing riverine flooding in Experiments 1 and 3, two-way river-ocean coupling improves the flood metrics by 

0.01∼0.02 and increases FA by ∼2.5×107 m2, as a result of a more accurate representation of backwater effects near the river 

outlet (Fig. 6c). Conversely, the two-way land-river coupling shows a slight reduction in flood metrics and FA, as also 

indicated in the spatial map (Fig. 6b). The discrepancies observed do not necessarily imply that the inclusion of land-river 280 

interactions compromises the results. Rather, they may result from the inherent uncertainties in both data and MOSART 

simulations, which tend to overestimate riverine flooding. The contrasting behaviors between the two coupling schemes 

primarily stem from their focus on different spatial and temporal scales. The two-way land-river coupling is crucial for 

capturing hydrological processes at larger spatiotemporal scales. However, building upon the macroscale inundation scheme 

in large-scale river models (Luo et al., 2017) potentially makes the coupling less reliable for event-scale riverine flooding. 285 

(c)

(a)

(b)
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The two-way river-ocean coupling is designed for accurately representing localized interactions between river discharge and 

tidal or storm surge dynamics that occur at diurnal or semi-diurnal scales. These findings highlight the complex interplay 

between various coupling approaches and the importance of tailored approaches in flood modeling to address specific 

hydrodynamic challenges effectively. 

3.2 Cascading Meteorological Uncertainty 290 

The SEM analysis depicts the possible pathways for the cascading propagation of meteorological and other uncertainties of 

CF simulations within E3SM (Fig. 7). Specifically, precipitation impacts runoff and infiltration nearly equally but it does not 

significantly influence soil water storage. The minimal variation in soil water during a TC event is likely because soil water 

storage cannot go above saturation. Runoff, which directly contributes to river discharge, positively affects flood simulation 

in terms of 𝑄 and 𝐴&%01& in MOSART. Conversely, the impact of infiltration and soil water storage on flooding is negative, 295 

as these processes reduce the surface runoff into river channels. Moreover, wind speed combined with air pressure affects 

sea level variations. The elevated sea level leads to an increase in the coastal inundation area. Additionally, there is a notable 

interaction between 𝑄 and SSH. Increased river discharge tends to elevate local SSH, while high SSH can impede river 

discharge (Dykstra and Dzwonkowski, 2020). This mutual interaction, frequently observed in CF events, underscores the 

complexity of the interactive processes influencing both riverine and coastal flooding dynamics, which need to be jointly 300 

considered in the two-way river-ocean coupled E3SM. 

The cascading of meteorological uncertainty within the E3SM framework is assessed using CV and NMAD (Fig. 8). Both 

metrics suggest an amplification of meteorological uncertainty from atmospheric simulations throughout the multi-

component system. In the context of riverine flooding, the variability among the ensemble for hydrological drivers such as 

surface runoff (𝑄*+& ), subsurface runoff (𝑄*+, ), and infiltration (𝑄%(-. ) is found to be comparable to that observed in 305 

precipitation. However, this variability escalates in riverine flood parameters, i.e., 𝑄 and 𝐴&%01&, where the CV and NMAD 

values are approximately twofold of those in precipitation. For coastal flooding, uncertainty increases from 𝑈'%() to SSH, 

which directly impacts coastal inundation levels (𝐴/21$(). Much smaller uncertainty is presented in 𝑄*/%.  and 𝑃$%& . This 

analysis highlights the cascading nature of uncertainties from atmospheric inputs through meteorological and hydrological 

processes to final flood outcomes. 310 

The analysis of the uncertainty path and propagation implies the critical role of hydrological drivers. By quantifying their 

relative contributions, we can better understand their roles in shaping the variability in riverine flooding outcomes, thereby 

refining the predictability of ESMs. 
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Figure 7: The structural equation model that describes the influence of variables on their response variables in EAM, ELM, 315 
MOSART and MPAS-O. Red and blue arrows show positive and negative influences, respectively. The asterisk sign implies the 
relationship is not significant with a p-value larger than 0.05. 

 
Figure 8: CV (light bars) and NMAD (dark bars with black margins) computed from the simulation ensembles for the variables 
selected in Section 2.3. Red and blue bars indicate riverine and coastal flood drivers, respectively. 320 

3.3 Relative Importance of Hydrological Drivers 

The extended ensemble simulations provide a wide range of scenarios, encompassing both lower and higher magnitudes of 

river discharge and riverine inundation compared to those observed during Hurricane Irene (Figure S6 and S7). The ANNs, 

trained from the ensemble output, achieve high skill scores. The 𝑟@ and NRMSE values for the first ANN are 0.96 and 0.04, 

respectively, and are 0.97 and 0.03 for the second ANN. 325 
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Regarding the cumulative impacts over the entire Irene lifetime, the permutation importance derived from the first ANN 

highlights the crucial impact of AMC, 𝑓)&$%(  and 𝑓/01&  on 𝑄*+& , 𝑄*+, , 𝑄%(-.  and 𝑄*/%. , respectively, whereas precipitation 

shows more evenly distributed impacts on all the drivers (Fig. 9a). It should be noted that the relatively lower permutation 

importance values for precipitation do not suggest it is less important compared to the other factors. Rather, this is because in 

our ensemble, AMC, 𝑓)&$%(  and 𝑓/01&  encompass a broader range of scenarios, whereas precipitation is from the Irene 330 

ensemble of simulations that only represent event-specific outcomes. The results of 𝑓)&$%( and 𝑓/01& align well with their 

definitions in ELM (Appendix A), as 𝑓)&$%(  and 𝑓/01&  dominate the change in 𝑄*+,  and 𝑄*+& , respectively. Precipitation 

affects 𝑄*+&, 𝑄*+, and 𝑄%(-. nearly equally, which corresponds to their similar response presented in Figure 7. 

The second ANN analyzes the impact of hydrological drivers on riverine flooding, i.e. river discharge (𝑄) and flooded area 

(𝐴&%01&) (Fig. 9b). Our analysis demonstrates that 𝑄*+& and 𝑄*+, have similar influences on 𝑄, whereas 𝑄%(-. shows a limited 335 

effect. In terms of 𝐴&%01&, 𝑄*+& acts as the dominant factor, whereas 𝑄*+, and 𝑄%(-. are less important but cannot be ignored. 

𝑄*/%. has a minimal impact on both variables. The discrepancy between 𝑄 and 𝐴&%01& in their responses to these hydrological 

drivers can be attributed to the nature of the hydrology: river discharge is directly affected by surface and subsurface runoff, 

which are immediate responses to precipitation. In contrast, inundation across the river basin is more complex, as infiltration 

exerts a more localized effect and surface runoff may cause rapid flooding in response to intense rainfall. This differential 340 

impact implies the need for monitoring day-to-day variations in these drivers throughout the event to understand their 

dynamic role. 

The time evolution of the permutation importance in the second ANN, trained on daily data during Hurricane Irene, 

illustrates the dynamic roles of hydrological drivers in response to the event and their contributions to riverine flooding. For 

river discharge, the influence of 𝑄*+& and 𝑄*+, varies notably before and during the peak flow (Fig. 10). Specifically, peak 345 

discharge was observed on August 30 at the river outlet (see Fig 15 in Feng et al., 2024), a period when 𝑄*+&  was 

predominant. In contrast, 𝑄*+,, which typically contributes to baseflow, exerted more influence before the peak. Following 

the peak, the contributions of 𝑄*+&, 𝑄*+, and 𝑄%(-. leveled out as significant infiltration into the soil increased soil moisture, 

revealing a more significant effect of 𝑄*/%. than that seen in its event-cumulative impact (Fig. 9). The role of soil emerges as 

vital, acting as a buffer that modulates flooding during the heavy precipitation induced by the TC event. As the event 350 

progressed post-peak, there was a noticeable shift with a decreasing impact from 𝑄*+, along with a bell-shaped variation in 

𝑄%(-.  and 𝑄*/%. . In terms of 𝐴&%01& , the dynamics slightly differ. 𝑄*+&  began dominating on August 28, two days earlier 

compared to 𝑄, indicating the routing of discharge from the basin upstream to the outlet. These results reveal the importance 

of accurate runoff separation in the ESM framework for accurately modeling the time-varying nature of hydrological 

processes. 355 
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Figure 9: (a) Permutation importance of perturbation parameters (precipitation, AMC, 𝒇𝒅𝒓𝒂𝒊𝒏 and 𝒇𝒐𝒗𝒆𝒓) on hydrological drivers 
of 𝑸𝒔𝒖𝒓, 𝑸𝒔𝒖𝒃, 𝑸𝒊𝒏𝒇𝒍 and 𝑸𝒔𝒐𝒊𝒍. The corresponding box plot of each driver is provided in row 1~4 of Figure S8. (b) Permutation 
importance of hydrological drivers on river discharge (𝑸) and flooded area (𝑨𝒓𝒊𝒗𝒆𝒓). The scatter plots of 𝑸 and 𝑨𝒓𝒊𝒗𝒆𝒓 against the 
drivers are respectively provided in the 5th and 6th rows of Figure S6. 360 

 
Figure 10: Time evolution of permutation importance (scaled between 0 and 1) of the four hydrological drivers for (a) 𝑸 and (b) 
𝑨𝒓𝒊𝒗𝒆𝒓. The corresponding skill scores (𝒓𝟐and NRMSE) of the ANNs trained using daily data are provided in Figure S9. The Irene-
induced peak river discharge is on August 30, 2011. 

(a) (b)
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4 Discussions 365 

4.1 Uncertainties of CF simulations in E3SM 

The integration of different coupling schemes into E3SM has large impacts on the simulated flooding. The exclusion of 

ocean coupling resulted in underestimations of the flood extent caused by tide and storm surges, critical for coastal flood 

assessments. Likewise, we showed that neglecting two-way land-river-ocean interactions distorted the modeled hydrological 

and hydrodynamic responses to the TC event, as the interactive mechanisms between terrestrial and aquatic systems were 370 

overlooked. Therefore, integrating comprehensive coupling mechanisms is essential for improving the predictability of 

ESMs, particularly in coastal regions vulnerable to complex, multivariate CF events. Additionally, we find that the 

uncertainty from the atmosphere simulations is comparable to that of two-way river-ocean coupling (i.e., the difference in 

riverine inundation modeled in Experiments 1 and 3), but is considerably smaller than the uncertainty of two-way river-

ocean coupling if the MPAS-O modeled inundation is excluded (i.e., the difference in the combined riverine and coastal 375 

inundation between Experiments 1 and 3) (Fig. 5). The value of 𝜎 in Experiment 3 is 0.015, 0.014, 0.01 and 8.5×107 m2 for 

𝐻𝑅 , 𝐹𝑅 , 𝑆𝐼  and FA, respectively. This implies the critical need to account for the meteorological uncertainty and its 

cascading effects through the coupled system.  

The complexities and inherent variabilities of hydrological drivers significantly influence flood risks through their 

interactions with meteorological conditions. Particularly, the soil's ability to buffer flood water crucially impacts the onset 380 

and development of floods (Fig. 10) (Blöschl, 2022). Predicting these effects remains challenging, primarily due to the 

spatial variability of soil characteristics and the spatiotemporal unpredictability of precipitation, such as shifting storm tracks 

and fluctuating intensity. This uncertainty is further compounded by key hydrological parameters in the land surface model. 

These parameters affect both the intensity and extent of runoff-driven inundation as well as the soil's response to moisture 

(Fig. 9). To address these challenges, CF modeling requires detailed land surface data and advanced modeling techniques, 385 

such as the incorporation of lateral flow (Han et al., 2024) and enhanced land-ocean and land-atmosphere coupling (Lin et 

al., 2023; Xu et al., 2024), to accurately simulate the interplay between atmospheric, land and river processes.  

As discussed above, unlike single-driver flooding that can be simulated in isolated system components, the simulation of CF 

needs multi-component models, such as E3SM, which are capable of representing the compounding nature among drivers. 

However, this also introduces layers of additional uncertainties, particularly in the integration and interaction of model 390 

components (Jafarzadegan et al., 2023). Moreover, while regional models often focus on uncertainties arising from 

prescribed input forcings (Abbaszadeh et al., 2024; Muñoz et al., 2024), the uncertainties in ESMs can propagate 

bidirectionally through the coupled framework facilitated by two-way coupling schemes, which highlights the contrast in 

how uncertainties are generated and managed between regional models and ESMs. Quantifying these uncertainties within an 

integrated framework is crucial for advancing our understanding of CF but remains a formidable challenge. It necessitates a 395 

comprehensive examination of atmospheric, hydrological, oceanic and coupling uncertainties, a task that extends well 

beyond the capabilities of single-component models. 
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4.2 Definition of “Compound” Flooding 

While previous CF studies predominantly focus on the contributions of high discharge, direct runoff, and precipitation to 

riverine flooding, our analysis reveals the underappreciated roles of other hydrological factors–particularly infiltration and 400 

AMC–in the context of CF. These factors significantly influence the flood dynamics in response to TC events. Specifically, 

we demonstrate that the concurrent occurrence of wet AMC with other CF drivers is not typically accounted for, implying a 

critical gap in the current CF definition. To capture a broad spectrum of plausible riverine flooding outcomes under varying 

simulated Irene tracks and AMC conditions, we extracted simulations from the expanded ensemble run by maintaining the 

default values for 𝑓)&$%( and 𝑓/01&, resulting in 25 diverse scenarios. These scenarios suggest that a TC preceded by a wet 405 

AMC could drastically escalate flood risks. Notably, in all AMC scenarios, we observed a general increase in 𝑄 and 𝐴&%01& 

corresponding to increasing precipitation in DRB (Fig. 11a and 11b). 

The variability within these simulations shows that the highest discharge was approximately 47% greater than the lowest 

discharge and 32% higher than during Irene itself (Fig. 11a). Moreover, in the worst-case inundation scenario, flooded areas 

could increase to more than twice (~2.4) of the flooded areas in the best scenario and the actual Irene event (Fig. 11b). 410 

Interestingly, the modeled inundation area for Irene closely aligns with the best-case scenario (Fig. 11b and 11c), indicating 

potentially greater risks if such events were to occur under much wetter AMC conditions. More alarmingly, the expansion of 

maximum inundation extent from Irene predominantly affects low-lying areas (Fig. 11c), increasing risks to coastal residents 

and highlighting the challenges in modeling complex river-ocean interactions, especially considering the effect of sea level 

rise. These findings suggest a broader definition of CF is needed. Similar to rain-on-snow flooding that may be classified as 415 

one type of CF (Zarzycki et al., 2024), a “compounding” event should also consider the co-occurrence of TCs and 

hydrological extremes, such as AMC, as high AMC can significantly amplify the TC flood impacts. 
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Figure 11: (a) Peak discharge and (b) riverine inundation area of 25 ensemble simulations. For each AMC, the ensemble runs are 
sequentially from EAM runs selected in Section 2.4.1. The dashed lines represent the results of the simulation that best describes 420 
Irene. (c) The plausible outcomes of inundated extent in DRB with the three colors representing the minimum (best-case scenario), 
Irene and maximum (worst-case scenario) inundation from the 25 ensemble runs. 

4.3 Application of Advanced ESMs in Multivariate Flood Simulations 

The application of E3SM in multivariate flood simulations brings a unique set of capabilities, especially when compared to 

fine-scale regional models. E3SM, with its ability to simulate interactions across various earth system components–425 

atmosphere, land, river and ocean–offers a robust framework for understanding cross-scale environmental dynamics. Even 

with regional refinement, E3SM may still not be able to provide the street-level details of flood inundation because of 

missing processes (e.g., pluval inundation) and computational constraints. Although such capability is often crucial for urban 

planning and local flood risk management, large-scale E3SM has distinct advantages for broader application scopes. The 

efficiency in runtime makes it particularly suitable for disentangling interconnected drivers of complex physical processes 430 

and their cascading effects within an integrated framework. This efficiency is crucial for running multiple-scenario 

ensembles, which is essential for understanding the impacts of variability from physical drivers and climate change over 

extended periods, making it possible to simulate interactions like the newly developed two-way coupling between land, river 

and ocean. Although in Section 3.1 our analysis indicates that the land-river two-way coupling has relatively low impacts in 

short-term modeling of scenarios, its significance could increase in long-term climate simulations where gradual 435 

environmental changes play a more prominent role. Furthermore, E3SM provides the potential for climate change 

simulations, where the interactions of multiple planetary systems need to be considered over global scales and decadal to 

centennial timescales. 

(c)
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4.4 Limitations and Future Work 

Despite these strengths, there are inherent challenges and potential sources of uncertainty in using E3SM for flood 440 

simulations. These uncertainties can stem from the models’ resolution, numerical methods, the accuracy of input data, and 

the parameterization of complex hydrological and meteorological processes. 

One limitation of this study is the exclusion of the ocean model in the expanded ensemble simulations, primarily due to the 

high computational costs associated with running the global MPAS-O. Future work may focus on developing a regional 

ocean model within the E3SM framework to enhance the efficiency and feasibility of these simulations. Currently, MPAS-O 445 

is geared towards global simulations, but adapting it for regional use could allow for more detailed and locally relevant flood 

simulations, integrating two-way land-ocean coupling to account for ocean water intrusion and its effect on soil moisture 

along coastlines. This is particularly relevant given our findings on the significant role of soil moisture in the context of TC-

induced flooding. 

Another avenue for future research involves conducting long-term climate change simulations to assess the impact of 450 

climatic drivers on CF dynamics. The existing long-term atmospheric forcing dataset does not adequately capture extreme 

TC events (Feng et al., 2024). Alternatively, employing a storyline approach (Pettett and Zarzycki, 2023) for event-specific 

studies could offer a more nuanced and scenario-based method to explore these extreme events and their interactions with 

other environmental drivers. This approach would not only enhance our understanding of climatic impacts on flooding but 

also improve the strategic planning and management of flood risks in vulnerable regions. 455 

Our study demonstrates that parameters in runoff generation (i.e., 𝑓)&$%( and 𝑓/01&) significantly influence river discharge 

and inundation (Fig. S4 and S5). When these parameters are considered alongside uncertainties in AMC and precipitation, 

the variability in flood outcomes expands considerably (Fig. S6 and S7). This broader range of variability exceeds that 

shown in Figure 11, indicating complex interactions between soil properties and hydrological responses. Given the critical 

global variability of soil properties, as indicated by the spatial distribution of 𝑓)&$%(  and 𝑓/01&  in Xu et al. (2022a), we 460 

anticipate a greater variability in CF impacts that are dependent on soil conditions and land cover (Tran et al., 2024), in 

addition to topography (Feng et al., 2023). Furthermore, impervious surfaces, which are prevalent in coastal urban areas, 

may alter local runoff generation parameters (Zhang et al., 2018). This suggests that these parameters might require high-

resolution representation in ELM to accurately reflect their spatial heterogeneity and to better represent urban areas (Li et al. 

2024). Future work should focus on refining the spatial resolution in models to better capture the heterogeneity of soil and 465 

urban properties. This improvement could lead to more accurate simulations of how different land surface conditions affect 

flood dynamics, particularly in diverse geographic settings. 

7 Conclusions 

This study leverages the advanced capabilities of E3SM to improve our understanding of compound river and coastal 

flooding, highlighting the dynamic interaction between hydrological, riverine and coastal processes. Our research 470 
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demonstrates that an integrated atmosphere, land, river and ocean system significantly enhances the accuracy of multivariate 

flood modeling, capturing the cascade of uncertainties through the multi-component framework. The findings emphasize the 

significant influence of hydrological drivers, which can dramatically intensify the impacts of TC-driven flooding. This study 

not only showcases the robustness of E3SM in bridging gaps in current modeling approaches but also proposes a broader 

definition of CF that incorporates concurrent hydrological extremes. The implications of our research are profound, 475 

advocating for the inclusion of advanced, integrated modeling frameworks in future climate impact assessments to better 

predict and mitigate the risks of severe flooding events. 

Appendix A:  Runoff Generation Parameters in ELM 

This section provides the definitions for the runoff generation parameters 𝑓/01&  and 𝑓)&$%(  in ELM. The fraction of 

precipitation reaching the ground (𝑄.%A) that generates surface runoff (𝑄*+&) is determined by the saturation fraction (𝑓*$B) of 480 

the grid cell:  

𝑄*+& = 𝑓*$B𝑄.%A,                               (A1) 

𝑓*$B = 𝑓C$D𝑒𝑥𝑝	(−0.5𝑓/01&𝑧E),                       (A2) 

where 𝑓C$D is the potential or maximum saturation fraction of a grid cell, 𝑧E is the water table depth, and 𝑓/01& is a decay 

factor for surface runoff (Niu et al., 2005). The subsurface runoff is parameterized as an exponential function of 𝑧E 485 

𝑄*+, = 𝛩%21𝑄*+,,C$D𝑒𝑥𝑝	(−𝑓)&$%(𝑧E),         (A3) 

where 𝛩%21 is the ice impedance factor, 𝑄*+,,C$D is the maximum drainage rate, and 𝑓)&$%( is a decay factor. 

Appendix B:  ANN and Permutation Importance 

In our setup, each ANN model included a hidden layer comprising 64 neurons, optimized using an adaptive optimization 

algorithm, Adam optimizer (Kingma and Ba, 2014). We selected mean square error (MSE) as the loss function to effectively 490 

measure the accuracy of predictions during training, which was conducted in the deep learning platform TensorFlow (Abadi 

et al., 2016). The model completed 600 epochs with a batch size of 32 to ensure thorough learning and convergence. Before 

training, the data were split into training and testing datasets, and each variable is normalized with respect to its maxima. The 

ANN performance was evaluated on the testing dataset using coefficient of determination (𝑟@) and normalized root mean 

squared error (NRMSE). 495 

Despite the high accuracy achieved by ANN models, it can be challenging to pinpoint the specific influence of individual 

input variables on output variables (Pires dos Santos et al., 2019). Herein, we employed permutation importance to measure 

the relative significance of input features within complex ANN models. Permutation importance is a technique used to 

evaluate the importance of features in a predictive model (Fisher et al., 2019). It assesses the impact of each feature on the 

model’s performance by measuring how much the model’s performance decreases when the values of that feature are 500 
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randomly permuted while leaving other features unchanged (Štrumbelj and Kononenko, 2014; Shrikumar et al., 2017). This 

method allows quantifying how variations in a single input feature can affect a particular output or overall predictive 

accuracy. In this study, we computed permutation importance using SHAP (Shapley Additive Explanations, (Lundberg and 

Lee, 2017)) on the test dataset. 

Code and data availability.  505 

All model simulations will be uploaded to Zenodo as an open repository upon acceptance. 
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