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Abstract. Compound riverine and coastal flooding is usually driven by complex interactions among meteorological, 

hydrological, and ocean extremes. However, existing efforts of modeling this phenomenon often do not integrate 

hydrological processes across atmosphere-land-river-ocean systems, leading to substantial uncertainties that have not been 

fully examined. To bridge this gap, we leverage the new capabilities of the Energy Exascale Earth System Model (E3SM) 

that enable a multi-component framework that integrates coastal-refined atmospheric, terrestrial, and oceanic components. 15 

We evaluate compound uncertainties arising from two-way land-river-ocean coupling in E3SM, and track the cascading 

meteorological and hydrological uncertainties through ensemble simulations over the Delaware River basin and estuary 

during Hurricane Irene (2011). Our findings highlight the importance of two-way river-ocean coupling to compound flood 

modeling and demonstrate E3SM’s capability in capturing compound flood extent near the coast, with a hit rate over 0.75. 

Our study shows the growing uncertainties that transition from atmospheric forcings to flood distribution and severity. 20 

Furthermore, an Artificial Neural Network based analysis is used to assess the roles of hydrological drivers, such as 

infiltration and soil moisture, in the generation of compound flooding. The response of compound floods to tropical cyclones 

(TCs) is found to be susceptible to these often overlooked drivers. For instance, the flooded area could increase by more than 

twice (~2.4) if Hurricane Irene was preceded by an extreme antecedent soil moisture condition (AMC). The results not only 

support the use of a multi-component framework for interactive flooding processes, but also underscore the necessity of 25 

broader definitions of compound flooding that encompasses the simultaneous occurrence of intense precipitation, storm 

surge, and high AMC during TCs. 
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1 Introduction 30 

Compound flooding (CF) is a significant and complex hazard encompassing multiple concurrent drivers such as heavy 

rainfall, storm surges, and rain-on-snow events (Li et al., 2019) that cause severe socioeconomic and environmental damages 

(Zscheischler et al., 2018). In coastal regions, CF often arises from a complex interplay of meteorological, hydrological, 

fluvial, and oceanic processes triggered by tropical cyclones (TCs) (Leonard et al., 2014; Bilskie and Hagen, 2018; Hendry 

et al., 2019; Loveland et al., 2021). Characterized by high wind speeds and low surface atmospheric pressure, TCs can bring 35 

intense rainfall over land and significant storm surge above normal tide levels (Fig. 1). CF poses elevated risks compared to 

single-source pluvial, fluvial, and coastal flooding due to its broader spatial coverage and extended durations (Wahl et al., 

2015; Moftakhari et al., 2017). Sarhadi et al. (2024) suggested that the frequency and intensity of CF events would increase 

by up to fivefold by the end of this century, driven by factors such as intensified TCs and rising sea levels (Feng et al., 2022). 

This bleak projection highlights the critical need for advanced integrated modeling strategies, aiming to effectively mitigate 40 

future flood risks and improve the resilient infrastructure and adaptive community response plans (Bates et al., 2021). 

 
Figure 1: Compound flooding processes in a coastal river basin during a TC event. This conceptual diagram shows the key 
elements contributing to CF, resulting from combined riverine and coastal inundation along the river channels and adjacent 
coastal areas. 45 

Modeling CF is inherently challenging because it is triggered and impacted by the interactions of processes within multiple 

Earth system components, including atmosphere, land, river, and ocean, as well as the associated uncertainties (Xu et al., 
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2023). Traditional CF modelling is typically based on coupled hydrological models (Feng et al., 2022; Ikeuchi et al., 2017), 

hydraulic models (Bakhtyar et al., 2020; Bermúdez et al, 2021; Gori et al., 2020b) and hydrodynamic coastal/ocean models 

(Bennet et al., 2023; Kerns & Chen, 2023; Xiao et al., 2021; Ye et al, 2020) at local, regional and global scales. Over time, 50 

more sophisticated methodologies have been developed to enhance CF modeling. These include combined statistical-

numerical modeling approaches (Olbert et al., 2023), deep learning (Feng et al., 2023a; Muñoz et al., 2021), data 

assimilation (Muñoz et al., 2022), reduced-physics ocean models (Eilander et al., 2023; Leijnse et al., 2021), new compound 

inundation models (Santiago‐Collazo et al., 2024), and two-way river-ocean model coupling (Bao et al., 2022; Bao et al., 

2024; Feng et al., 2024; Shen et al., 2024; Zhang et al., 2024). The CF modeling uncertainties can be sourced from model 55 

structures, parameters, input data, boundary and initial conditions (Abbaszadeh et al., 2022; Beven et al., 2018; Fan et al., 

2021). These uncertainties may also cascade through the system (Meresa et al., 2021; Hasan Tanim & Goharian, 2021) and 

their contributions change dynamically over time (Muñoz et al., 2024).  

A recently developed approach is the use of fully coupled Earth System Models (ESMs) to simulate compound flooding 

(Feng et al., 2024; Zhang & Yu, 2024). By integrating multiple earth system components in a single, tightly coupled 60 

framework, ESMs allow for predictive understanding of multi‐scale flow processes and their interactions with other relevant 

processes involving heat, energy, biogeochemical and sediment transport, as well as their impacts on Earth’s climate (Ward 

et al., 2020). Feng et al. (2024) performed the first fully-coupled ESM simulation for CF using the Energy Exascale Earth 

System Model (E3SM), by integrating recent advancements in E3SM including regionally refined unstructured meshes for 

atmosphere, land/river and ocean components in the global domain (Deb et al., 2024; Feng et al., 2022), two-way online 65 

land-river-ocean coupling (Xu et al., 2022b; Feng et al., 2024), and a 2-dimensional (2D) barotropic ocean model (Lilly et 

al., 2023). 

While state-of-the-art ESMs are being implemented to simulate local extremes, this advancement can inevitably introduce 

uncertainties. Compared with regional simulations using prescribed atmospheric forcing derived from observation or 

reanalysis datasets, the model-simulated atmospheric forcings are more uncertain (Hersbach et al., 2020). Atmospheric 70 

forcing has critical impacts on the flood simulation (Cloke and Pappenberger, 2009; Hjelmstad et al., 2021, Xu et al., 2025). 

Specifically, the river discharge intensity, storm surge levels, and CF inundation extents are directly influenced by the TC’s 

track and intensity, as well as the rainfall rate and timing (Gori et al., 2020a; Pappenberger et al., 2005; Zhong et al., 2010). 

These factors are the primary drivers of the riverine and coastal flooding dynamics. The uncertainty originated from 

atmospheric forcings would propagate to land, river, and ocean components through the multi-component framework (Deb 75 

et al., 2023; Blanton et al., 2020; Joyce et al., 2018). Likewise, the hydrological uncertainties in the land and river 

components (Giuntoli et al., 2018; Feng et al., 2023b) and the model coupling schemes can also propagate and even amplify 

the uncertainties. Typically, the cascading meteorological uncertainty is handled by the ensemble approach (Hamill et al., 

2011; Villarini et al., 2019). Multiple realizations of a TC event with perturbed initial conditions and/or model physics 

represent a range of scenarios that evolve differently based on the dynamics of the models (Blanton et al., 2020). However, 80 

the cascading meteorological uncertainty has not been systematically estimated for CF modeling (Abbaszadeh et al., 2022; 
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Xu et al., 2023). It remains unclear whether such uncertainty will amplify or diminish when constrained by the physical 

processes inherent in ESMs.  

The cascading uncertainty in ESMs becomes even more complex with two-way interactive model coupling. In online two-

way coupling, a downstream model, while receiving data from its upstream component, sends back real-time computed 85 

information at predefined time intervals, enabling bi-directional data exchange. For instance, a river model may send 

floodplain inundated water extent to the land surface model for estimating flood water infiltration on the floodplain (Xu et 

al., 2022b). Similarly, an ocean model provides its predicted water levels (Bao et al., 2022; Bao et al., 2024; Feng et al., 

2024), velocities (Zhang et al., 2024) or fluxes (Shen et al., 2024) to the river model for capturing the backwater effect. 

While other uncertainties have been extensively discussed (Camacho et al., 2015; Feng et al., 2019; Muñoz et al., 2024; 90 

Willis et al., 2019), the uncertainty relevant to the two-way model coupling has rarely been explored because the coupling 

capabilities have only recently been developed. Questions are raised regarding the role of model coupling and the magnitude 

of related uncertainty compared to meteorological uncertainty, especially given the characteristic spatiotemporal scales 

invoked in land-river and river-ocean coupling. Addressing these questions is critical to refining the performance of 

interactively coupled ESMs, which is essential for achieving a more comprehensive understanding of the complex 95 

interactions and uncertainties associated with CF simulations. Moreover, assessing the enhancements provided by the two-

way coupling schemes sheds light on the application of these couplings in future scenarios. 

Furthermore, the cascading uncertainty changes with the variability and complexity of hydrological drivers represented in 

models, because these factors are critical for determining how precipitation is partitioned into runoff and infiltration. As 

rainfall initially infiltrates the soil, subsurface runoff moves slowly through the soil layers. When the rainfall intensity 100 

exceeds the soil’s absorption capacity, saturation-excess water leads to surface runoff. The rate of infiltration, which 

determines the balance between surface and subsurface runoff, is influenced by soil properties, antecedent moisture 

conditions (AMC) (Ivancic and Shaw, 2015), and land cover types. The runoffs are then routed through river networks, 

resulting in high river discharge (Fig. 1) (Bevacqua et al., 2020). Understanding the hydrological drivers, including the 

sensitivity of flood responses to various conditions such as different AMC and rainfall scenarios, is crucial (Tramblay et al., 105 

2010). These factors provide key insights for predicting different flood scenarios (Miguez-Macho and Fan, 2012; Schrapffer 

et al., 2020). In particular, AMC plays a critical role in the generation of peak runoff and modulating riverine flooding 

characteristics during heavy precipitation events (Berghuijs et al., 2019; Nanditha and Mishra, 2022). A saturated AMC can 

significantly amplify flood impacts compared to drier conditions. The relative importance of rainfall and AMC varies 

depending on the watershed area. Soil moisture becomes a more dominant factor in larger watersheds (Ran et al., 2022). 110 

However, the role of these hydrologic drivers in cascading uncertainties sourced from atmospheric forcing has not been 

thoroughly investigated in the context of CF, partly due to the absence of a tightly coupled modeling system (Jalili Pirani and 

Najafi, 2020) or insufficient investigation into hydrological processes (Lin et al., 2024). Although Bilskie et al. (2021) and 

Santiago-Collazo et al. (2024) highlighted the critical consequence if CF is preceded by an antecedent rainfall event, their 

implementation of the rain-on-grid method does not account for the hydrological processes, such as runoff generation. 115 
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Addressing these processes would require a detailed hydrological model or land surface component of ESMs. The fully 

coupled E3SM provides a feasible framework for quantifying the hydrological uncertainties in the CF modelling.  

The above-mentioned uncertainties are complicated but must be carefully evaluated for ESMs as they will be more 

frequently applied for CF simulations in the context of climate change. This study focuses on exploring and disentangling 

the atmospheric, hydrological, and coupling uncertainties of coastal CF modeling within the coupled E3SM framework. We 120 

first provide a comprehensive description of the physical processes during a TC-induced CF event. We then evaluate the 

model coupling uncertainties and the cascading meteorological uncertainty using a simulation ensemble of a specific TC 

event. Using the atmospheric ensemble as a basis, we generated an expanded ensemble and proposed a new machine 

learning approach to analyze the relative contributions of different hydrological drivers to CF and how these contributions 

affect the accuracy and reliability of CF simulations over time. Finally, various hydrological and meteorological scenarios 125 

are used to delineate a spectrum of plausible CF outcomes in the designated region. 

2 Materials and Methodology 

2.1 Model Configuration 

This study uses a recently developed configuration in the Energy Exascale Earth System Model (E3SMv2) (Feng et al., 

2024). E3SM represents a significant advancement in Earth System modeling (Golaz et al., 2019, 2022). As a fully coupled 130 

ESM, E3SM supports dynamic exchanges and propagation of information across its different components. Additionally, 

several other developments have been recently implemented to further improve the modeling of coastal extremes, including 

the introduction of high-resolution regional-refined unstructured meshes in global river models (Feng et al., 2022; Liao et al., 

2022, 2023a, b), the implementation of interactively coupled land-river-ocean models (Xu et al., 2022b; Feng et al., 2024), 

and the global tide model with a wetting and drying scheme in the ocean component (Barton et al., 2022; Pal et al., 2023). 135 

Compared with regional models that may provide more detailed inundation at the street level (Costabile et al., 2023; Ivanov 

et al., 2021), E3SM excels at coupling processes across various earth system components. This capability is crucial for 

capturing the complex responses of earth systems to climate change and projecting climate-driven flood hazards. 

The new E3SM configuration (hereafter “E3SM coastal configuration”) integrates the global three-dimensional (3D) E3SM 

atmospheric model (EAM), one-dimensional (1D) E3SM land model (ELM), 1D E3SM river model MOSART (MOSART: 140 

Model for Scale Adaptive River Transport), and the two-dimensional (2D) barotropic version of E3SM ocean model MPAS-

O (MPAS-O: Model for Prediction Across Scales ocean model) (Fig. 2a). This configuration uses three different variable-

resolution meshes to improve the E3SM’s capability in modeling coastal processes. The EAM mesh features a global 

resolution of 100 km, with enhanced refinement to about 25 km over the North Atlantic Ocean and eastern North America. 

Both ELM and MOSART use a land mesh with a coarse resolution of 60 km globally, which is further refined to 30 km 145 

across the contiguous US and to 3 km within the Mid-Atlantic watersheds. The MPAS-O mesh offers the highest resolution 

of 250 m along the US East Coast, specifically designed to capture estuary dynamics, with a broader global resolution of 
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around 1 km everywhere else. The global bathymetry data of MOSART and MPAS-O are sampled from the 90-m 

HydroSHEDS digital elevation model (DEM) (Lehner et al., 2008) and the 450-m GEBCO dataset (IOC and IHO, 2020), 

respectively. The river networks and flow directions are derived using HexWatershed which performs hybrid depression 150 

filling and stream burning for river routing in unstructured meshes (Liao et al., 2022, 2023a, b). The river bankfull width and 

depth were derived using the power law function with bankfull discharge (Andreadis et al., 2013). 

The novel two-way hydrological coupling between land and river components enables E3SM to capture the infiltration of 

inundated river water in floodplains and, subsequently, the enhancement of subsurface runoff and evapotranspiration from 

saturated floodplain soils (Xu et al., 2022b). The two-way river-ocean coupling was developed for E3SM to better represent 155 

the dynamic interaction between rivers and oceans, especially during CF events (Feng et al., 2024). This new approach 

allows for an accurate representation of coastal backwater effects and the mutual influences of river discharge and ocean sea 

surface height (SSH), providing a more realistic assessment of CF hazards (Feng et al., 2022). 

Using the E3SM coastal configuration, we first simulated Hurricane Irene, a TC event that occurred in August 2011 and had 

large flooding impacts across the Mid-Atlantic region (Fig. 2b). Irene led to significant riverine and coastal flooding in the 160 

Delaware River Basin (DRB) and Delaware River Estuary (DBE) due to concurrent intense precipitation and storm surge. 

Following Feng et al. (2024), an ensemble of 25 EAM simulations with perturbed model parameters were performed to 

reproduce Irene and associated meteorological outcomes. EAM is initialized from ECMWF Reanalysis v5 (Hersbach et al., 

2020) at 00:00Z 26 August 2011. Atmospheric nudging is not applied. The EAM ensemble can reproduce the TC 

characteristics, including the storm track and intensity (see Appendix A in Deb et al. (2024)). These “prerun” EAM 165 

simulations were then prescribed within E3SM to drive the land, river, and ocean components. EAM (in “data mode”) 

provides atmospheric forcing to ELM and MPAS‐O at a 15‐min frequency.  MOSART is interactively coupled with ELM 

and MPAS‐O at the 1‐hour interval via the E3SM coupler (Craig et al., 2012). The model outputs are archived at 15 minutes 

for EAM and hourly for ELM, MOSART and MPAS-O. We spun up ELM and MOSART from a 10-year historical 

simulation forced by Global Soil Wetness Projects version 3 (GSWPv3; Kim, 2017), and MPAS-O from a 1-month 170 

simulation with the global tide model. MOSART was validated against the streamflow measurements at 6 USGS gauges 

along the Delaware River main channel with averaged coefficient of determination (𝑟!) of 0.79 and Kling–Gupta efficiency 

(KGE; Gupta et al., 2009) of 0.84. MPAS-O was assessed for water level at 6 NOAA tidal gauges across the DBE, showing 

an averaged 𝑟! of 0.72 and root mean squared error (RMSE) of 0.41 m. Please refer to Feng et al., (2024) for a more detailed 

description of the E3SM configuration and the model evaluation.    175 

Fluvial and coastal inundations are simulated in MOSART and MPAS-O, respectively. The riverine inundation in MOSART 

is simulated using a macroscale inundation scheme that assumes the inundation occurs from the lower elevation to higher 

elevation within each grid cell (Luo et al., 2017; Yamazaki et al., 2011). Coastal inundation simulated on the MPAS-O 

inland mesh is aggregated onto the coarser MOSART mesh in the DRB. Within each MOSART grid cell, the inundation 

fraction is determined by the percentage of MPAS-O cells with a simulated water depth over 1 m. This threshold represents 180 

adjustments made to the MPAS-O inland bottom elevation data near the DRB coastline during the upscale sampling. 
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Whenever there is a discrepancy between the inundation area from MOSART and MPAS-O in their overlapped cells near the 

coastline, the MPAS-O inundation is considered more accurate and will be used. 

Here, the total simulated inundation extent of Irene is benchmarked against a 250-m resolution inundation extent dataset 

based on satellite imagery (Tellman et al., 2021). The dataset is aggregated onto the MOSART mesh for comparison. Within 185 

each MOSART cell, we compute the fraction of the observed inundation. The model performance is evaluated using flood 

metrics defined by Wing et al. (2017), including hit rate (𝐻𝑅), false rate (𝐹𝑅) and success index (𝑆𝐼) 

𝐻𝑅 = "!#!
"!#!$""#!

,                              (1) 

𝐹𝑅 = "!#"
"!#"$"!#!

,                               (2) 

𝑆𝐼 = "!#!
"!#!$""#!$"!#"

,                              (3) 190 

where 𝑀 and 𝐵 are the pixels (or grid cells) from model simulations and benchmark data, respectively. The subscripts 1 and 

0 represent wet (inundated) and dry cells, respectively. For all the three metrics, a score of 0 indicates poor performance, 

while a score of 1 represents perfect model performance. In our simulations, a wet cell is identified if the simulated 

inundation fraction is above a small unitless threshold of 0.02. This threshold minimizes the influence of cells that may only 

be marginally inundated—likely due to data and model uncertainties—thus ensuring a more reliable assessment of flood 195 

extent. The predicted flooded area (FA) is calculated by multiplying the flooded fraction by the corresponding cell area. 

2.2 Model Coupling Uncertainty 

The model coupling uncertainty is evaluated using three experiments (Table 1). The first two experiments only integrate 

ELM and MOSART, while the third experiment interactively couples MPAS-O with MOSART. All experiments are driven 

by the same EAM ensemble atmospheric forcing. The MOSART and MPAS-O simulated inundation extent is first evaluated 200 

against the benchmark data to justify the necessity of considering both riverine and coastal flooding within the coupled ESM. 

We then compared the streamflow along the Delaware River mainstem and riverine inundation in DRB in terms of flood 

metrics among different experiments to demonstrate the uncertainty of two-way coupling. The comparison of riverine 

inundation between Experiments 1 and 2 and between Experiments 1 and 3 shows the uncertainty from two-way land-river 

and river-ocean coupling, respectively. The comparison of total inundation between Experiments 1 and 3 quantifies the 205 

uncertainty if the ocean component is neglected in the CF simulation. 
Table 1 Numerical experiments for quantifying model coupling uncertainty. 

Experiment # Configuration Flooding type 

1 ELM → MOSART riverine 

2 ELM ↔ MOSART riverine 

3 ELM → MOSART ↔ MPAS-O riverine & coastal 
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Figure 2: (a) The multi-component E3SM framework and drivers used for analyses within each model component. The black 210 
arrows represent the data flow via the one-way coupled framework. The white arrows are the new flow directions from the 2-way 
land-river and river-ocean models. (b) Map of Delaware river basin (DRB), Delaware bay estuary (DBE), and the observed (red) 
and modeled (black) Irene tracks. The topographic map in (b) is from the ESRI world topographic map (ESRI, 2012). 

2.3 Cascading Meteorological Uncertainty 

To understand the evolution of the meteorological uncertainty cascaded from atmospheric simulations through the multi-215 

component framework, we applied the configuration of Experiment 3 (Table 1) and analyzed the interactions of those 

physically interconnected variables from the atmosphere, land, river, and ocean components of E3SM (Fig. 2a) including 

precipitation (𝑝𝑟𝑒𝑐𝑖𝑝), air pressure (𝑃%&') and wind speed (𝑈(&)*) from EAM; surface runoff (𝑄+,'), subsurface runoff 

(𝑄+,-), infiltration (𝑄&)./) and soil water storage (𝑄+0&/) from ELM; river discharge (𝑄) and riverine inundation area (𝐴'&12') 

from MOSART; SSH and coastal inundation area (𝐴032%)) from MPAS-O. The flux and state variables are represented by 220 

their event-accumulated and event-peak values within the Delaware River drainage basin, respectively (Fig. 2b). The 

estimated relationship between these variables represents the impact of one E3SM component on another component. For 

MOSART and MPAS-O, due to two-way river-ocean coupling, mutual relationships can occur between the related variables. 

The magnitude of uncertainty amplification or diminishment is quantified using normalized median absolute deviation 

(NMAD): 225 

NMAD = median(|<#=median(<)|)
median(<)

,           (4) 

and coefficient of variation (CV) 

(a) (b)
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CV = ?
@
,              (5) 

where 𝑋& represents a variable 𝑋 modeled at the 𝑖th ensemble run, and µ and 𝜎 are the mean and standard deviation of the 

corresponding variable computed from all ensemble simulations. These two metrics measure the spread of simulations with 230 

respect to the ensemble median and mean values separately.  

Additionally, structural equation modeling (SEM) is applied as a path analysis method (Wright, 1921) to trace the flow of 

data and uncertainty from the 25 ensemble members. SEM estimates the complex relationships between two groups of 

variables by fitting multivariate regressions and uses the coefficient of a predictor to represent its contribution to the 

response variable. The Python library semopy is used in our SEM analyses (Igolkina and Meshcheryakov, 2020). 235 

2.4 Uncertainty of Hydrological Drivers 

The hydrological drivers we selected for uncertainty analysis include surface runoff, subsurface runoff, infiltration, and soil 

water storage. As the influence of these hydrological drivers shifts throughout a TC event due to changes in precipitation 

patterns, we chose to examine the cumulative impacts of these drivers across the entire event and track the temporal 

evolution of each driver’s influence. For this purpose, we expand the original EAM simulation ensemble by introducing 240 

variations in AMC and runoff generation parameters within ELM. This expanded ensemble enables us to apply a machine 

learning approach to compute the permutation importance of each hydrological driver, providing insights into their roles in 

modulating flood exposure. We focus exclusively on riverine flooding in this analysis. To avoid the substantial 

computational burden associated with MPAS-O, we impose MPAS-O simulated water level as the coastal boundary 

condition of MOSART (Feng et al., 2022). This approach represents the coastal backwater effects during CF, comparable to 245 

those obtained from the two-way river-ocean coupled configuration in Experiment 3 (Feng et al., 2024). 

2.4.1 Expanded Ensemble simulation 

The original EAM ensemble is expanded by first selecting 5 ensemble members that represent a roughly even distribution of 

river discharge and precipitation during Hurricane Irene (Fig. S1 and S2) and then running each member with multiple AMC 

scenarios and different sets of runoff generation parameters. Five AMC scenarios were chosen to reflect a broad range of 250 

hydrological drivers based on historical soil moisture trends, spanning from the driest to the wettest states. Specifically, we 

used the 0th, 25th, 50th, 75th and 100th percentiles of basin-averaged soil moisture (0.067~0.087 kg m-2) during hurricane 

seasons from 2005 to 2011 as modeled in a historical ELM simulation (Fig. S1). The AMC at 75th percentile aligns with the 

observed AMC of Irene. Two parameters in ELM (𝑓012' and 𝑓*'%&)), that determine the runoff generation are considered, 

where 𝑓012'  determines the saturation fraction, i.e. how much surface runoff is generated from precipitation, and 𝑓*'%&) 255 

controls the subsurface runoff generation (see Appendix A for a detailed definition). Runoff is highly sensitive to both 𝑓012' 

and 𝑓*'%&), which values usually have to be determined through sensitivity analysis. In the Mid-Atlantic region, as suggested 

by Xu et al. (2022a), we selected 𝑓012' values at 0.1, 0.5, 1, 2.5 and 5, and 𝑓*'%&) values at 2, 2.25, 2.5, 3 and 5. The varying 
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peak discharge observed in the main channel of the Delaware River and the extent of riverine flooding indicate a broad range 

of possible scenarios captured in simulations that use the perturbed parameters of atmospheric conditions, AMC, and the 260 

parameters 𝑓012' and 𝑓*'%&) (Fig. S2 and S4∼S6). Using the selected 5 ensemble members, 5 AMC scenarios, 5 values each 

for 𝑓012' and 𝑓*'%&), we performed a total of 625 ensemble simulations.  

2.4.2 Quantifying Hydrological Driver Importance 

To quantify the relative importance of each hydrological driver of CF, we employed a two-stage Artificial neural network 

(ANN) approach (Fig. 3). Compared to traditional regression models, ANN is particularly advantageous for capturing the 265 

complex, nonlinear relationships that exist between the diverse hydrological drivers and the resulting impacts on river 

systems (Goodfellow et al., 2016; LeCun et al., 2015; Tsang et al., 2017).  

The first ANN model emulates the relationships between the hydrological drivers of 𝑄+,' , 𝑄+,- , 𝑄&)./  and 𝑄+0&/  and 

perturbation parameters. Here, the input features are precipitation, AMC, 𝑓012'  and 𝑓*'%&) , and the outputs are the 

aforementioned hydrological drivers. Then, these outputs become the input features for the second ANN, which emulates the 270 

relationships between river discharge and inundation area and these input features. To perform a detailed analysis, we first 

assessed the event-accumulated impacts of these drivers by aggregating data over the entire TC event. We also examined 

fine temporal impacts by using the second ANN on a daily basis. This allows us to understand not only the overall effect of 

each driver but also their day-to-day variations throughout the event. The relative importance of the input features on the 

output features is quantified using permutation importance. For more details about the ANN model setup and permutation 275 

importance calculation, please refer to Appendix B.  
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Figure 3: The densely connected ANNs for quantifying the relative importance of hydrological drivers to river discharge 𝑸 and 
inundation area 𝑨𝒓𝒊𝒗𝒆𝒓. Only 4 neurons per hidden layer are shown for illustration purposes. AMC refers to antecedent soil 
moisture condition. 280 

3 Results 

3.1 Model Coupling Uncertainty 

In Experiment 3, the E3SM coastal configuration employs the coupled MOSART and MPAS-O models to simulate 

compound riverine and coastal inundation (Fig. 4). The results indicate that MOSART can predict riverine flooding along 

the lower Delaware River and its upstream tributaries. However, the model tends to overestimate the maximum extent of 285 

flooding along the Delaware River mainstem and some tributaries (Fig. 4a). Occasionally, some observed inundated cells in 

the upstream are captured by the model. Such bias is likely caused by the coarse spatial resolution of the river mesh, 

inaccurate river network delineation, and missing processes such as damming and flood defense constructions. Despite 

refinement, the mesh and river network still do not achieve the detail provided by regional high-resolution models (Dullo et 

al., 2021). More importantly, although MOSART is capable of simulating extensive riverine inundation in coastal regions, it 290 

cannot simulate the finer details of inundation immediately adjacent to the coastline (Fig. 4a), where coastal tide and storm 

surge play a significant role. To accurately represent these near-coastline inundations, it is essential to integrate MPAS-O 

(Fig. 4b), which is specifically designed to account for the dynamic interactions between tide and storm surge along the 

shoreline. 

Comparison of flood metrics also confirms the importance of incorporating both riverine and coastal dynamics through a 295 

river-ocean coupled configuration (Fig. 5). Compared to Experiment 1 (Table 1) which does not activate MPAS-O, the river-

ocean coupled configuration in Experiment 3 remarkably improves 𝐻𝑅  and 𝑆𝐼  by twofold with more than doubled the 

predicted flooded area (𝐹𝐴) and reduces 𝐹𝑅 by ~0.1. The change in flood metrics implies that a significant portion (>70%) 

of the compound flooded area during Irene is accounted for by coastal flooding, which could be otherwise neglected if the 

ocean model is not coupled. However, the integration of MPAS-O does not reduce the MOSART-overpredicted flooded 300 

regions significantly, as suggested by the change of 𝐹𝑅. The overestimation in 𝐹𝑅 is likely due to the bias in the MODIS 

satellite data, the macroscale inundation scheme in MOSART, and the MOSART mesh resolution. The flood extent dataset 

(Tellman et al. 2021) could underestimate the actual flooding area due to the uncertainty in the cloud cover removing 

technique (Zhang & Yu, 2024). Its fidelity further decreases in the upstream direction due to the existence of vegetation 

covers (Sexton et al., 2013). In addition, the macroscale inundation scheme may not capture the subgrid connectivity given 305 

the grid resolution of 5 km (Xu et al., 2022b). However, these findings highlight the synergistic nature of river and ocean 

modeling in improving CF simulations in E3SM. 
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Figure 4: (a) MOSART simulated riverine inundation (red) against satellite-measured inundation (magenta box). The black 
dashed box highlights the lower Delaware River reach. (b) E3SM simulated riverine (red) and coastal (blue) total inundation 310 
against satellite data (magenta box). The black dashed box represents the coastline of DBE where extensive coastal inundation 
occurred. In both panels, dark and light colors represent the minimum and maximum inundated extent from the ensemble 
simulations, respectively. The gray lines are the major river channels.  

Figure 5: Flood metrics of hit rate (𝑯𝑹), false rate (𝑭𝑹), success index (𝑺𝑰) and flooded area (FA) used to compare riverine 315 
flooding in Experiments 1~3 and the combined riverine and coastal flooding in Experiment 3. Experiment 1 and 2 include land 
and river components, while Experiment 3 runs all land, river and ocean components (Table 1). MOSART only considers riverine 

(a) (b)
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inundation, while MOSART+MPASO accounts for both riverine and coastal inundation. Whiskers extend to 1.5 times the 
interquartile range from the quartile boundaries. 

The comparison of Experiments 1∼3 (Table 1) demonstrates the distinct role of land-river-ocean coupling in influencing CF 320 

(Fig. 6). Specifically, the implementation of two-way land-river coupling leads to a noticeable decrease in peak discharge 

along the Delaware River mainstem by 10∼50 m3/s which slightly increases towards the river outlet (Fig. 6a). Consequently, 

the simulated flooded area across the watershed is reduced in Experiment 2 compared to Experiment 1 (Fig. 6b). These 

reductions, despite being sporadic in upstream regions, are predominantly observed in the Lower Delaware River reach and 

near the coastline (Fig. 6b). This expected change is attributed to the two-way interaction of land and river hydrology 325 

implemented in Experiment 2, in which floodplain inundated water from MOSART is transferred to ELM, thereby reducing 

water storage within the channel and flood extent (Luo et al., 2017). Conversely, the influence of two-way river-ocean 

coupling (Experiment 3) appears to be mainly confined to the river reaches close to the outlet (Fig. 6c), where it significantly 

increases local streamflow (Fig. 6a). This is a result of more accurately representing the water and momentum fluxes 

between the river and ocean as well as coastal backwater effects. The elevated water levels due to tide and storm surge force 330 

an upstream propagation of ocean water into the river channel, leading to a subsequent increase in both river discharge and 

riverine flooded area in the low-lying regions (Feng et al., 2022).  
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Figure 6: Comparison of flood impacts of model coupling. (a) Peak discharge along the Delaware River mainstem simulated by 1-
way, 2-way land-river and river-ocean coupled simulations in Experiments 1, 2 and 3 (Table 1), respectively. Spatial maps of 335 
change in inundation of (b) two-way land river coupled simulations and (c) two-way river-ocean coupled simulations relative to 1-
way coupled simulation in Figure 4a. Blue indicates reduced flooded area within the corresponding cell, while red implies an 
increase in flooded area. 

The impact of the new two-way coupling schemes on accurately capturing the flood extent (Fig. 5) is less significant 

compared to their effect on modulating the discharge near the river outlet (Fig. 6a), but insightful. Comparing riverine 340 

flooding in Experiments 1 and 3, two-way river-ocean coupling improves the flood metrics by 0.01∼0.02 and increases FA 

by ∼2.5×107 m2, as a result of a more accurate representation of backwater effects near the river outlet (Fig. 6c). Conversely, 

the two-way land-river coupling shows a slight reduction in flood metrics and FA, as also indicated in the spatial map (Fig. 

6b). The discrepancies observed do not necessarily imply that the inclusion of land-river interactions compromises the 

results. Rather, they may result from the inherent uncertainties in both data and MOSART simulations, which tend to 345 

overestimate riverine flooding. The contrasting behaviors between the two coupling schemes primarily stem from their focus 

on different spatial and temporal scales. While it is crucial for capturing hydrological processes at larger spatiotemporal 

scales, the two-way land-river coupling, building upon the macroscale inundation scheme, potentially makes the coupling 

(c)

(a)

(b)
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less reliable for event-scale riverine flooding. The two-way river-ocean coupling is designed for accurately representing 

localized interactions between river discharge and tidal or storm surge dynamics that occur at diurnal or semi-diurnal scales. 350 

These findings highlight the complex interplay between various coupling approaches and the importance of tailored 

approaches in flood modeling to address specific hydrodynamic challenges effectively. 

3.2 Cascading Meteorological Uncertainty 

The SEM analysis depicts the possible pathways for the cascading propagation of meteorological and other uncertainties of 

CF simulations within E3SM (Fig. 7). Specifically, precipitation impacts runoff and infiltration nearly equally but it does not 355 

significantly influence soil water storage. The minimal variation in soil water during a TC event is likely because the soil 

reaches its saturation capacity, especially when rainfall intensity exceeds the soil's infiltration rate. Runoff, which directly 

contributes to river discharge, positively affects flood simulation in terms of 𝑄 and 𝐴'&12'  in MOSART. Conversely, the 

impact of infiltration and soil water storage on flooding is negative, as these processes reduce the surface runoff into river 

channels. Moreover, wind speed combined with air pressure affects sea level variations. The elevated sea level leads to an 360 

increase in the coastal inundation area. Additionally, there is a notable interaction between 𝑄 and SSH. Increased river 

discharge tends to elevate local SSH, while high SSH can impede river discharge (Dykstra and Dzwonkowski, 2020). This 

mutual interaction, frequently observed in CF events, underscores the complexity of the interactive processes influencing 

both riverine and coastal flooding dynamics, which need to be jointly considered in the two-way river-ocean coupled E3SM. 

The cascading of meteorological uncertainty within the E3SM framework is assessed using CV and NMAD (Fig. 8). Both 365 

metrics suggest an amplification of meteorological uncertainty from atmospheric simulations throughout the multi-

component system. In the context of riverine flooding, the variability among the ensemble for hydrological drivers such as 

surface runoff (𝑄+,' ), subsurface runoff (𝑄+,- ), and infiltration (𝑄&)./ ) is found to be comparable to that observed in 

precipitation. However, this variability escalates in riverine flood parameters, i.e., 𝑄 and 𝐴'&12', where the CV and NMAD 

values are approximately twofold of those in precipitation. For coastal flooding, uncertainty increases from 𝑈(&)* to SSH, 370 

which directly impacts coastal inundation levels (𝐴032%)). Much smaller uncertainty is presented in 𝑄+0&/  and 𝑃%&' . This 

analysis highlights the cascading nature of uncertainties from atmospheric inputs through meteorological and hydrological 

processes to final flood outcomes. 

The analysis of the uncertainty path and propagation implies the critical role of hydrological drivers. By quantifying their 

relative contributions, we can better understand their roles in shaping the variability in riverine flooding outcomes, thereby 375 

refining the predictability of ESMs. 
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Figure 7: The structural equation model that describes the influence of variables on their response variables in EAM, ELM, 
MOSART and MPAS-O. Red and blue arrows show positive and negative influences, respectively. The asterisk sign implies the 
relationship is not significant with a p-value larger than 0.05. 380 

 
Figure 8: CV (light bars) and NMAD (dark bars with black margins) computed from the simulation ensembles for the variables 
selected in Section 2.3, including precipitation (𝒑𝒓𝒆𝒄𝒊𝒑), surface runoff (𝑸𝒔𝒖𝒓), subsurface runoff (𝑸𝒔𝒖𝒃), infiltration (𝑸𝒊𝒏𝒇𝒍) and 
soil water storage (𝑸𝒔𝒐𝒊𝒍), river discharge (𝑸), riverine inundation area (𝑨𝒓𝒊𝒗𝒆𝒓),  coastal inundation area (𝑨𝒐𝒄𝒆𝒂𝒏), sea surface 
height (SSH), air pressure (𝑷𝒂𝒊𝒓 ) and wind speed (𝑼𝒘𝒊𝒏𝒅 ). Red and blue bars indicate riverine and coastal flood drivers, 385 
respectively. 

3.3 Relative Importance of Hydrological Drivers 

The extended ensemble simulations provide a wide range of scenarios, encompassing both lower and higher magnitudes of 

river discharge and riverine inundation compared to those observed during Hurricane Irene (Figure S6 and S7). The ANNs, 
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trained from the ensemble output, achieve high skill scores. The 𝑟! and NRMSE values for the first ANN are 0.96 and 0.04, 390 

respectively, and are 0.97 and 0.03 for the second ANN. 

Regarding the cumulative impacts over the entire Irene lifetime, the permutation importance derived from the first ANN 

highlights the crucial impact of AMC, 𝑓*'%&)  and 𝑓012'  on 𝑄+,' , 𝑄+,- , 𝑄&)./  and 𝑄+0&/ , respectively, whereas precipitation 

shows more evenly distributed impacts on all the drivers (Fig. 9a). It should be noted that the relatively lower permutation 

importance values for precipitation do not suggest it is less important compared to the other factors. Rather, this is because in 395 

our ensemble, AMC, 𝑓*'%&)  and 𝑓012'  encompass a broader range of scenarios, whereas precipitation is from the Irene 

ensemble of simulations that only represent event-specific outcomes. The results of 𝑓*'%&) and 𝑓012' align well with their 

definitions in ELM (Appendix A), as 𝑓*'%&)  and 𝑓012'  dominate the change in 𝑄+,-  and 𝑄+,' , respectively. Precipitation 

affects 𝑄+,', 𝑄+,- and 𝑄&)./ nearly equally, which corresponds to their similar response presented in Figure 7. 

The second ANN analyzes the impact of hydrological drivers on riverine flooding, i.e. river discharge (𝑄) and flooded area 400 

(𝐴'&12') (Fig. 9b). Our analysis demonstrates that 𝑄+,' and 𝑄+,- have similar influences on 𝑄, whereas 𝑄&)./ shows a limited 

effect. In terms of 𝐴'&12', 𝑄+,' acts as the dominant factor, whereas 𝑄+,- and 𝑄&)./ are less important but cannot be ignored. 

𝑄+0&/ has a minimal impact on both variables. The discrepancy between 𝑄 and 𝐴'&12' in their responses to these hydrological 

drivers can be attributed to the nature of the hydrology: river discharge is directly affected by surface and subsurface runoff, 

which are immediate responses to precipitation. In contrast, inundation across the river basin is more complex, as infiltration 405 

exerts a more localized effect and surface runoff may cause rapid flooding in response to intense rainfall. This differential 

impact implies the need for monitoring day-to-day variations in these drivers throughout the event to understand their 

dynamic role. 

The time evolution of the permutation importance in the second ANN, trained on daily data during Hurricane Irene, 

illustrates the dynamic roles of hydrological drivers in response to the event and their contributions to riverine flooding. For 410 

river discharge, the influence of 𝑄+,' and 𝑄+,- varies notably before and during the peak flow (Fig. 10). Specifically, peak 

discharge was observed on August 30 at the river outlet (see Fig 15 in Feng et al., 2024), a period when 𝑄+,'  was 

predominant. In contrast, 𝑄+,-, which typically contributes to baseflow, exerted more influence before the peak. Following 

the peak, the contributions of 𝑄+,', 𝑄+,- and 𝑄&)./ leveled out as significant infiltration into the soil increased soil moisture, 

revealing a more significant effect of 𝑄+0&/ than that seen in its event-cumulative impact (Fig. 9). The role of soil emerges as 415 

vital, acting as a buffer that modulates flooding during the heavy precipitation induced by the TC event. As the event 

progressed post-peak, there was a noticeable shift with a decreasing impact from 𝑄+,- along with a bell-shaped variation in 

𝑄&)./  and 𝑄+0&/ . In terms of 𝐴'&12' , the dynamics slightly differ. 𝑄+,'  began dominating on August 28, two days earlier 

compared to 𝑄, indicating the routing of discharge from the basin upstream to the outlet. These results reveal the importance 

of accurate runoff separation in the ESM framework for accurately modeling the time-varying nature of hydrological drivers. 420 
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Figure 9: (a) Permutation importance of perturbation parameters (precipitation, AMC, 𝒇𝒅𝒓𝒂𝒊𝒏 and 𝒇𝒐𝒗𝒆𝒓) on hydrological drivers 
of 𝑸𝒔𝒖𝒓, 𝑸𝒔𝒖𝒃, 𝑸𝒊𝒏𝒇𝒍 and 𝑸𝒔𝒐𝒊𝒍. The corresponding box plot of each driver is provided in row 1~4 of Figure S8. (b) Permutation 
importance of hydrological drivers on river discharge (𝑸) and flooded area (𝑨𝒓𝒊𝒗𝒆𝒓). The coastal inundation area (𝑨𝒐𝒄𝒆𝒂𝒏) is not 
considered from this analysis as MPAS-O is excluded from the expanded ensemble simulations. The scatter plots of 𝑸 and 𝑨𝒓𝒊𝒗𝒆𝒓 425 
against the drivers are respectively provided in the 5th and 6th rows of Figure S6. 

 
Figure 10: Time evolution of permutation importance (scaled between 0 and 1) of the four hydrological drivers for (a) 𝑸 and (b) 
𝑨𝒓𝒊𝒗𝒆𝒓. The corresponding skill scores (𝒓𝟐and NRMSE) of the ANNs trained using daily data are provided in Figure S9. The Irene-
induced peak river discharge is on August 30, 2011. 430 

(a) (b)
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4 Discussions 

4.1 Uncertainties of CF simulations in E3SM 

Integrating different coupling schemes into E3SM has a large impact on the simulated flooding. The exclusion of ocean 

coupling resulted in underestimations of the flood extent caused by tide and storm surges, critical for coastal flood 

assessments. Likewise, we showed that neglecting two-way land-river-ocean interactions distorted the modeled hydrological 435 

and hydrodynamic responses to the TC event, as the interactive mechanisms between terrestrial and aquatic systems were 

overlooked. Therefore, integrating comprehensive coupling mechanisms is essential for improving the predictability of 

ESMs, particularly in coastal regions vulnerable to complex, multivariate CF events. Additionally, we find that the 

uncertainty from the atmosphere simulations is comparable to that of two-way river-ocean coupling (i.e., the difference in 

riverine inundation modeled in Experiments 1 and 3), but is considerably smaller than the uncertainty of two-way river-440 

ocean coupling if the MPAS-O modeled inundation is excluded (i.e., the difference in the combined riverine and coastal 

inundation between Experiments 1 and 3) (Fig. 5). The value of 𝜎 in Experiment 3 is 0.015, 0.014, 0.01 and 8.5×107 m2 for 

𝐻𝑅 , 𝐹𝑅 , 𝑆𝐼  and FA, respectively. This implies the critical need to account for the meteorological uncertainty and its 

cascading effects through the coupled system.  

The complexities and inherent variabilities of hydrological drivers significantly influence flood exposure through their 445 

interactions with meteorological conditions. Particularly, the soil's ability to buffer flood water crucially impacts the onset 

and development of floods (Fig. 10) (Blöschl, 2022). Predicting these effects remains challenging, primarily due to the 

spatial variability of soil characteristics and the spatiotemporal unpredictability of precipitation, such as shifting storm tracks 

and fluctuating intensity. This uncertainty is further compounded by key hydrological drivers in the land surface model. 

These parameters affect both the intensity and extent of runoff-driven inundation as well as the soil's response to 450 

precipitation (Fig. 9). To address these challenges, CF modeling requires detailed land surface data and advanced modeling 

techniques, such as the incorporation of lateral flow (Han et al., 2024) and enhanced land-ocean and land-atmosphere 

coupling (Lin et al., 2023; Xu et al., 2024), to accurately simulate the interplay between atmospheric, land and river 

processes.  

As discussed above, unlike single-driver flooding that can be simulated in isolated system components, the simulation of CF 455 

needs multi-component models, such as E3SM, which are capable of representing the compounding nature among drivers. 

However, this also introduces layers of additional uncertainties, particularly in the integration and interaction of model 

components (Jafarzadegan et al., 2023). Moreover, while regional models often focus on uncertainties arising from 

prescribed input forcings (Abbaszadeh et al., 2022; Muñoz et al., 2024), the uncertainties in ESMs can propagate 

bidirectionally through the coupled framework facilitated by two-way coupling schemes, which highlights the contrast in 460 

how uncertainties are generated and managed between regional models and ESMs. Quantifying these uncertainties within an 

integrated framework is crucial for advancing our understanding of CF but remains a formidable challenge. It necessitates a 
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comprehensive examination of atmospheric, hydrological, oceanic and coupling uncertainties, a task that extends well 

beyond the capabilities of single-component models. 

4.2 Definition of “Compound” Flooding 465 

While previous CF studies predominantly focus on the contributions of high discharge, direct runoff, and precipitation to 

riverine flooding, our analysis reveals the underappreciated roles of other hydrological factors–particularly infiltration and 

AMC–in the context of CF. These factors significantly influence the flood dynamics in response to TC events. Specifically, 

we demonstrate that the concurrent occurrence of wet AMC with other CF drivers is not typically accounted for, implying a 

critical gap in the current CF definition. To capture a broad spectrum of plausible riverine flooding outcomes under varying 470 

simulated Irene tracks and AMC conditions, we extracted simulations from the expanded ensemble run by maintaining the 

default values for 𝑓*'%&) and 𝑓012', resulting in 25 diverse scenarios. These scenarios suggest that a TC preceded by a wet 

AMC could drastically escalate flood exposure. Notably, in all AMC scenarios, we observed a general increase in 𝑄 and 

𝐴'&12' corresponding to increasing precipitation in DRB (Fig. 11a and 11b). 

The variability within these simulations shows that the highest discharge was approximately 47% greater than the lowest 475 

discharge and 32% higher than during Irene itself (Fig. 11a). Moreover, in the worst-case inundation scenario, flooded areas 

could increase to more than twice (~2.4) of the flooded areas in the best scenario and the actual Irene event (Fig. 11b). 

Interestingly, the modeled inundation area for Irene closely aligns with the best-case scenario (Fig. 11b and 11c), indicating 

potentially greater risks if such events were to occur under much wetter AMC conditions. More alarmingly, the expansion of 

maximum inundation extent from Irene predominantly affects low-lying areas (Fig. 11c), increasing exposure risks to coastal 480 

residents and highlighting the challenges in modeling complex river-ocean interactions, especially considering the effect of 

sea level rise. These findings suggest a broader definition of CF is needed. Similar to rain-on-snow flooding that may be 

classified as one type of CF (Zarzycki et al., 2024), a “compounding” event should also consider the co-occurrence of TCs 

and hydrological extremes, such as AMC, as high AMC can significantly amplify the TC flood impacts. 
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 485 
Figure 11: (a) Peak discharge and (b) riverine inundation area of 25 ensemble simulations. For each AMC, the ensemble runs are 
sequentially from EAM runs selected in Section 2.4.1. The dashed lines represent the results of the simulation that best describes 
Irene. (c) The plausible outcomes of inundated extent in DRB with the three colors representing the minimum (best-case scenario), 
Irene and maximum (worst-case scenario) inundation from the 25 ensemble runs. 

4.3 Application of Advanced ESMs in Multivariate Flood Simulations 490 

The application of E3SM in multivariate flood simulations brings a unique set of capabilities, especially when compared to 

fine-scale regional models. E3SM, with its ability to simulate interactions across various earth system components–

atmosphere, land, river and ocean–offers a robust framework for understanding cross-scale environmental dynamics. Even 

with regional refinement, E3SM may still not be able to provide the street-level details of flood inundation because of 

missing processes (e.g., pluval inundation) and computational constraints. Although such capability is often crucial for urban 495 

planning and local flood risk management, large-scale E3SM has distinct advantages for broader application scopes. The 

efficiency in runtime makes it particularly suitable for disentangling interconnected drivers of complex physical processes 

and their cascading effects within an integrated framework. This efficiency is crucial for running multiple-scenario 

ensembles, which is essential for understanding the impacts of variability from physical drivers and climate change over 

extended periods, making it possible to simulate interactions like the newly developed two-way coupling between land, river 500 

and ocean. Although in Section 3.1 our analysis indicates that the land-river two-way coupling has relatively low impacts in 

short-term modeling of scenarios, its significance could increase in long-term climate simulations where gradual 

environmental changes play a more prominent role. Furthermore, E3SM provides the potential for climate change 

simulations, where the interactions of multiple planetary systems need to be considered over global scales and decadal to 

centennial timescales. 505 

(c)
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4.4 Limitations and Future Work 

Despite these strengths, there are inherent challenges and potential sources of uncertainty in using E3SM for flood 

simulations. These uncertainties can stem from the models’ resolution, numerical methods, the accuracy of input data, and 

the parameterization of complex hydrological and meteorological processes. 

One limitation of this study is the exclusion of the ocean model in the expanded ensemble simulations, primarily due to the 510 

high computational costs associated with running the global MPAS-O. As a result, the influence of hydrological processes 

on compound riverine-coastal flooding could not be evaluated using the proposed ANN approach. Future work may focus on 

enhancing the computational efficiency and feasibility of MPAS-O, for instance, by implement advanced schemes such as 

local time stepping (Capodaglio & Petersen, 2022; Lilly et al., 2023) and/or developing a regional ocean model within the 

E3SM framework. Currently, MPAS-O is geared towards global simulations, but adapting it for regional use with the 515 

merging of high-resolution local bathymetry data merged could allow for more accurate and locally relevant flood 

simulations, integrating two-way land-ocean coupling to account for ocean water intrusion (Xu et al., 2024) and its effect on 

soil moisture along coastlines. This is particularly relevant given our findings on the significant role of soil moisture in the 

context of TC-induced flooding. As a key driver of coastal flooding, sea level rise (SLR) (Kulp and Strauss, 2019) can also 

interact with future AMC scenarios (Deb et al, 2023). This interaction may further amplify the flood hazards, which should 520 

be considered for more accurate CF risk assessment.  

Another avenue for future research involves conducting long-term climate change simulations to assess the impact of 

climatic drivers on CF dynamics. The existing long-term atmospheric forcing dataset does not adequately capture extreme 

TC events (Feng et al., 2024). Alternatively, employing a storyline approach (Pettett and Zarzycki, 2023) for event-specific 

studies could offer a more nuanced and scenario-based method to explore these extreme events and their interactions with 525 

other environmental drivers. This approach would not only enhance our understanding of climatic impacts on flooding but 

also improve the strategic planning and management of flood risks in vulnerable regions. 

Our study demonstrates that parameters in runoff generation (i.e., 𝑓*'%&) and 𝑓012') significantly influence river discharge 

and inundation (Fig. S4 and S5). When these parameters are considered alongside uncertainties in AMC and precipitation, 

the variability in flood outcomes expands considerably (Fig. S6 and S7). This broader range of variability exceeds that 530 

shown in Figure 11, indicating complex interactions between soil properties and hydrological drivers. Given the critical 

global variability of soil properties, as indicated by the spatial distribution of 𝑓*'%&)  and 𝑓012'  in Xu et al. (2022a), we 

anticipate a greater variability in CF impacts that are dependent on soil conditions and land cover (Tran et al., 2024), in 

addition to topography (Feng et al., 2023b). Furthermore, impervious surfaces, which are prevalent in coastal urban areas, 

may alter local runoff generation parameters (Zhang et al., 2018). This suggests that these parameters might require high-535 

resolution representation in ELM to accurately reflect their spatial heterogeneity and to better represent urban areas (Li et al. 

2024). Future work should focus on refining the spatial resolution in models to better capture the heterogeneity of soil and 
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urban properties. This improvement could lead to more accurate simulations of how different land surface conditions affect 

flood dynamics, particularly in diverse geographic settings. 

7 Conclusions 540 

This study leverages the advanced capabilities of E3SM to improve our understanding of compound river and coastal 

flooding, highlighting the dynamic interaction between hydrological, riverine and coastal processes. Our research 

demonstrates that an integrated atmosphere, land, river and ocean system significantly enhances the accuracy of multivariate 

flood modeling, capturing the cascade of uncertainties through the multi-component framework. The findings emphasize the 

significant influence of hydrological drivers, which can dramatically intensify the impacts of TC-driven flooding. This study 545 

not only showcases the robustness of E3SM in bridging gaps in current modeling approaches but also proposes a broader 

definition of CF that incorporates concurrent hydrological extremes. The implications of our research are profound, 

advocating for the inclusion of advanced, integrated modeling frameworks in future climate impact assessments to better 

predict and mitigate the risks of severe flooding events. 

Appendix A:  Runoff Generation Parameters in ELM 550 

This section provides the definitions for the runoff generation parameters 𝑓012'  and 𝑓*'%&)  in ELM. The fraction of 

precipitation reaching the ground (𝑄/&A) that generates surface runoff (𝑄+,') is determined by the saturation fraction (𝑓+%B) of 

the grid cell:  

𝑄+,' = 𝑓+%B𝑄/&A,                               (A1) 

𝑓+%B = 𝑓C%D𝑒𝑥𝑝	(−0.5𝑓012'𝑧E),                       (A2) 555 

where 𝑓C%D is the potential or maximum saturation fraction of a grid cell, 𝑧E is the water table depth, and 𝑓012' is a decay 

factor for surface runoff (Niu et al., 2005). The subsurface runoff is parameterized as an exponential function of 𝑧E 

𝑄+,- = 𝛩&32𝑄+,-,C%D𝑒𝑥𝑝	(−𝑓*'%&)𝑧E),         (A3) 

where 𝛩&32 is the ice impedance factor, 𝑄+,-,C%D is the maximum drainage rate, and 𝑓*'%&) is a decay factor. 

Appendix B:  ANN and Permutation Importance 560 

In our setup, each ANN model included a hidden layer comprising 64 neurons, optimized using an adaptive optimization 

algorithm, Adam optimizer (Kingma and Ba, 2014). We selected mean square error (MSE) as the loss function to effectively 

measure the accuracy of predictions during training, which was conducted in the deep learning platform TensorFlow (Abadi 

et al., 2016). The model completed 600 epochs with a batch size of 32 to ensure thorough learning and convergence. Before 

training, the data were split into training and testing datasets, and each variable is normalized with respect to its maxima. The 565 
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ANN performance was evaluated on the testing dataset using coefficient of determination (𝑟!) and normalized root mean 

squared error (NRMSE). 

Despite the high accuracy achieved by ANN models, it can be challenging to pinpoint the specific influence of individual 

input variables on output variables (Pires dos Santos et al., 2019). Herein, we employed permutation importance to measure 

the relative significance of input features within complex ANN models. Permutation importance is a technique used to 570 

evaluate the importance of features in a predictive model (Fisher et al., 2019). It assesses the impact of each feature on the 

model’s performance by measuring how much the model’s performance decreases when the values of that feature are 

randomly permuted while leaving other features unchanged (Štrumbelj and Kononenko, 2014; Shrikumar et al., 2017). This 

method allows quantifying how variations in a single input feature can affect a particular output or overall predictive 

accuracy. In this study, we computed permutation importance using SHAP (Shapley Additive Explanations, (Lundberg and 575 

Lee, 2017)) on the test dataset. 
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