
Response to Reviewers 

Title:  Disentangling Atmospheric, Hydrological, and Coupling Uncertainties in Compound Flood 
Modeling within a Coupled Earth System Model 
 
Author Response 2nd revision 

 

Editor comments: 

My decision is that the paper can be published after minor revisions. This is based on multiple rounds of 
review and reports by three reviewers. Currently, one reviewer is satisfied with the revisions, but the 
other reviewer (who did not review the first version of the manuscript) has a few major comments that 
need to be addressed. The authors should address all comments from Reviewer #2 before resubmitting 
the manuscript. Specifically, they should expand and improve the literature review related to uncertainty 
analysis methods. Second, they should improve the presentation of the results by comparing the relative 
uncertainties from different sources. 

 

Author Response: 

We would like to sincerely thank the editor and reviewers for their valuable comments and 
recommendations. We have carefully addressed the reviewer’s suggestions as follows. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Reviewer 2 
Reviewer Comments:  

This manuscript applies an earth system model, E3SM, to study the coupling and meteorological 
uncertainties associated with compound flood modeling. The model is applied to simulate inundation in 
the Delaware River Basin and Estuary during Hurricane Irene. 

Author Response:  

We appreciate the reviewer for the critical assessment of our work. In the following we address your 
comments point by point. Our responses and all changes in the revised paper are marked in blue.  

 

Major comments: 

R2C1:  

Given that the focus of this paper is on assessing sources of uncertainty in the coupled compound flood 
framework, the literature review should be expanded to discuss the approaches used for uncertainty 
analysis in previous studies and their pros/cons. This would help to justify the choice of SEM and ANN for 
this study. 

Author Response:  

Thank you for the insightful comment. We agree that a more comprehensive review of uncertainty 
quantification methods would benefit the manuscript and help clarify the rationale behind our approach.  

We would also like to emphasize that our focus is on uncertainty quantification within a fully coupled 
Earth system modeling framework, which remains an underexplored area in compound flood research. 
To assess coupling uncertainty, we conducted controlled experiments (as shown in Table 1), comparing 
simulated discharge and inundation under different coupling configurations, all driven by the same 
atmospheric ensemble. For cascading meteorological uncertainty, we applied two complementary 
methods: (1) ensemble spread metrics (NMAD and CV), and (2) Structural Equation Modeling (SEM), which 
reveals interdependencies among atmospheric, hydrological, and oceanic variables. SEM is particularly 
well-suited for identifying cause-effect relationships in complex systems with multiple interacting drivers. 
Due to the high computational cost of fully coupled simulations with the global ocean model activated, 
we did not apply ANN-based methods to the meteorological uncertainty analysis. However, we were able 
to expand the ensemble size for hydrological uncertainty analysis, which enabled us to use ANN to 
examine the relative influence of hydrological drivers on discharge and inundation. This follows a similar 
approach to Muñoz et al. (2024), who used random forests to identify dominant drivers, although our 
ANN model allows for multivariate predictions (discharge and inundation). 

In the revised manuscript, we have expanded the introduction (L118~L133) to include a brief review of 
existing methods for uncertainty analysis, such as ensemble modeling, statistical modeling, machine 
learning approaches and SEM, along with their advantages and limitations. 

“The above-mentioned uncertainties are complicated but must be carefully evaluated for ESMs as they 
will be more frequently applied for CF simulations in the context of climate change. A variety of 
approaches have been adopted for understanding the uncertainties of CF modeling. These approaches 



offer trade-offs between computational cost, physical interpretability, and the ability to disentangle 
complex drivers. Ensemble-based methods remain a primary strategy for characterizing the cascading 
uncertainty from the forcing data (Hamill et al., 2011; Hou et al., 2017; Villarini et al., 2019). Multiple 
realizations with perturbed initial conditions and/or model physics represent a range of scenarios that 
evolve differently based on the dynamics of the models (Blanton et al., 2020; Nederhoff et al., 2024; Saleh 
et al., 2017; Wang et al., 2024). Probabilistic frameworks, such as Bayesian inference (Beven and Binley, 
1992), provide more robust treatment of parameters and model uncertainties (Naseri & Hummel, 2022), 
but often rely on strong assumptions and intensive sampling. Machine learning techniques have been 
increasingly applied to flood modeling (Hu et al., 2019) and are effective at capturing nonlinear 
relationships of CF drivers (Muñoz et al., 2024), though they require large training datasets and may 
sacrifice physical interpretability (Shen et al., 2023). Structural equation modeling (SEM; Wright, 1921) 
has also been adopted to disentangle complex, interacting processes (Du et al., 2015; Santoro et al., 2023). 
SEM offers a balance between statistical rigor and interpretability in multi-driver systems without a 
significantly amount of data. Despite these advances, uncertainty quantification within fully coupled ESM 
frameworks remains relatively underexplored due to high computational demands and limited 
methodological integration across domains.” 

 

R2C2:  

The manuscript could be improved by better highlighting and comparing the relative uncertainties from 
different sources. Different methods were used to quantify the coupling uncertainty, the meteorological 
uncertainty, and the uncertainty from hydrological driver propagation, and I don’t see a definitive 
comparison between or synthesis of the results. Line 438-442 states that “uncertainty from the 
atmosphere simulations is comparable to that of two-way river-ocean coupling… but is considerably 
smaller than the uncertainty of two-way river-ocean coupling if the MPAS-O modeled inundation is 
excluded.” However, it is unclear to me where the “uncertainty from the atmosphere simulations” is 
clearly reported and how the magnitudes were compared. 

Author Response:  

We appreciate the reviewer’s suggestion and acknowledge that the comparison between different 
sources of uncertainty, particularly between atmospheric forcing and model coupling, was not clearly 
presented in the original manuscript. While the cascading meteorological uncertainty and the hydrological 
uncertainty target different aspects of the system and are therefore not directly comparable (the former 
concerns the propagation of uncertainty through interconnected system drivers, while the latter focuses 
on the influence from distinct hydrological drivers), we agree that a more explicit comparison between 
the atmospheric forcing uncertainty and coupling uncertainty is necessary. 

To clarify, the standard deviation values reported in lines 438–442 of the previous manuscript (e.g., σ = 
0.015 for HR, 0.014 for FR, etc., in Experiment 3) represent the variability in flood metrics across all 
ensemble members of atmospheric forcing, thereby quantifying the uncertainty introduced by 
atmospheric variability. In contrast, coupling uncertainty can be assessed by comparing the flood metrics 
across Experiments 1, 2, and 3 using the mean values of the ensemble simulation. 



In response to this comment, we have added a new Supplementary Table S1 that directly compares these 
two sources of uncertainty. This table reports: (1) the magnitude of differences in flood metrics between 
Experiments 1, 2, and 3 (reflecting coupling uncertainty) and (2) the standard deviation of flood metrics 
across all ensemble members (reflecting atmospheric uncertainty). Additionally, we have revised the 
discussion section in the main text to elaborate on this comparison (L461-L469). 

 

“Additionally, we directly compared the uncertainty introduced by model coupling with that from 
atmospheric forcing (Table S1). The atmospheric uncertainty, quantified as the spread of flood metrics 
across ensemble members in Experiment 3, is comparable to the uncertainty introduced by two-way land-
river and river–ocean coupling when only riverine inundation is considered (Exp3 – Exp 1 and Exp 3 – Exp 
1). However, when coastal inundation is included, the coupling-induced uncertainty becomes 
substantially larger across all metrics. The discharge also shows more variability in the river-ocean 
coupling experiment (Exp 3) than in the atmospheric ensemble, indicating the significant influence of the 
two-way river-ocean coupling configuration on flow dynamics. These results highlight the need to 
consider both meteorological variability and structural model uncertainty when evaluating flood risk in 
the coupled ESM framework.” 

 

Table S1 Comparison of uncertainty in flood and discharge metrics due to model coupling and atmospheric forcing. 
Coupling-induced uncertainty is represented by the difference in the metrics between Experiments 2 or 3 and Experiment 
1, averaged across ensemble simulations. Atmospheric uncertainty is quantified as the standard deviation of metrics across 
ensemble members in Experiment 3. 

Uncertainty source HR FR SI FA [× 10!m2] Q [m3/s] 

Two-way land-river coupling (riverine 
flooding) (Exp 2 – Exp 1) 

-0.076 0.007 -0.020 -6.186 -124.342 

Two-way river-ocean coupling (riverine 
flooding) (Exp 3 – Exp 1) 

0.015 -0.004 0.005 2.480 

1641.695 
Two-way river-ocean coupling 
(riverine&coastal flooding) (Exp 3 – Exp 1) 

0.346 -0.098 0.129 54.185 

Atmospheric forcing  

(standard deviation in Exp 3) 

0.015 0.014 0.01 8.500 326.094 

 

 

 

 

 



Other Comments: 

R2C3: 

Line 179-180: Is the elevation adjustment of 1 meter spatially uniform? Is this justified by the data? 

Author Response:  

We apologize for the confusion. To clarify, the 1-meter threshold for determining inundation in MPAS-O 
cells is not a spatially uniform adjustment of elevation data itself, nor does it reflect a deficiency in the 
underlying GEBCO bathymetry data. Instead, it is a practical criterion introduced during post-processing 
to reduce minor inundation signals that can appear when aggregating from the 250-m MPAS-O mesh to 
the coarser MOSART grid. Therefore, this 1-meter threshold is justified not by the original elevation data, 
but rather by the resolution gap and the need to maintain consistency in identifying meaningful 
inundation extents when aggregating results across different spatial scales. We will add a brief clarification 
in the manuscript to reflect this point explicitly (L197~L200). 

“Within each MOSART grid cell, the inundation fraction is determined by the percentage of MPAS-O cells 
with a simulated water depth over 1 m. This threshold does not imply a spatially uniform adjustment of 
the GEBCO bathymetry data used by MPAS-O. Instead, it serves as a practical criterion to mitigate biases 
arising from upscaling inundation extents from the higher-resolution MPAS-O mesh to the coarser 
MOSART grid.” 

 

R2C4: 

Line 198-199: Please clarify here that Experiment 1 used one-way coupling while Experiment 2 used two-
way coupling. 

Author Response:  

Thanks. This has been clarified in the revision (L216~L217):  

“The first two experiments implement one-way and two-way coupled ELM and MOSART, respectively, 
while the third experiment interactively couples MPAS-O with MOSART.” 

 

R2C5: 

Line 248-249: By “roughly even distribution”, do the authors mean that the discharge and precipitation 
values are sampled at even intervals across the range of values modeled, or that the values are applied 
over the study domain in an event spatial pattern? Please clarify.  

Author Response:  

Sorry for the confusion. We confirm that by "roughly even distribution," we mean that the selected 
ensemble members were chosen such that their simulated discharge and precipitation span the full 
range of modeled values, with values approximately evenly spaced across that range. We have revised 
the manuscript to clarify this point (L266~L267). 



“The original EAM ensemble is expanded by first selecting 5 ensemble members whose river discharge 
and precipitation values span the full range of the ensemble and are approximately evenly spaced across 
that range during Hurricane Irene” 

 

R2C6: 

Line 264-265: It was not clear what data was used to train/test the ANN. Are the 625 ensemble simulations 
from the coupled model used? What was the split for testing and training? 

Author Response:  

Thanks. The input and output variables shown in Figure 3 were derived from the full set of 625 ensemble 
simulations. These simulations provided the dataset used for both training and testing the two-stage ANN. 
As now clarified in Appendix B, the dataset was randomly split into 80% for training and 20% for testing.  

Revised Main Text: “To quantify the relative importance of each hydrological driver of CF, we employed a 
two-stage Artificial Neural Network (ANN) approach (Fig. 3), trained and tested using data from all 625 
ensemble simulations.” 

Revised Appendix B: “Before training, the data were randomly split into training and testing datasets, with 
80% used for training and 20% for testing,” 

 

R2C7: 

Line 290-294 and Fig 4: In panel (a), which only uses MOSART, it is not clear to me why the cells 
immediately adjacent to the river and bay are not inundated but the adjacent inland cells are. It seems 
that if the flood is propagating from the river into the floodplain, the shoreline cells should also be 
inundated, with or without tides and surge. Or is the flood propagation occurring in a different way? Since 
flooding in these cells is the main source of the stated improvement in the model when MPAS-O is 
incorporated, it is important to clarify the flood propagation process in these areas. 

Author Response:  

We appreciate this comment. To clarify, the ELM–MOSART configuration in Figure 4a does simulate 
riverine inundation along the mainstem of the Delaware River and some upstream tributaries (as indicated 
by the red areas aligned with the river network). These inundated areas are generated by excessive 
precipitation and routed through the river network using MOSART’s macroscale inundation scheme, 
which represents subgrid-scale flooding within individual grid cells. As noted in the Methods section 
(Section 2.1), this scheme does not explicitly simulate lateral flood propagation between cells, which can 
lead to some limitations. 

However, the lack of inundation near the coastline in Figure 4a is not due to lateral propagation issues, 
but rather the absence of coastal processes (specifically tide and surge) that are necessary to raise water 
levels enough for those low-lying coastal cells to become inundated. When MPAS-O is included (Figure 
4b), its dynamic two-dimensional wetting and drying scheme enables storm surge and high coastal water 



levels to intrude into these shoreline areas, triggering inundation that the ELM–MOSART configuration 
alone cannot represent. We have clarified this point in the revised manuscript (L310~L316).  

“More importantly, although ELM–MOSART simulates extensive riverine inundation along the Delaware 
River mainstem and tributaries through precipitation-induced runoff (Fig. 4a), it does not capture 
inundation in low-lying shoreline areas near the coastline. This is because tide and storm surge that 
elevated local water levels sufficiently to exceed the inundation threshold in coastal cells are not included 
in this configuration. MOSART’s macroscale inundation scheme does not simulate lateral water 
propagation across grid cells, and coastal inundation requires dynamic oceanic forcing. By integrating 
MPAS-O (Fig. 4b), which includes two-dimensional wetting and drying, the model captures these near-
coastline inundations more accurately.” 

 

R2C8: 

Line 330-332 and Fig 5: Is the discharge reported as an absolute value? Or is the graph showing the 
discharge after the coastal water levels have receded and the river begins to flow downstream again? It 
would be helpful to see the time series of streamflow to understand the temporal effects. 

Author Response:  

Thanks for the comment. We believe the comment refers to Figure 6, which shows the peak discharge 
values along the Delaware River mainstem during Hurricane Irene, as noted in the figure caption. The 
intention of this figure is not to illustrate temporal dynamics, but rather to compare the maximum 
discharge values among the three model configurations. The elevated peak discharge observed near the 
river outlet in Experiment 3 is primarily due to the backwater effect induced by high coastal water levels 
during the storm. While the time series of streamflow and water level are not shown in this manuscript, 
a full temporal analysis is available in Figure 5 and 7 of Feng et al. (2024). We have clarified this point in 
the revised text (L353~L355). 

 
“The elevated water levels due to tide and storm surge force an upstream propagation of ocean water 
into the river channel, resulting in a local increase in peak river discharge and riverine inundation near the 
outlet, where the highest coastal water levels during Irene lead to elevated maximum discharge values 
along the lower Delaware River.” 

 

R2C9: 

Line 442-444: How do the sigma values from Experiment 3 show “the critical need to account for the 
meteorological uncertainty and is cascading effects through the coupled system”? Please provide more 
explanation here. 

Author Response:  

Thanks. We have revised our discussion. Please see our response to R2C2.  

 



R2C10: 

Line 473: Exposure implies that there are assets in the flood zone, which I don’t think was examined here. 
“Hazard” is a better word choice. 

Author Response:  

Thanks. We acknowledge that “risk” is broadly defined, encompassing flood hazard, exposure, and 
vulnerability (Kron, 2005). Specifically, flood hazard and exposure risks represent the frequency or 
intensity of flooding events and the extent of human exposure to these events, respectively, as was also 
discussed in Feng et al. (2023). While we did not explicitly assess the distribution of assets or population, 
our use of the term “exposure” was intended in a broader sense, referring to the spatial extent of 
inundation, which implies increased potential for exposure under more severe flood scenarios. To avoid 
confusion, we have revised the manuscript to replace “flood exposure” with “flood extent” here.  

 

R2C11: 

Line 478-479: Why is this the case if Irene was associated with the 75th percentile AMC scenario, as 
mentioned earlier (Line 252)? 

Author Response:  

Thanks for the comment. Here we intend to describe that although Hurricane Irene coincided with a 
relatively wet antecedent soil moisture condition (approximately the 75th percentile), the modeled 
inundation area still aligns more closely with the best-case scenario, as well as simulations with lower 
AMCs. This outcome is because reducing soil moisture below Irene’s level has a limited effect on peak 
discharge and inundation, whereas increasing AMC beyond Irene’s level (i.e., AMC100) leads to 
disproportionately larger flood impacts, as shown in Figure 11. This asymmetry is due to the fact that, 
despite Irene’s wet initial conditions, the soil still retained some infiltration capacity at the onset of the 
storm. In contrast, scenarios with saturated soils (AMC100) overwhelm that capacity, resulting in 
significantly enhanced runoff and flood extent. We have revised the manuscript to clarify this important 
point, which we consider a key finding of the study (L503~L509). 

 

“Interestingly, the modeled inundation area for Irene closely aligns with the best-case scenario (Fig. 11b 
and 11c), despite the fact that Irene occurred under a relatively wet AMC (i.e., 75th percentile AMC). This 
reflects an asymmetric hydrological response: while drier AMC scenarios show only modest reductions in 
flood extent, the scenario with saturated soils (AMC100) leads to a disproportionately large increase in 
peak discharge and inundation. This is likely because, despite the wet soils prior to Irene, there remained 
sufficient infiltration capacity at the storm’s onset. In contrast, further increases in AMC rapidly exceed 
that capacity, exacerbating surface runoff and flood hazards. This nonlinear amplification highlights the 
critical role of AMC in modulating compound flood severity.” 

 

R2C12: 



Line 489: Did the authors confirm that exposure increased? If not, “increasing exposure risks to coastal 
residents” should be changed to “increasing flood hazards.”  

Author Response:  

We rephrased “increasing exposure risks to coastal residents” to “increasing the extent of flooding, raising 
potential risks to coastal residents.” 

 

R2C13: 

Fig 11: In panel (c), what does the Irene scenario (shown in yellow) represent? I thought the purple outline 
was showing the observed flooding during Irene. 

Author Response:  

We apologize for the confusion. The purple outline in Figure 11c represents the observed flood extent 
derived from satellite data (Tellman et al., 2021), consistent to that in Figure 4. The “Irene” scenario shown 
in yellow corresponds to the best model simulation that represents the Hurricane Irene event at the 
AMC75 condition, which is also indicated by the dashed lines in panels (a) and (b). We have updated the 
figure caption to clarify this distinction. 

“(c) Spatial map of plausible inundation extents in the DRB, showing the minimum (best-case scenario), 
Irene (AMC75), and maximum (worst-case scenario) simulated inundation. The purple outline represents 
the observed flood extent from satellite data, consistent with Figure 4.” 

 

R2C14: 

Line 496-498: The runtime of the various model configurations was never mentioned, so this statement 
is unsupported. 

Author Response:  

We thank the reviewer for pointing this out and have added information on the runtime performance of 
the simulations to support this statement. Specifically, the global ELM–MOSART simulation required less 
than 10 minutes using 400 CPUs, while the fully coupled ELM–MOSART–MPAS-O simulation took 
approximately 5 hours. These runtimes are relatively efficient in ESMs given the global scope and high-
resolution coastal refinement in E3SM, and they demonstrate the model’s suitability for ensemble-based 
uncertainty quantification. The relevant sentence has also been revised for clarity. 

In the revised Section 2.1, we added the runtime information: “The global ELM–MOSART simulations are 
computationally efficient, requiring less than 10 minutes using 400 CPUs, while the fully coupled ELM–
MOSART–MPAS-O simulations take approximately 5 hours.” 

In the discussion (L527~L530), the original statement has been rephrased to “Given the global domain and 
component complexity, the relatively efficient runtime makes the framework suitable for disentangling 
interconnected drivers of complex physical processes and their cascading effects through ensemble-based 
analyses.” 



 

R2C15: 

Line 542-544: “Significantly enhances the accuracy” compared to what baseline? The actual observed 
flooding was not well predicted by any of the models considered. 

Author Response:  

Our intention was to convey that the fully coupled E3SM simulation—including the MPAS-O ocean 
component—demonstrated improved performance in representing compound flood processes compared 
to the ELM–MOSART configuration alone. However, we agree that the purpose of this framework is not 
yet to achieve high-accuracy flood prediction relative to fine-resolution regional models. Rather, as 
discussed in the introduction, this integrated ESM-based framework serves as an intermediate step that 
enables the identification and analysis of cascading uncertainties across Earth system components. To 
avoid overstating model performance, we have revised the conclusion text accordingly (L574~L576). 

“Our research demonstrates that an integrated atmosphere, land, river and ocean system improves the 
representation of multivariate flooding processes relative to partially coupled configurations, while 
enabling the analysis of cascading uncertainties through the multi-component Earth system modeling 
framework.” 
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