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Abstract. Emulators of Earth System Models (ESMs) are statistical models that approximate selected outputs of ESMs. Owing

to their runtime-efficiency, emulators are especially useful when large amounts of data are required, for example, for in-depth

exploration of the emission space, for investigating high-impact low-probability events, or for estimating uncertainties and

variability. This paper introduces an emulation framework that allows to emulate gridded monthly mean precipitation fields

using gridded monthly mean temperature fields as forcing. The emulator is designed as an extension of the Modular Earth5

System Model Emulator (MESMER) framework and its core relies on the concepts of Generalised Linear Models (GLMs).

Precipitation at each (land-)grid point and for each month is approximated as a multiplicative model with two factors. The first

factor entails the temperature-driven precipitation response and is assumed to follow a Gamma distribution with a logarithmic

link function. The second factor is the residual variability of the precipitation field, which is assumed to be independent of

temperature, but may still possess spatial precipitation correlations. Therefore, the monthly residual field is decomposed into10

independent Principal Components and subsequently approximated and sampled using a Kernel Density Estimation with a

Gaussian kernel. The emulation framework is tested and validated using 24 ESMs from the Sixth Phase of the Coupled Model

Intercomparison Project (CMIP6). For each ESM, we train on a single ensemble member across scenarios and evaluate the

emulator performance using simulations with historical and SSP5-8.5 forcing. We show that the framework captures grid point

specific precipitation characteristics, such as variability, trend and temporal auto-correlations. In addition, we find that emulated15

spatial (cross-variable) characteristics are consistent with those of ESMs. The framework is also able to capture compound

hot-dry and cold-wet extremes, although it systematically underestimates their occurrence probabilities. The emulation of

spatially explicit, coherent monthly temperature and precipitation timeseries is a major step towards a computationally efficient

representation of impact-relevant variables of the climate system.
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1 Introduction20

Earth System Models (ESM) are process-based models built on physical equations that govern the dynamic and thermody-

namic process of the Earth system (e.g., Schneider et al., 2017). Their physically based modelling approach makes ESMs

invaluable for understanding and explaining the impacts of human activities on the global climate. At the same time, the mod-

elling approach is computationally expensive - generating a single ESM simulation for the Sixth Phase of the Coupled Model

Intercomparison Project (CMIP6) takes weeks to months to complete (e.g., Balaji et al., 2017). This limits the number of25

times any ESM can be run. However, studying a broad variety of different emission scenarios along with estimating associated

uncertainties and sampling natural variability traditionally requires running an ESM many times (Lehner et al., 2020; Maher

et al., 2021).

Emulators of ESMs are runtime efficient models that approximate specific outputs of an ESM using statistical methods. An

emulator (in this paper, the term emulator always refers to ESM emulators) is trained to approximate relationships between a30

set of predictor variables and selected target variable(s) from existing ESM data, which can then be applied to new predictor

data. The temporal and spatial properties of the emulated target variable(s) should ideally be statistically indistinguishable from

those of the actual ESM output. Emulators typically focus on a small set of key target variables, which reduces dimensionality

and saves computational time as well as storage. This is a reasonable choice as for many downstream applications of ESM

data only a small set of climatic variables is of interest: for example, the Large Ensemble output of the Community Earth35

System Model (CESM-LE) consists of 1168 climatic variables of which 64% are virtually never downloaded while 14%

contribute to over 90% of downloads (Edwards et al., 2019). Emulators can generate thousands of realisations of ESM-like
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data, thereby overcoming the limitations of having only a small number of ESM realisations. As such, ESMs and emulators

are complementary.

A number of such emulation frameworks of varying complexity exist. Some frameworks aim to approximate the mean40

trend of a single variable (e.g., Tebaldi and Arblaster, 2014, and references therein), others also emulate variability as either

a stationary (e.g., Link et al., 2019) or a non-stationary (e.g., Nychka et al., 2018) process. Recent approaches target the

simultaneous emulation of multiple variables to also correctly mimic cross-variable covariance structures (e.g., Tebaldi et al.,

2022; Edwards et al., 2019; Liu et al., 2023). Emulators can also target different spatial and temporal scales (e.g. yearly: Beusch

et al. (2020) or monthly: Nath et al. (2022)). Emulators often use global mean temperature (GMT) as a forcing variable (e.g.,45

Quilcaille et al., 2022) and some use additional drivers, such as ocean heat uptake, land-sea temperature contrast or time-shifted

GMT (e.g., Herger et al., 2015; Beusch et al., 2022).

In this study, we focus on generating emulations of monthly gridded land precipitation from monthly gridded land temper-

atures, while aiming to conserve the covariance structure between the two variables. Temperature and precipitation are two of

the most important climatic variables and are required as input variables for most impact models (Lange, 2019).50

There are already emulators targeted at jointly emulating temperature and precipitation. For example, Tebaldi et al. (2022)

built their emulator STITCHES using resampling methods. They pool together all available data from any scenario, re-arrange

it using constraints on global mean temperature and then “stitch” it back together. This enables STITCHES to generate mul-

tivariate, spatially-resolved emulations. However, the quality of the emulator is constrained by the amount of available ESM

training data and does not perform ideally when data is under-representative. Link et al. (2019) have extended their tempera-55

ture emulator, fldgen1.0, to also model precipitation (fldgen2.0; Snyder et al., 2019). Their framework relies on capturing the

signal’s mean response using pattern scaling (Tebaldi and Arblaster, 2014, and references therein) and then adding a variability

term. The variability term possesses the spatio-temporal (cross-)correlations and is generated by decomposing the original

ESM signal into its principal components (PCs), applying a Fourier transformation to the PCs, applying random phase shifts

and then back-transforming. Fldgen2.0 has been developed and tested for yearly data and implicitly assumes stationarity in60

the variability of temperature and precipitation. Recently, Liu et al. (2023) developed a precipitation emulator, PrEMU, that

targets the emulation of monthly gridded precipitation starting from monthly gridded temperatures. Their approach is able to

deterministically reconstruct 70% of the variance in global land average precipitation. However, PrEMU does not offer to

emulate the remaining variance and cross-variable covariances have not been verified.

In this study, we present a novel approach that aims at fully emulating land precipitation fields at monthly resolution given65

a time series field of land temperatures, while especially approximating the cross-variable covariance structures. We show

that the emulation framework closely resembles ESM output and even captures monthly compound-extremes. Our emulator,

called MESMER-M-TP, serves as an additional module within the MESMER (Modular Earth System Model Emulator with

spatially Resolved output) framework (Beusch et al., 2020). MESMER has originally been designed to approximate grid point

level annual mean temperatures changes as a function of global mean temperature change, while explicitly accounting for70

spatial and temporal variability (Beusch et al., 2020). This approach has since been extended to also represent selected extreme

weather indicators (MESMER-X), and key impact relevant variables such as fire weather and soil moisture (Quilcaille et al.,
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2022, 2023). A temporal downscaling module to emulate monthly climate output has also been successfully implemented

(MESMER-M) (Nath et al., 2022). We here provide a module that can be coupled to MESMER-M temperature output (or to

output from other emulators of monthly local temperatures) to generate bivariate temperature and precipitation emulations.75

The core of the approach employs Generalised Linear Models (GLMs) (Dobson and Barnett, 2018). Our framework is easily

extendable to other variables that follow distributions within the exponential family and it allows for non-stationary variance

functions.

This study is structured as follows: First, the methodological emulation framework is introduced in Sect. 2. Second, we

describe how the suggested methodology is applied to the ESM data in Sect. 3. To this end, we introduce the dataset (Sect.80

3.1), give an overview on how the methodology is applied to the data (Sect. 3.2) and describe the validation of the emulation

framework (Sect. 3.3). Next, we present our results in Sect. 4. The results section contains exemplary emulation output and

validation metrics. Lastly, we summarise and discuss findings in Sect. 5. In addition, this paper comes with an extensive

Appendix. Appendix B displays additional spatio-temporal validation metrics and complements Sect. 4. In Appendix C, we

explain how MESMER-M-TP is coupled to an emulator that generates temperature data and we carry out validation and85

uncertainty estimations for the coupled emulation chain.

2 Emulator Description

2.1 Notation

T and P denote the spatially explicit monthly temperature and precipitation fields. We introduce the subscripts s, m and y, such

that ps,m,y (ts,m,y) is the precipitation (temperature) value at location s, for month m and year y. We set m= 1 as January and90

m= 12 as December. P (and T ) can be expressed as a 2-dimensional matrix with columns corresponding to spatial locations

and rows referring to specific month-year combinations:

P =



ps1,1,y1
ps2,1,y1

. . . psl,1,y1

ps1,2,y1
ps2,2,y1

. . . psl,2,y1

...
...

. . . . . .

ps1,12,y1 ps2,12,y1 . . . psl,12,y1

ps1,1,y2 ps2,1,y2 . . . psl,1,y2

...
...

. . . . . .

ps1,12,yk
ps2,12,yk

. . . psl,12,yk


, (1)

where l denotes the number of spatial locations and k the number of years. The matrix has dimensions dim(P ) = (12 ∗k)× l.

The precipitation timeseries at location s is the column-vector Ps = (ps,1,y1
,ps,2,y1

, . . . ,ps,12,y1
,ps,1,y2

, . . . ,ps,12,yk
)T , where95

the superscript T refers to the transpose. We define the grid point and month specific precipitation as the timeseries consisting

of precipitation samples from the same month over different years: Ps,m = (ps,m,y1 ,ps,m,y2 , ...,ps,m,yk
)T , meaning Ps,m

contains every 12th entry of Ps. All definitions work analogously for monthly temperatures.
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Figure 1. Schematic overview of our modelling approach. Precipitation is decomposed into a temperature-driven contribution and a contribu-

tion independent of temperature. We exploit local temperature information and the framework of Gamma GLMs to reconstruct precipitation

signals for each location and month. We then compute the empirical residuals and after applying a log and a PCA transform to disentangle

spatial correlations, we approximate the residuals individually by using a KDE. The framework is described in more detail in Sect. 2

2.2 General Approach

The goal of the emulator is to derive monthly, spatially-explicit precipitation based on monthly, spatially-explicit temperatures.100

In particular, the emulated precipitation data should be spatially and temporally consistent with the temperature data. To this

end, we suggest a multiplicative framework that can be summarised as

Ps,m = fs,m
(
{Tr,m}r∈Ss,m

)︸ ︷︷ ︸
1

∗ηs,m︸︷︷︸
2

, (2)

where the emulated local precipitation at grid point s and for month m, Ps,m, is defined by two terms. (1) By the deterministic

temperature-driven precipitation response. We assume that a large fraction of Ps,m can be constructed from local temperature105

information. Let Ss,m be the set of spatial locations with temperature timeseries that may contain relevant information for

reconstructing Ps,m. We then use {Tr,m}r∈Ss,m
to build a 2-dimensional predictor matrix Xs,m. We assume that Xs,m relates

to Ps,m via the response function fs,m. Note that fs,m acts independently on each grid point and for each month (see Sect.

2.3.2). And (2) by a stochastic, multivariate noise term, η. η is used to approximate the fraction of the natural variability that

cannot be reconstructed from temperature information alone and thus appears random in our modelling framework. We assume110
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that the precipitation residuals still possess information across locations and months, but are independent of temperature. η is

evaluated at grid point s and for month m.

The suggested framework is equivalent to assuming an additive model for the logarithm of precipitation which is a common

choice when modelling precipitation (e.g., Snyder et al., 2019; Gudmundsson and Seneviratne, 2016; McCullagh, 2019).

2.3 Temperature-driven Precipitation Response115

The aim of the temperature-driven precipitation response is to capture the fraction of the precipitation signal that is determin-

istically derivable from temperature data. We do not assume a causal relationship here. Rather, the motivation is to provide

for a consistent multivariate extension. To this end, we assume that temperature is a good predictor for the general trend in

the precipitation signal as well as parts of the variability. In order to capture both contributions simultaneously, we rely on the

framework of GLMs (e.g. Dobson and Barnett, 2018; McCullagh, 2019). A GLM is a generalisation of ordinary linear regres-120

sion and is applicable to any dependent variable that follows a specific distribution within an exponential family relative to the

predictor variable(s). The basic assumption is that the dependent variable is related to a linear combination of the independent

variables via a link function.

2.3.1 A GLM for Precipitation

To apply the GLM framework to precipitation, we assume that Ps,m follows a Gamma distribution with shape parameter ks,m125

and scale parameter Θs,m conditioned on a set of temperature predictors accounting for the local and global temperature con-

ditions, Xs,m. The predictor matrix Xs,m is derived from the set {Tr,m}r∈Ss,m
of gridded temperature data as described in

Sect. 2.3.2. Precipitation is continuous and non-negative while the Gamma distribution is strictly positive. By replacing zero

precipitation values with a small threshold for quasi-zero, the condition for the Gamma distributions can be met. We choose a

logarithmic link function, g = log, such that the inverse link function is the exponential function, g−1 = e. Following this as-130

sumption, the response function fs,m is the expected value of Ps,m conditioned on the predictors Xs,m (noted E(Ps,m|Xs,m)):

fs,m
(
{Tr,m}r∈Ss,m

)
= E(Ps,m|Xs,m) = eXs,m∗βs,m+higher order terms (3)

where βs,m is a vector of linear coefficients (see Sect. 3.2 for details on the higher order terms). The mean value of a Gamma

distribution can also be expressed using its scale and shape parameters:135

E(Ps,m|Xs,m) = ks,m ∗Θs,m. (4)

Equally, we can express the variance of a Gamma distribution as

V (Ps,m|Xs,m) = ks,m ∗Θ2
s,m, (5)

where V (Ps,m|Xs,m) is the variance of Ps,m conditional on the predictors Xs,m (noted V (Ps,m|Xs,m)). When fitting a

Gamma GLM, ks,m is usually held constant while the scale parameter Θs,m is varied. This leads to the mean-variance rela-140
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tionship of a Gamma GLM:

V (Ps,m|Xs,m) = Φs,m ∗E(Ps,m|Xs,m)2, (6)

where Φs,m is called the dispersion and is given as the inverse of ks,m (therefore constant). As the conditional mean of

the precipitation distribution is changing with the background climate, this variance-mean relationship offers to model non-

stationary behaviour in the precipitation response. At the same time, imposing the variance function of a Gamma GLM is a145

strong assumption that may not hold true at all locations. Using a Gamma GLM to model precipitation has been shown to

yield good approximations in other studies (George et al., 2016; Hauser et al., 2017; Chandler, 2020; Kemsley et al., 2024;

Gudmundsson and Seneviratne, 2016) and in Sect. 3.3, we empirically validate our choice.

2.3.2 The Predictor Matrix Xs,m

Precipitation is a complex climatic variable that depends on many factors such as water availability, temperatures or the ter-150

rain (Allen and Ingram, 2002; Trenberth et al., 2003; Tabari, 2020). As the goal is to reconstruct precipitation signals using

temperature information only, we try to exploit local temperature information as much as possible. We assume that, in or-

der to construct Ps,m, temperature information at all grid points r in proximity to s is relevant. We denote Ss,m as the

set of n spatial locations that are closest to s and we assume that all {Tr,m}r∈Ss,m are relevant predictors for Ps,m. As

the timeseries’ in {Tr,m}r∈Ss,m
are highly correlated, we perform a PCA transform and only keep the first p components.155

That is, we project {Tr,m}r∈Ss,m
onto its p-dimensional Eigenspace spanned by the vectors {PCAi

s,m}i∈{0,...,p−1}. The

first principal component, PCA0
s,m, is now expected to contain a strong trend. As precipitation may scale differently with

temperature information on different timescales, we decompose PCA0
s,m into a trend and a variability term. The trend term

is derived by LOWESS smoothing consistent with the methodology in Beusch et al. (2022). This leaves us with T̂s,m =

{PCA0,trend
s,m ,PCA0,var

s,m ,PCA1
s,m,PCA2

s,m, . . . ,PCAp−1
s,m } as a set of feasible predictors. Xs,m is then constructed by using160

the set T̂s,m as row vectors and by adding column of ones to allow for a constant intercept:

Xs,m =


1 PCA0,trend

s,m,y0
PCA0,var

s,m,y0
PCA1

s,m,y0
PCA2

s,m,y0
. . . PCAp−1

s,m,y0

1 PCA0,trend
s,m,y1

PCA0,var
s,m,y1

PCA1
s,m,y1

PCA2
s,m,y1

. . . PCAp−1
s,m,y1

...
...

...
...

...
. . .

...

1 PCA0,trend
s,m,yk

PCA0,var
s,m,yk

PCA1
s,m,yk

PCA2
s,m,yk

. . . PCAp−1
s,m,yk

 . (7)

For simplicity, we sometimes refer to PCA0,trend
s,m as PCAtrend

s,m and PCA0,var
s,m as PCA0

s,m. The model design also offers

to include higher order effects by, for example, including X2
s,m as a predictor or by including pairwise interactions between

predictors. Including higher-order effects is a calibration choice and is discussed in Sect. 3.2.165
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2.4 Residual Variability

We define the residual variability of the precipitation signal, P res
s,m, as the fraction of precipitation that cannot be derived using

gridded temperatures alone and assume it follows a multivariate stochastic process, ηm,s,:

P res
s,m = Ps,m/fs,m(XT

s,m)∝ ηs,m. (8)

We assume that P res
s,m is independent of temperature, but dependent on all other precipitation residuals. That is, the field P res170

still possesses spatial correlations, meaning we assume grid cells in proximity to one another are likely very similar. As a

Gamma-GLM does not contain any explicit assumptions about the distribution of the residuals, our goal is to generate new

residuals with a distribution closely resembling the distribution of the empirical residuals. The empirical residuals are non-

negative and we first map them onto the entire space of real numbers by applying a logarithmic transformation. Next, we

further apply a PCA to resolve the spatial dependencies across precipitation residuals. This allows us to approximate the175

distributions of the PCA components individually, rather than modelling the joint distributions of the actual residuals. Let

{PCres
i,m}i∈1,...,q be the first q PCs of P res

m . We assume that the probability density function (PDF) of each of the PCs can be

modelled as a superposition of many Gaussian distributions with width hm:

PDF (PCres
i,m,y) =

1

k ∗hm

k∑
j=1

1√
2π

e−
1
2∗(

PCres
i,m,y−PCres

i,m,yj
h )2 (9)

where k denotes the number of sample years. In other words, we characterise the random process ηs,m by applying a Kernel180

Density Estimation (KDE) with a Gaussian kernel to the PCs of the empirical residuals. In order to generate additional, random

and spatially coherent variability realisations, we draw new samples from the KDE and inverse transform (first inverse PCA

transformation, then inverse logarithmic transformation).

2.5 Model Parameters

To summarise the above approach: We first construct the grid point and month specific predictor matrix Xs,m using local185

temperature information. This offers two hyperparameters: (i) the number of the n-closest spatial locations that still influence

precipitation at location s and (ii) the number of PCA components, p, that should be kept as predictors. In addition, we can

chose to include higher-order terms (for example, dependencies on X2
s,m or interaction terms). The matrix Xs,m has p+2

columns (the first PC is divided into a trend and a variability contribution and we have a column of ones to allow for a constant

offset), leaving us with p+2 parameters for each grid point and month (the parameters are encompassed in the coefficient vector190

βs,m). βs,m is fitted using the framework of a Gamma GLM and a log-likelihood estimation. As the residuals of a Gamma

GLM do not have a pre-described functional form, we are approximating the residuals using a KDE that relies on another

hyper-parameter, the smoothing parameter or bandwidth, hm.
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3 Emulator Application

3.1 Data195

The emulator is trained on monthly mean temperature and monthly mean precipitation data from CMIP6 experiments (Eyring

et al., 2016) of 24 different ESMs (see Table A1 in Appendix A). In this study, the term temperature refers to temperature

anomalies relative to the period 1850-1900 while precipitation refers to absolute precipitation. The ESM data went through

a centralised pre-processing that includes the interpolation to a common 2.5◦ × 2.5◦ latitude-longitude grid and was obtained

from the CMIP6 next generation archive (Brunner et al., 2020). As variables are emulated over land only, grid cells with a land200

area coverage of less than a third are filtered out, resulting in 2652 land grid points. Monthly precipitation data can contain

zero values and in some cases very small negative numerical residuals. Therefore, for each ESM, a cut-off for quasi-zero is

introduced by replacing zero and negative values with half of the smallest non-negative precipitation value found in the entire

dataset. Data from five scenarios that represent combinations of Shared Socioeconomic Pathways (SSPs) and Representative

Concentration Pathways (RCPs) are used, namely SSP1-1.9 (notation indicating the combination of SSP1 and RCP1.9), SPP1-205

2.6, SPP2-4.5, SPP3-7.0, SSP5-8.5) as well as the historical simulations are considered (O’Neill et al., 2016). We refer to these

SSP-RCP combinations as SSPs or scenarios. Not all 24 models provide temperature and precipitation data for each SSP (see

Table A1 in A).

For each ESM, the emulator is trained independently based on a single ensemble member across all available SSPs. The

historical simulation and the SSP5-8.5 scenario of the remaining ESM ensemble members are used for evaluating the emulator210

performance and are referred to as validation runs. When generating emulations from actual ESM data, we generate a single

precipitation realisation for each available temperature field. Therefore, the number of emulations exactly equals the number

of ESM runs. A special focus is put on the three models with the highest number of validation runs: ACCESS-ESM1-5,

CanESM5 and MPI-ESM1-2-LR. These three models offer at least 30 ensemble members each which allows us to compare

ensemble statistics and, in particular, extreme event distributions. As an example, ACCESS-ESM1-5 has 40 ensemble members215

(see Table A1). We calibrate on ensemble member “r1i1p1f1” across scenarios to then generate 39 precipitation emulations

across scenarios based on the gridded temperatures from the remaining 39 ensemble members.

MESMER-M-TP has been designed as a module that can be coupled to existing temperature emulators. To additionally

evaluate the emulator performance and the propagation of uncertainties in this context, the trained emulator is coupled to

emulated monthly temperatures of the historical simulation and the SSP5-8.5 scenario. The emulated temperature dataset220

was specifically generated for this study and is described in Appendix C1. We generate an ensemble of 100 temperature and

precipitation realisations per model and scenario.

3.2 Calibration

The methodological framework described in Sect. 2 offers hyperparameters (see Sect. 2.5) for both, the temperature-driven

precipitation response module and the residual variability module. As part of the temperature-driven precipitation response,225

Ps,m, is reconstructed from information in the n closest temperature timeseries, {Tr,m}r∈Ss,m with |Ss,m|= n. For simplicity
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and comparability, we assume that n is constant across models, months and grid points. Therefore, Ss,m only depends on the

spatial location and reduces to Ss. The choice of n is a trade-off between model complexity (for higher n the PCA has more

coefficients and takes longer to compute) and prioritising local modes of variability over large-scale/global relationships. We

find that across months and models, the strongest correlations between the variability in temperature and the variability in230

precipitation occur in almost 80% of the cases within the closest 150 grid points. Thus, we set n= 150, such that we can derive

precipitation based on the 150 closest temperature locations. We have tested the approach for a variety of n and find that, across

grid points and months, results for n ∈ [75,400] are comparable, while introducing larger n is too computationally intensive.

We also tested using a single global decomposition by setting n= 2652 which leads to good results in some areas (e.g. North

America) and performs poorly in other regions (e.g. South-East Asia). As the set of {Tr,m}r∈Ss
are highly correlated, we apply235

a PCA transformation prior to using them as independent variables for the GLM (see Sect. 2.3.2). The amount of explained

variance in each PC falls off rapidly over the first five PCs and strives towards zero with increasing component number. To

include as much information as possible, while not inflating the model, we set p= 8. It is possible to include higher-order terms

in the model, that is, to add Xs,m
2 as a predictor or allow for interaction terms. We found that the model performance improved

when we allow for 1st order interaction terms between the trend in the 1st PC and all other PCs. The physical interpretation240

begin that the relative importance of the PCs varies with the trend in local temperatures. Including additional terms had little

effect on the model performance. Therefore, the calibrated model equation for the trend contribution to precipitation reads

fs,m =eβ
0
s,m intercept

∗ eβ
1
s,m∗PCA0,trend

s,m +β2
s,m∗PCA0,var

s,m +
∑7

p=1 β
p+2
s,m ∗PCAp

s,m first order

∗ ePCA0,trend
s,m ∗(β10

s,m∗PCA0,trend
s,m +β11

s,m∗PCA0,var
s,m +

∑7
p=1 β

p+11
s,m ∗PCAp

s,m) interaction. (10)

Lastly, we set the parameters of the residual variability module. We apply a PCA on the precipitation residuals in order to

resolve spatial correlations and treat the PCs independently. We keep 98% of the variability in the original residual signals. The245

bandwidth of the KDE was chosen via k-fold cross validation and was mostly constant across months and models. To reduce

computational complexity, we have set hm = 0.1 as a global parameter.

3.3 Validation

The validation framework consists of two steps: (1) Evaluating the emulator’s performance when it emulates precipitation based

on actual ESM temperatures and (2) evaluating the model’s performance when it emulates precipitation based on emulated250

temperatures. The first evaluation step captures the direct error in the emulation framework while the second step also captures

the propagation of uncertainties from one emulator to another. Results for the former are shown in Sect. 4, while results for the

latter are shown in Appendix C. The evaluation procedure and result metrics are the same in both cases and described in the

following.

The emulator is trained on one ensemble member across all available scenarios (see Sect. 3.1). Temperature data from255

all remaining ensemble members is used to generate emulated precipitation data for the first evaluation step (for the second

evaluation step, we use the temperature dataset described in Appendix C1 as forcing). Both emulation datasets are assessed
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against actual ESM precipitation data from all remaining ensemble members for the historical period (1850-1950) and the

projections from the high warming scenario SSP5-8.5 (2015-2100) independently. The time intervals and the scenario are

chosen such that the emulator’s behaviour in a stable period with limited climate change and its behaviour under an extreme,260

high-warming scenario can be equally analysed. As the three models ACCESS-ESM1-5, CanESM5 and MPI-ESM1-2-LR are

the only models that offer a large number of additional ensemble members for evaluation (30+), we focus on validating the

emulation approach using these three models and only schematically show results for all other models. In addition, we base

our evaluation on the AR6 regions (Iturbide et al., 2020) with an emphasis on four regions that represent a diverse set of

geographies and precipitation trends: Southern Central America (SCA), Northern Europe (NEU), Central Africa (CAF), South265

East Asia (SEA) (see also Fig. A1). We validate the following properties:

(1) Inter-annual trend and variability of precipitation. We aim at verifying the emulated estimates of inter-annual trend as

well as of year-to-year variability in Ps,m across regions. To this end, ESM and emulated (EMU) data are aggregated by AR6

region. Next, all quantiles between the 1st and 99th quantile are computed in steps of one and compared against one another

for both the historic and the future period. In addition, we compute quantile deviations for the 10th, median and 90th quantile270

for each region (see Nath et al., 2022; Beusch et al., 2020). The Gamma GLM is mainly responsible for correctly estimating

the trend in Ps,m, while the residual variability module determines the variability in Ps,m. Therefore, the deviations allow to

draw conclusions on the performance of both models.

(2) Month-to-month relationships of precipitation. The emulator was fitted for each month independently and only implic-

itly inherits month-to-month relationships from the temperature data. Therefore, we verify the month-to-month relationships275

using lagged auto-correlations. At each grid point and for each ensemble member, the correlation between the precipitation

timeseries and a temporally shifted version of the same precipitation timeseries is computed. The correlation coefficient is

computed for each ESM run and each EMU run individually and then averaged to obtain a single ESM/EMU value per grid

point.

(3) Spatial precipitation structure. The spatial structure in the precipitation signal is partially inherited form the spatial280

structure of the temperature field and partially explicitly enforced through the sampling strategy of the residuals. We verify

that the joint use of the GLM and the KDE produces spatially coherent precipitation fields. To this end, we compute the

month specific cross-correlation matrix between precipitation timeseries at different gridpints for each ensemble member.

More precisely, for a given month and ensemble member, we compute the correlation between precipitation at any given grid

point and precipitation at all other grid points. As we have 2652 grid points this results in a correlation matrix of dimension285

(2652, 2652) whose entry (i, j) describes the correlation between Psi,m and Psj ,m. We compute the ensemble-mean of the

correlation matrices and compare emulated estimates against ESM estimates.

(4) Spatial precipitation-temperature cross-variable correlations. The GLM relies on exploiting local temperature in-

formation to reconstruct precipitation. Verifying that spatial cross-variable correlations are approximated well, verifies the

modelling approach and is important for downstream applications that rely on spatially and temporally consistent temperature290

and precipitation data. We verify the cross-variable statistics by computing the cross-correlation matrix between the precipita-

tion and the temperature field for each month and for each ensemble member individually. Similar to (3), for a given month,
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precipitation at any grid point is correlated with temperature at any other grid points. This results in a correlation matrix of

dimension (2652, 2652) whose entry (i, j) describes the correlation between Psi,m and Tsj ,m.

(5) Compound temperature-precipitation extremes. As the mechanistic processes that govern the occurrence of extremes295

are very different to the processes that determine long-term trends, verifying mean temperature-precipitation correlations alone

is not enough to draw conclusions about the joint distributions of the tails. Therefore, we verify compound extremes individu-

ally. At each grid point, the 10th and 90th quantiles of temperature and precipitation are computed across ensemble members

for ESM and EMU. To assess hot-dry extremes, we count the number of times a projection lies above the 90th temperature

quantile and is simultaneously drier than the 10th precipitation quantile. Similarly, for cold-wet extremes, we count the number300

of times a projection is cooler than the 10th temperature quantile and simultaneously wetter than the 90th precipitation quantile.

We then compute the mean across ESM and EMU estimates and scale the count to the number of events that would happen

during the course of 100 years.

4 Results

The result section is divided into two parts. In Sect. 4.1 we show all results that only concern precipitation characteristics,305

these are inter-annual trend, inter-annual variability, month-to-month relationships and the spatial structure of the precipitation

signal (see properties (1)-(3) in Sect. 3.3). In Sect. 4.2, we show results concerning the joint characteristics of temperature and

precipitation, these are the cross-correlation structure between temperature and precipitation as well as compound extremes

(see properties (4) and (5) in Sect. 3.3). We mainly focus on validating results when temperature fields from actual ESMs are

used as forcing. In Appendix C, we show all results from this section when the emulator is forced with emulated temperatures.310

4.1 Precipitation Characteristics

In Fig. 2, we show exemplary maps of the median gridded precipitation ensemble output as seasonal averages over December-

January-Feburary (DJF), March-April-May (MAM), June-July-August (JJA) and September-October-November (SON) under

SSP5-8.5 for 2024. The emulator adequately reproduces the precipitation patterns of the individual ESMs with the largest

relative deviations occurring in dry regions (Sahara for MPI-ESM1-2-LR and ACCESS-ESM1-5; Australia for MPI-ESM1-315

LR). This is not surprising as the relative error metric amplifies deviations when the divisor is close to zero. In addition,

deviations are generally largest for MPI-ESM1-2-LR, this is equally expected given that, among the three models, the original

MPI-ESM1-2-LR data has the smallest numerical representations of quasi-zero. However, even in the worst performing cases,

the relative deviations rarely exceed ±15% which compares pale to inter-model differences that reach deviations of more than

±100%. The 10th and 90th quantiles of the gridded precipitation ensemble is displayed in Fig. B1 and B1 and highlight similar320

deviations over dry regions.

As exemplary shown in Fig. 3 for January, the emulator performs well in capturing inter-annual trends as well as inter-annual

variability across months and models. The emulator captures different precipitaton characteristics including quasi-stationarity

(MPI-ESM1-2-LR in SEA), shift in the mean precipitation (CanESM5 SCA or ACCESS-ESM1-5 NEU) and a widening of the
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Figure 2. Maps of median gridded output aggregated by season under SSP5-8.5 for 2024. A.-c. show results for ACCESS-ESM1-5,

CanESM5 and MPI-ESM1-2-LR, respectively. From left to right, we show results for DJA, MAM, JJA and SON. In each subfigure, the

first row corresponds to simulations from the actual ESM ensemble, the second row to simulations from the emulated ensemble and the third

row shows the relative difference between actual and ESM data.
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Figure 3. Timeseries of January precipitation from 2015-2100 for three different models (columns: ACCESS-ESM1-5, CanESM5, MPI-

ESM1-2-LR) averaged over four AR6-regions (rows: SCA, NEU, CAF, SEA). The timeseries highlight the year-to-year trend and variability

of January precipitation for SSP5-8.5. Orange (blue) line indicates the median ESM (EMU) timeseries with shaded areas indicating 10%-

90% quantile intervals. Orange (blue) dashed lines represent precipitation estimates of a single ESM (EMU) ensemble member. Note, the

emulated timeseries was obtained using the ESM temperature field corresponding to the shown ESM precipitation timeseries as forcing.
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Figure 4. Quantiles (1st-99th in steps of one) derived from EMU data (y-axis) scattered against estimates from ESM data (x-axis) for four

different regions (columns: SCA, NEU, CAF, SEA). The quantiles were estimated for the historical period (1850-1950) and the future period

(2015-2100) independently and are displayed individually (circles vs. stars). Colours are used to distinguish data from different models.

Quantiles were derived as described in Sect. 3.3.

distribution resulting in an intensification of high precipitation months (ACCESS-ESM1-5 CAF) or an intensification of both325

high and low precipitation events (CanESM5 CAF). As shown in Fig. B3, the emulator performs similarly albeit slightly worse

for the month of July. In July, there are strong inter-model differences between precipitation projections from different models

(SCA and CAF), suggesting low predictive accuracy in the models. In some cases (ACCESS-ESM1-5 SEA and MPI-ESM1-

2-LR CAF), the emulator systematically overestimates high-precipitation events (90th percentile).

In Fig. 4 and B4 we explore these deviations from ESM quantiles in more detail. Systematic deviations only become apparent330

in the upper tail of the distribution (above 95th quantile in January and above 90th quantile in July), where the emulated values

tend to lie above those from ESMs (MPI-ESM1-2-LR in SEA for January and all models in NEU for July). The emulated

quantiles are usually within ±10% of the ESM quantiles. In particular, the deviations are small compared to inter-model differ-

ences (January: SEA MPI-ESM1-2-LR compared to SEA ACCESS-ESM1-5). Our modelling framework implicitly assumes

that non-stationarity in the variability of precipitation can only be inherited from non-stationarity in the temperature signals335

through the Gamma GLM. We do not account for potential non-stationarities in the residuals. The deviations in the tails of the

distributions could indicate that this simplification is not strictly valid. We will discuss this in more detail in Sect. 5.

So far, we have only seen results for three models, for four regions and for precipitation emulations based on actual ESM

temperature data. Figure 5 gives an indication for the model performance in other regions as wells as for the difference in

performance when emulating based on emulated temperatures (see Beusch et al., 2020; Nath et al., 2022). The coupled emulator340

(see Fig. B5 right panel) generally performs well in regions where the direct emulation error is small (for example NZ or CNA)

and usually suffers from stronger deviations whenever there already is a non-negligible error in the direct emulations (MPI-
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Figure 5. Regional deviations of January ESM precipitation from the 10% (top), 50% (middle) and 90% (bottom) quantiles of the emulations

for the three focus models and across AR6 regions (see Fig. A1 for a map of the AR6 regions). Left: emulations based on ESM temperatures,

right: emulations based on emulated temperatures. Quantile deviations were computed over the historical period. Red (blue) indicates that

the emulations project higher (lower) values compared to ESM data (see Sect. 3.3).

ESM1-2-LR GIC or WAF). In some cases, the coupled framework amplifies existing errors (ACCESS-ESM1-5 NWS and

NES) or introduces new errors (ACCESS-ESM1-5 NSA). However, the performance is robust across forcing data and regions.

We cannot estimate the direct emulation error for all 24 models due to a lack of available ESM data (computing quantile345

deviations requires a large ensemble of emulated data that cannot be generated if we do not have sufficient gridded temperature

data from ESMs). Therefore, in Fig. 6, we show the quantile deviations from the coupled emulations for all available models

(in this case, we also emulate large ensembles of gridded temperatures leading to sufficient amounts of data). The results

are comparable to the deviations found for the three focus models. The emulation framework tends to slightly overestimate

the 10th quantile and the 90th quantile, while it underestimates the 50th quantile (the same holds true for July, see Fig. 6).350

The underestimations of the 50th quantile over the historical period and the simultaneous overestimation of the 10th quantile

could suggest that our modelling procedure struggles to adequately capture the full complexity of the signal. It seems that

our trend estimates are too low and there is too little variability. Potentially, higher-order terms would be required to better

represent the trend. In addition, there are some systematic overestimation of the 50th quantile in the July estimates (see Fig.

B6), particularly in WAF, CAF and ARP. We do not impose any constraints on month-to-month variations of precipitation,355

thereby implicitly assuming that precipitation inherits the correct temporal properties from the temperature data. In Fig. 7,

we explore this simplified assumption using lagged auto-correlations. In general, lagged auto-correlations are captured very

well and strongly decrease with increasing time-lag. The lag-1 correlations are slightly underestimated (in particular in MPI-

ESM1-2-LR), but yield a consistent spatial pattern even without explicitly enforcing this structure. In particular, there is a high

inter-model agreement on the temporal precipitation structure. We further verify temporal characteristics at grid point level360

in Fig. B11. The spatial precipitation structure is partially constructed from the spatial correlations in the temperature field

through the GLM, but mainly enforced relying on the sampling strategy of the variability module (see Sect. 2.4). In Fig. 8 we

see that pairwise precipitation relationships are captured well by the model and note an overall good agreement across models
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Figure 6. Same as the right panel in Fig. 5 but for the remaining 21 models.
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Figure 7. Lagged auto-correlations across grid points for three different models (columns). Subfigure a: Spatial distribution of lag-1 auto-

correlations for ESM (EMU) data in the upper (lower) panel. Subfigure b: Distribution of emulated auto-correlations (y-axis) against ESM

auto-correlations (x-axis) for three different time lags (lag-1, lag-2 and lag-3 in the upper, middle and lower panel, respectively). The orange

line represents the ideal distribution (EMU estimates exactly equal ESM estimates).The distribution was obtained using a KDE with contour

levels in 5% increments, such that every shade of blue represent 5% of all data points, meaning 95% of the data points lie within the coloured

area and 5% lie outside of it.
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Figure 8. Spatial correlations between precipitation signals for January. Subfigure a: Correlation between precipitation at a randomly chosen

grid point (New Mexico with coordinates: 36.25°N, -103.75°E; coloured in dark red as the correlation of a timeseries with itself is 1) and

precipitation at all other grid points for three models (columns: ACCESS-ESM1-5, CanESM5, MPI-ESM1-2-lR) and for ESM (upper panel)

and EMU data (lower panel). Subfigure b: Correlations between every possible combination of precipitation timeseries (that is correlations

between Ps,m=1 and Pr,m=1 for every possible combination of spatial locations (s, r)). EMU estimates (y-axis) plotted against ESM estimates

(x-axis). The orange line represents the ideal distribution (EMU estimates exactly equal ESM estimates). The distribution was obtained using

a KDE with contour levels in 5% increments, such that every shade of blue represent 5% of all data points, meaning 95% of the data points

lie within the coloured area and 5% lie outside of it.
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Figure 9. Spatial correlations between precipitation and temperature for January. Subfigure a: Correlation between precipitation at a ran-

domly chosen grid point (New Mexico with lat: 36.25, lon: -103.75) and temperature at all other grid points for three models (columns:

ACCESS-ESM1-5, CanESM5, MPI-ESM1-2-lR) and for ESM (upper panel) and EMU data (lower panel). Subfigure b: Correlations be-

tween any possible combination of precipitation and temperature timeseries (that is correlations between Psi,m=1 and Tsj ,m=1 for any

possible combination of spatial locations (si, sj)). EMU estimates (y-Axis) plotted against ESM estimates (x-Axis). The orange line repre-

sents the ideal distribution (EMU estimates exactly equal ESM estimates). The distribution was obtained using a KDE with contour levels in

5% increments, such that every shade of blue represent 5% of all data points, meaning 95% of the data points lie within the coloured area

and an 5% lie outside of it.

and months (see Fig. B7). In particular, no systematic bias (for example a systematic over- or underestimation) is visible. This

suggests that the residual variability module is well-suited to capture the spatial precipitation structures. We look into spatial365

characteristics for a selected number of grid points in Fig. B10.

4.2 Joint Temperature-Precipitation Characteristics

As the precipitation emulations are built from local temperature data, we expect spatial cross-variable relationships between

temperature and precipitation to be depicted well. In Fig. 9, we see that this is indeed the case. The emulator works particularly

well if strong correlations are present (see also Fig. B8), while weaker correlations seem to be associated with larger errors.370
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Figure 10. Distribution of compound temperature-precipitation extremes in January. Number of compound extreme events are estimated at

each grid point (every dot represents one grid point) and counted as explained in Sect. 3.3. Number of compound extremes found in EMU

(y-axis) plotted against the number of events found in ESM data (x-axis). Orange line represents the ideal distribution (number of events in

EMU equals number of events in ESM).

The strongest systematic errors (underestimation) occur for MPI-ESM1-2-LR. Even though precipitation is constructed from

temperature signals in a certain proximity, strong long-range correlations are also approximated (see Fig. B8). Noteworthy is

the strong inter-model disagreement in the strength and direction of the temperature-precipitation correlations for July (see

Fig. B8); while CanESM5 projects fairly strong, positive long range correlations, MPI-ESM1-2-LR projects moderate negative

correlations.375

Figure 10 displays the distribution of compound temperature and precipitation extremes. Our framework is generally able

to capture compound temperature-precipitation extremes, but typically underestimates them. In January, the strongest under-

estimations of both (hot-dry and cold-wet) extremes occur in Australia, Central and Southern Africa and at the North-Eastern

parts of South America. In July, the strongest underestimations are present over the Sahel region, the Arabian Peninsula and

the area adjacent to the Gulf of Mexico. The strength of the underestimation is comparable for January and July (see Fig. B9).380
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5 Discussion and Conlusion

We have developed and validated an Earth System Model (ESM) emulator that derives monthly, spatially explicit precipitation

data from monthly, spatially explicit temperature data. We have shown that our framework captures temporal and spatial

precipitation structures and produces realistic cross-variable correlation structures. More precisely, we validated inter-annual

trend and variability characteristics along with month-to-month variability. The strongest deviations between the emulated385

and the ESM distributions occur in the tails of the precipitation distribution (mainly above the 95% quantile) where we could

observe some slight (usually smaller than 10%) systematic over-estimations of ESM quantiles. This might imply that some of

the assumptions underlying the emulation framework are not holding anymore in extreme cases.

Extreme precipitation events can be driven by different physical processes and variables. For example, in low latitudes

very extreme precipitation events are often linked to the occurrence of tropical storms or cyclones (Khouakhi et al., 2017). The390

physical dynamics governing such singular events of strong convective precipitation are not resolved in our statistical approach.

We aim at modelling precipitation across different temporal scales and different spatial locations relying on the same statistical

model. This naturally comes with limitations. These limitations also become visible when jointly modelling temperature-

precipitation extremes. Our framework is generally able to capture compound extremes and produces realistic spatial patterns.

However, our emulator generally underestimates the occurrence of joint extremes. The emulator tends to slightly overestimate395

the magnitude of precipitation above the 95% quantile while simultaneously underestimating the occurrence rate of joint

temperature-precipitation extremes, which suggests that the assumption of the precipitation residuals being independent of

temperature is likely not fully accurate. In reality, the residuals are likely still not fully stationary and either depend on global

or local temperature and potentially also the predictions from the temperature-driven precipitation response. In addition, the

emergence of compound extremes may depend on additional feedback effects, for example soil-moisture in the case of heat-400

drought events (Jha et al., 2023). It is noteworthy, however, that the deviations of the emulated results from the actual ESM

results are much smaller than inter-ESM differences.

In a next step, we have forced our precipitation emulator with emulated temperatures (see Appendix C1). The performance

is comparable to the results obtained using ESM data as forcing (spee Appendix C2).

There are multiple ways in which our approach could be further refined and adapted to different tasks. For once, instead of405

solely relying on Gamma GLMs thereby imposing a fixed mean-variance relationships at each location, the approach could

be adjusted to optimise for other distribution families. In addition, the validation approach could be extended to other SSP

scenarios. Specifically to scenarios that do not show continuous warming as transient and quasi-equilibrium climate states have

been show to have substantial local differences (King et al., 2021). To correctly model overshoot scenarios, it will also be

necessary to include additional predictors. While local temperatures over land to some extent follow GMT under a reversal410

of the global mean temperature trend, changes in regional precipitation are not expected to be reversed in the short term in

many regions (Pfleiderer et al., 2023). Beusch et al. (2022) have made some efforts to overcome these difficulties by including

ocean heat uptake as an additional predictive variable for local temperatures. Similar efforts could be pursued for precipitation.

Lastly, the modelling framework could be improved by adjusting the residual variability module to account for a link between
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the predicted mean response and the distribution of additional variability. This would allow for non-stationary relationships415

in the variability module and overcome some limitations in the tails of the distribution. We also note that our model is not

designed to resolve dynamics underlying long-range tele-connections such as e.g. related to the El Niño Southern Oscillation.

We see this as a promising area of future development.

To conclude, we offer a robust emulation framework for modelling spatially resolved, monthly precipitation from spatially

resolved, monthly temperatures. In particular, the emulated precipitation field is spatially and temporally consistent with the420

temperature data used as forcing. Our emulation framework offers exciting new opportunities and is a step towards making

climate science more accessible. While ESMs are costly and data intensive to run, Open Source emulators are available to

everyone for projecting regional climate impacts. This is particularly important as temperature and precipitation extremes are

among the most impactful consequences of climate change. In addition, the emulator provides numerous applications, for

example, coupling to impact models to provide an efficient modelling chain for translating emission scenarios directly into425

climate impacts. A promising avenue for this could be to couple our emulator to an emulator offering agricultural variables

(e.g., Abramoff et al., 2022).

Code and data availability. The current version of the model MESMER-M-TP is available on GitHub: https://github.com/sarasita/mesmer-m-tp.

The exact version of the model used to produce the results used in this paper is archived on Zenodo (https://zenodo.org/doi/10.5281/zenodo.11086167,

Schöongart, 2024). In addition, code for MESMER and MESMER-M can be found at https://github.com/MESMER-group/mesmer. When-430

ever MESMER(-M) data was used in this study, we relied on MESMER v0.9.0 available on Zenodo (https://doi.org/10.5281/zenodo.10408206,

Hauser et al., 2023). The analysis can be reproduced using the code on Zenodo and ESM data as described in Brunner et al. (2020) available

from the public CMIP archive at https://esgf-node.llnl.gov/projects/cmip6/.

Appendix A: Earth System Model Data
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Table A1. Overview of the 24 ESMs that are part of this study and the scenarios that are available for each model. The number of realisations

includes only ensemble members that have data for all indicated scenarios. The training run column contains the identifier of the run that is

used for training. All available runs except the training run are used for testing. If no testing run is available, we include the training run. The

three models with the largest number of available runs are highlighted and play a special role for evaluating the emulator performance.

Model name Reference Available scenarios # of Training run

realisations

ACCESS-CM2 Dix et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 5 r1i1p1f1

ACCESS-ESM1-5 Ziehn et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 40 r1i1p1f1

AWI-CM-1-1-MR Semmler et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 1 r1i1p1f1

CESM2-WACCM Danabasoglu (2019b) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 3 r1i1p1f1

CESM2 Danabasoglu (2019a) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 1 r1i1p1f1

CMCC-CM2-SR5 Lovato and Peano (2020) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 1 r1i1p1f1

CNRM-CM6-1-HR Voldoire (2019b) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 1 r1i1p1f2

CNRM-CM6-1 Voldoire (2019a) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 6 r1i1p1f2

CNRM-ESM2-1 Seferian (2019) SSP1-1.9, SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 5 r1i1p1f1

CanESM5 Swart et al. (2019) SSP1-1.9, SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 50 r1i1p1f1

E3SM-1-1 Bader et al. (2020) SPP5-8.5 1 r1i1p1f1

FGOALS-f3-L YU (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 1 r1i1p1f1

FGOALS-g3 Li (2019) SSP1-1.9, SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 4 r1i1p1f1

FIO-ESM-2-0 Song et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 3 r1i1p1f1

HadGEM3-GC31-LL Good (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 4 r1i1p1f3

HadGEM3-GC31-MM Jackson (2020) SSP1-2.6, SPP5-8.5 4 r1i1p1f3

IPSL-CM6A-LR Boucher et al. (2019) SSP1-1.9, SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 7 r1i1p1f1

MPI-ESM1-2-HR Schupfner et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 2 r1i1p1f1

MPI-ESM1-2-LR Schupfner et al. (2021) SSP1-1.9, SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 30 r1i1p1f1

MRI-ESM2-0 Yukimoto et al. (2019) SSP1-1.9, SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 6 r1i1p1f1

NESM3 Cao (2019) SSP1-2.6, SPP2-4.5, SPP5-8.5 2 r1i1p1f1

NorESM2-LM Seland et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 1 r1i1p1f1

NorESM2-MM Bentsen et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 1 r1i1p1f1

UKESM1-0-LL Good et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 5 r1i1p1f2

24



Figure A1. Map of all AR6 regions including the 46 regions over land. From Iturbide et al. (2020).

Appendix B: Additional Validation for Emulations from ESM data435

This section acts complementary to Sect. 4 and provides all additional validation metrics.

B1 Seasonal Validation

This section shows additional seasonal gridded precipitation output.
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Figure B1. Same as Fig. 2 but for the 10th quantile.
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Figure B2. Same as Fig. 2 but for the 90th quantile.

B2 Validation July

This section includes all graphics that were displayed for the direct emulation error in Sect. 4, but for July.440
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Figure B3. Same as Fig. 3 but for July.
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Figure B5. Same as Fig. 5 but for July.
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Figure B6. Same as Fig. 6 but for July.
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Figure B7. Same as Fig. 8 but for July.
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Figure B8. Sane as Fig. 9 but for July.
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Figure B9. Same as Fig. 10 but for July.

B3 Additional Spatio-temporal Validation Metrics

In this section, we further verify spatio-temporal characteristics of the precipitation field at grid point level. In Fig. B10 we

assess spatio-temporal characteristics at localized areas around chosen grid points using variograms. A variogram measures the

semivariance between grid points as a function of distance. A semivariance of zero indicates no difference between two points

with increasing values for increasing dissimilarity between timeseries at two grid points. The emulator performs very well445

across models and regions for distances smaller than 500km. Above 500km, the emulator usually overestimates semivariance

(underestimates correlations) between different grid points with differences between ESM data and emulations being most

pronounced around the location in NEU. These deviations are well within inter-model differences. We verify temporal charac-

teristics at the same 4 locations using periodograms. A periodogram is an estimate of the spectral density of the signal, that is it

gives an estimate of how much power a signal has at each frequency. Generally, the emulator does well in approximating grid450

point level temporal characteristics. In all cases, the periodicity of the annual cycle is pronounced and similar albeit mostly

smaller pronunciation occurring on in half-yearly or seasonal intervals. In some cases, the emulator tends to overestimate white

noise (NEUACCESS-ESM1-5 and CanESM5, SEA ACCESS-ESM1-5). This suggests that we introduce too much additional
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Figure B10. Variograms at four randomly selected grid points in SCA (lat: 11.25, lon:-83.75), NEU (lat: 63.75, lon: 16.25), CAF (lat: -1.25,

lon: 13.75) and SEA (lat: -1.25, lon: 113.75) and the 300 closest grid points around the location. The first column indicates the selected

grid points and neighbouring locations in shades of red and orange. The second, third and fourth column (ACCESS-ESM1-5, CanESM5,

MPI-ESM1-2-LR) show the median semivariance values and 10th-90th uncertainty ranges as vertical lines estimated from ESM data (blue)

and EMU data (orange) at the selected grid points. Large values indicate dissimilarity between two grid points at the given distance, while

small values indicate similarity. Note, the semivariance in the third and fourth row (CAF and SEA) is large such that 10th-90th quantile

estimates are often contained within the markersize and are therefore not visible.
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Figure B11. Periodograms for the same grid points as in Figure B10 (top to bottom): SCA (lat: 11.25, lon:-83.75), NEU (lat: 63.75, lon:

16.25), CAF (lat: -1.25, lon: 13.75) and SEA (lat: -1.25, lon: 113.75). Results show the median periodograms along with 10th-90th uncertainty

ranges estimated from ESM data (blue) and EMU data (orange) at the selected grid points. At frequencies where only the ESM (blue) line is

visible, the EMU and ESM estimates overlap.

variability in the signal and might be could have multiple reasons. For example, it might be that we occasionally under-estimate

the trend or it could also be that the combined variability inherited from temperature through the GLM and from sampling from455

the multivariate stochastic process, in some cases superposes and leads to too much noise.

Appendix C: Forcing MESMER-M-TP with Emulated Temperatures

MESMER-M-TP is conceived as a module that can be used in conjunction with existing temperature emulators (e.g. Nath

et al., 2022). The idea of this section is to understand and assess the performance of the emulated precipitation fields in such a

36



coupled setting and to verify that our emulation approach is robust with respect to the gridded temperature input. The coupled460

emulation framework validated in this section translates global mean temperatures into gridded temperatures and the gridded

temperatures subsequently into precipitation field timeseries with coherent cross-variable characteristics, meaning the coupled

emulator allows to go from global mean temperatures to joint temperature and precipitation data.

C1 Generating a Dataset of Emulated Temperatures

We generate temperature emulations using global mean temperature as a driver as follow: First, the temperature field is pro-465

jected onto its principal components (PCs). Next, we decompose global mean temperature (GMT) into a trend and a variability

component as suggested in Beusch et al. (2020). We then fit a linear model to each principal component individually with the

trend and the variability in global mean temperature (GMT) as the two sole forcing variables. We then compute the residuals

as the difference between the original principal components and the linear fit. Next, we use a Yeo-Johnson transform to ensure

the residuals follow a normal distribution. Subsequently, we approximate the residuals as an Auto-Regressive (AR) process470

of order 1 with the AR coefficients varying by month as suggested in Nath et al. (2022). We calibrate the model parameters

following our calibration approach for precipitation: We use a single ESM ensemble member across SSPs for training and use

all other ensemble members for testing (see Sect. 3.1). Following Beusch et al. (2020), we generate additional realisations of

GMT. We then drive the linear model with the new GMT realisations to get trend estimates of the PCs and draw new samples

from the AR(1) process to emulate variability. Lastly, we add the trend estimates to the variability samples and apply the in-475

verse of the PCA to get a set of emulated temperatures. For the validation section, we generated 100 temperature emulations

for each model. In Fig. C1 and C2 we exemplary show timeseries of emulated temperature data and actual ESM temperature.

An indication for the quality of the emulations are the quantile deviations shown in Fig. C3 and C4. The emulation approach

works well, although temperatures are slightly underdispersive, similar to results in Beusch et al. (2020); Nath et al. (2022). In

any case, we are mainly interested in the joint emulation error and the robustness of emulated precipitation results with respect480

to emulated temperature input.
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Figure C1. Same as Fig. 3 but for temperatures in January.
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Figure C2. Same as Fig. 3 but for temperatures in July.
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Figure C3. Same as Fig. 6 but for temperatures in January across all 24 models.
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C2 Results for Coupled Emulations

This section presents all results shown in the main paper as well as in B2 for the coupled results.
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Figure C4. Same as Fig. 6 but for temperatures in July across all 24 models.
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Figure C5. ame as Fig. 3 but for the coupled emulations in January.
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Figure C6. Same as Fig. 3 but for the coupled emulations in July.
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Figure C7. Same as Fig. 4 but for the coupled emulations in January.
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Figure C8. Same as Fig. 4 but for the coupled emulations in July.
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Figure C9. Same as Fig. 7 but for the coupled emulations
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Figure C10. Same as Fig. 8 but for the coupled emulations in January.
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Figure C11. Same as Fig. 8 but for the coupled emulations in July.
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Figure C12. Same as Fig. 9 but for the coupled emulations in January.
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Figure C13. Same as Fig. 9 but for the coupled emulations in July.
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Figure C14. Same as Fig. 10 but for the coupled emulations in January.
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Figure C15. Same as Fig. 10 but for the coupled emulations in July.

Author contributions. S.S., L.G., S.I.S. and C.F.S. conceived the study. S.S. developed the methods with contributions from L.G. and P.P.

S.S. wrote the manuscript with contributions from all authors.485

Competing interests. The authors declare no competing interests.

Acknowledgements. S.S. acknowledges support by the German Federal Environmental Foundation (DBU). S.S., L.G., Q.L., P.P., S.I.S. and

C.F.S. acknowledge funds by European Union’s Horizon 2020 Research and Innovation Programme under Grant No. 101003687 (PRO-

VIDE). L.G., M.H., and S.I.S. also acknowledge funds from the European Union’s Horizon Europe research and innovation program under

Grant No. 101081369 (SPARCCLE). We also want to thank the two anonymous reviewers for their valuable comments, which helped making490

this study more comprehensive.

53



References

Abramoff, R. Z., Ciais, P., Zhu, P., Hasegawa, T., Wakatsuki, H., and Makowski, D.: Adaptation strategies strongly reduce the future impacts

of climate change on crop yields, Authorea Preprints, 2022.

Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224–232, 2002.495

Bader, D. C., Leung, R., Taylor, M., and McCoy, R. B.: E3SM-Project E3SM1.1 model output prepared for CMIP6 ScenarioMIP,

https://doi.org/10.22033/ESGF/CMIP6.15103, 2020.

Balaji, V., Maisonnave, E., Zadeh, N., Lawrence, B. N., Biercamp, J., Fladrich, U., Aloisio, G., Benson, R., Caubel, A., Durachta, J., Foujols,

M.-A., Lister, G., Mocavero, S., Underwood, S., and Wright, G.: CPMIP: measurements of real computational performance of Earth

system models in CMIP6, Geoscientific Model Development, 10, 19–34, https://doi.org/10.5194/gmd-10-19-2017, 2017.500

Bentsen, M., Oliviè, D. J. L., Seland, y., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg,

A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,

O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC

NorESM2-MM model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.608, 2019.

Beusch, L., Gudmundsson, L., and Seneviratne, S. I.: Emulating Earth system model temperatures with MESMER: from global mean505

temperature trajectories to grid-point-level realizations on land, Earth System Dynamics, 11, 139–159, https://doi.org/10.5194/esd-11-

139-2020, 2020.

Beusch, L., Nicholls, Z., Gudmundsson, L., Hauser, M., Meinshausen, M., and Seneviratne, S. I.: From emission scenarios to spatially

resolved projections with a chain of computationally efficient emulators: coupling of MAGICC (v7.5.1) and MESMER (v0.8.3), Geosci-

entific Model Development, 15, 2085–2103, https://doi.org/10.5194/gmd-15-2085-2022, 2022.510

Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Dupont, E., and

Lurton, T.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.1532, 2019.

Brunner, L., Hauser, M., Lorenz, R., and Beyerle, U.: The ETH Zurich CMIP6 next generation archive: technical documentation,

https://doi.org/10.5281/zenodo.3734128, 2020.

Cao, J.: NUIST NESMv3 model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.2027, 2019.515

Chandler, R. E.: Multisite, multivariate weather generation based on generalised linear models, Environmental Modelling & Software, 134,

104 867, 2020.

Danabasoglu, G.: NCAR CESM2 model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.2201, 2019a.

Danabasoglu, G.: NCAR CESM2-WACCM model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.10026,

2019b.520

Dix, M., Bi, D., Dobrohotoff, P., Fiedler, R., Harman, I., Law, R., Mackallah, C., Marsland, S., O’Farrell, S., Rashid, H., Srbinovsky,

J., Sullivan, A., Trenham, C., Vohralik, P., Watterson, I., Williams, G., Woodhouse, M., Bodman, R., Dias, F. B., Domingues, C. M.,

Hannah, N., Heerdegen, A., Savita, A., Wales, S., Allen, C., Druken, K., Evans, B., Richards, C., Ridzwan, S. M., Roberts, D.,

Smillie, J., Snow, K., Ward, M., and Yang, R.: CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP,

https://doi.org/10.22033/ESGF/CMIP6.2285, 2019.525

Dobson, A. J. and Barnett, A. G.: An introduction to generalized linear models, CRC press, 2018.

Edwards, M., Castruccio, S., and Hammerling, D.: A Multivariate Global Spatiotemporal Stochastic Generator for Climate Ensembles,

Journal of Agricultural, Biological and Environmental Statistics, 24, 464–483, https://doi.org/10.1007/s13253-019-00352-8, 2019.

54

https://doi.org/10.22033/ESGF/CMIP6.15103
https://doi.org/10.5194/gmd-10-19-2017
https://doi.org/10.22033/ESGF/CMIP6.608
https://doi.org/10.5194/esd-11-139-2020
https://doi.org/10.5194/esd-11-139-2020
https://doi.org/10.5194/esd-11-139-2020
https://doi.org/10.5194/gmd-15-2085-2022
https://doi.org/10.22033/ESGF/CMIP6.1532
https://doi.org/10.5281/zenodo.3734128
https://doi.org/10.22033/ESGF/CMIP6.2027
https://doi.org/10.22033/ESGF/CMIP6.2201
https://doi.org/10.22033/ESGF/CMIP6.10026
https://doi.org/10.22033/ESGF/CMIP6.2285
https://doi.org/10.1007/s13253-019-00352-8


Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercom-

parison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9, 1937–1958, 2016.530

George, J., Letha, J., and Jairaj, P.: Daily rainfall prediction using generalized linear bivariate model–a case study, Procedia Technology, 24,

31–38, 2016.

Good, P.: MOHC HadGEM3-GC31-LL model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.10845,

2019.

Good, P., Sellar, A., Tang, Y., Rumbold, S., Ellis, R., Kelley, D., Kuhlbrodt, T., and Walton, J.: MOHC UKESM1.0-LL model output prepared535

for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.1567, 2019.

Gudmundsson, L. and Seneviratne, S. I.: Anthropogenic climate change affects meteorological drought risk in Europe, Environmental Re-

search Letters, 11, 044 005, 2016.

Hauser, M., Gudmundsson, L., Orth, R., Jézéquel, A., Haustein, K., Vautard, R., Van Oldenborgh, G. J., Wilcox, L., and Seneviratne, S. I.:

Methods and model dependency of extreme event attribution: the 2015 European drought, Earth’s Future, 5, 1034–1043, 2017.540

Hauser, M., Beusch, L., Nicholls, Z., Nath, S., Schwaab, J., and Quilcaille, Y.: ESMER-group/mesmer: version 0.9.0 (v0.9.0), Zenodo [code],

https://doi.org/10.5281/zenodo.10408206, 2023.

Herger, N., Sanderson, B. M., and Knutti, R.: Improved pattern scaling approaches for the use in climate impact studies, Geophysical

Research Letters, 42, 3486–3494, 2015.

Iturbide, M., Gutiérrez, J. M., Alves, L. M., Bedia, J., Cimadevilla, E., Cofiño, A. S., Cerezo-Mota, R., Di Luca, A., Faria, S. H., Gorodet-545

skaya, I., et al.: An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated

datasets, Earth System Science Data Discussions, 2020, 1–16, 2020.

Jackson, L.: MOHC HadGEM3-GC31-MM model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.10846,

2020.

Jha, S., Gudmundsson, L., and Seneviratne, S. I.: Partitioning the uncertainties in compound hot and dry precipitation, soil moisture, and550

runoff extremes projections in CMIP6, Earth’s Future, 11, e2022EF003 315, 2023.

Kemsley, S. W., Osborn, T. J., Dorling, S. R., and Wallace, C.: Pattern scaling the parameters of a Markov-chain gamma-distribution daily

precipitation generator, International Journal of Climatology, 44, 144–159, 2024.

Khouakhi, A., Villarini, G., and Vecchi, G. A.: Contribution of tropical cyclones to rainfall at the global scale, Journal of Climate, 30,

359–372, 2017.555

King, A. D., Borowiak, A. R., Brown, J. R., Frame, D. J., Harrington, L. J., Min, S.-K., Pendergrass, A., Rugenstein, M., Sniderman, J. K.,

and Stone, D. A.: Transient and quasi-equilibrium climate states at 1.5 C and 2 C global warming, Earth’s Future, 9, e2021EF002 274,

2021.

Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0), Geoscientific Model Development, 12,

3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019.560

Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., Knutti, R., and Hawkins, E.: Partitioning climate projection

uncertainty with multiple large ensembles and CMIP5/6, Earth System Dynamics, 11, 491–508, 2020.

Li, L.: CAS FGOALS-g3 model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.2056, 2019.

Link, R., Snyder, A., Lynch, C., Hartin, C., Kravitz, B., and Bond-Lamberty, B.: Fldgen v1.0: an emulator with internal variability and space–

time correlation for Earth system models, Geoscientific Model Development, 12, 1477–1489, https://doi.org/10.5194/gmd-12-1477-2019,565

2019.

55

https://doi.org/10.22033/ESGF/CMIP6.10845
https://doi.org/10.22033/ESGF/CMIP6.1567
https://doi.org/10.5281/zenodo.10408206
https://doi.org/10.22033/ESGF/CMIP6.10846
https://doi.org/10.5194/gmd-12-3055-2019
https://doi.org/10.22033/ESGF/CMIP6.2056
https://doi.org/10.5194/gmd-12-1477-2019


Liu, G., Peng, S., Huntingford, C., and Xi, Y.: A new precipitation emulator (PREMU v1. 0) for lower-complexity models, Geoscientific

Model Development, 16, 1277–1296, 2023.

Lovato, T. and Peano, D.: CMCC CMCC-CM2-SR5 model output prepared for CMIP6 ScenarioMIP,

https://doi.org/10.22033/ESGF/CMIP6.1365, 2020.570

Maher, N., Milinski, S., and Ludwig, R.: Large ensemble climate model simulations: introduction, overview, and future prospects for utilising

multiple types of large ensemble, Earth System Dynamics, 12, 401–418, https://doi.org/10.5194/esd-12-401-2021, 2021.

McCullagh, P.: Generalized linear models, Routledge, 2019.

Nath, S., Lejeune, Q., Beusch, L., Seneviratne, S. I., and Schleussner, C.-F.: MESMER-M: an Earth system model emulator for spatially

resolved monthly temperature, Earth System Dynamics, 13, 851–877, https://doi.org/10.5194/esd-13-851-2022, 2022.575

Nychka, D., Hammerling, D., Krock, M., and Wiens, A.: Modeling and emulation of nonstationary Gaussian fields, Spatial statistics, 28,

21–38, 2018.

O’Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J.,

et al.: The scenario model intercomparison project (ScenarioMIP) for CMIP6, Geoscientific Model Development, 9, 3461–3482, 2016.

Pfleiderer, P., Schleussner, C.-F., and Sillmann, J.: Limited reversal of regional climate signals in overshoot scenarios, Environmental Re-580

search: Climate, 2023.

Quilcaille, Y., Gudmundsson, L., Beusch, L., Hauser, M., and Seneviratne, S. I.: Showcasing MESMER-X: Spatially Resolved Emulation of

Annual Maximum Temperatures of Earth System Models, Geophysical Research Letters, 49, e2022GL099 012, 2022.

Quilcaille, Y., Gudmundsson, L., and Seneviratne, S. I.: Extending MESMER-X: A spatially resolved Earth system model emulator for fire

weather and soil moisture, EGUsphere, 2023, 1–35, 2023.585

Schneider, T., Lan, S., Stuart, A., and Teixeira, J.: Earth system modeling 2.0: A blueprint for models that learn from observations and

targeted high-resolution simulations, Geophysical Research Letters, 44, 12–396, 2017.

Schöongart, S.: MESMER-M-TP version 0.1.0, Zenodo [code], https://doi.org/10.5281/zenodo.11086167, 2024.

Schupfner, M., Wieners, K.-H., Wachsmann, F., Steger, C., Bittner, M., Jungclaus, J., Früh, B., Pankatz, K., Giorgetta, M., Reick, C., Legutke,

S., Esch, M., Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M.,590

Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J.,

Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H.,

Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: DKRZ MPI-ESM1.2-HR

model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.2450, 2019.

Schupfner, M., Wieners, K.-H., Wachsmann, F., Milinski, S., Steger, C., Bittner, M., Jungclaus, J., Früh, B., Pankatz, K., Giorgetta, M.,595

Reick, C., Legutke, S., Esch, M., Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V.,

Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh,

L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R.,

Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: DKRZ

MPI-ESM1.2-LR model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.15349, 2021.600

Seferian, R.: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 ScenarioMIP,

https://doi.org/10.22033/ESGF/CMIP6.1395, 2019.

Seland, y., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg,

A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,

56

https://doi.org/10.22033/ESGF/CMIP6.1365
https://doi.org/10.5194/esd-12-401-2021
https://doi.org/10.5194/esd-13-851-2022
https://doi.org/10.5281/zenodo.11086167
https://doi.org/10.22033/ESGF/CMIP6.2450
https://doi.org/10.22033/ESGF/CMIP6.15349
https://doi.org/10.22033/ESGF/CMIP6.1395


O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC605

NorESM2-LM model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.604, 2019.

Semmler, T., Danilov, S., Rackow, T., Sidorenko, D., Barbi, D., Hegewald, J., Pradhan, H. K., Sein, D., Wang, Q., and Jung, T.: AWI

AWI-CM1.1MR model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.376, 2019.

Snyder, A., Link, R., Dorheim, K., Kravitz, B., Bond-Lamberty, B., and Hartin, C.: Joint emulation of Earth System Model temperature-

precipitation realizations with internal variability and space-time and cross-variable correlation: fldgen v2. 0 software description, Plos610

one, 14, e0223 542, 2019.

Song, Z., Qiao, F., Bao, Y., Shu, Q., Song, Y., and Yang, X.: FIO-QLNM FIO-ESM2.0 model output prepared for CMIP6 ScenarioMIP,

https://doi.org/10.22033/ESGF/CMIP6.9051, 2019.

Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G.,

Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma615

CanESM5 model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.1317, 2019.

Tabari, H.: Climate change impact on flood and extreme precipitation increases with water availability, Scientific reports, 10, 13 768, 2020.

Tebaldi, C. and Arblaster, J. M.: Pattern scaling: Its strengths and limitations, and an update on the latest model simulations, Climatic Change,

122, 459–471, 2014.

Tebaldi, C., Snyder, A., and Dorheim, K.: STITCHES: creating new scenarios of climate model output by stitching together pieces of existing620

simulations, Earth System Dynamics, 13, 1557–1609, https://doi.org/10.5194/esd-13-1557-2022, 2022.

Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B.: The changing character of precipitation, Bulletin of the American Meteo-

rological Society, 84, 1205–1218, 2003.

Voldoire, A.: CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 ScenarioMIP,

https://doi.org/10.22033/ESGF/CMIP6.1384, 2019a.625

Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 ScenarioMIP,

https://doi.org/10.22033/ESGF/CMIP6.1388, 2019b.

YU, Y.: CAS FGOALS-f3-L model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.2046, 2019.

Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura,

H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 ScenarioMIP,630

https://doi.org/10.22033/ESGF/CMIP6.638, 2019.

Ziehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R., Dix, M., Wang, Y., Dobrohotoff, P., Srbinovsky, J., Stevens, L., Vohralik, P.,

Mackallah, C., Sullivan, A., O’Farrell, S., and Druken, K.: CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 ScenarioMIP,

https://doi.org/10.22033/ESGF/CMIP6.2291, 2019.

57

https://doi.org/10.22033/ESGF/CMIP6.604
https://doi.org/10.22033/ESGF/CMIP6.376
https://doi.org/10.22033/ESGF/CMIP6.9051
https://doi.org/10.22033/ESGF/CMIP6.1317
https://doi.org/10.5194/esd-13-1557-2022
https://doi.org/10.22033/ESGF/CMIP6.1384
https://doi.org/10.22033/ESGF/CMIP6.1388
https://doi.org/10.22033/ESGF/CMIP6.2046
https://doi.org/10.22033/ESGF/CMIP6.638
https://doi.org/10.22033/ESGF/CMIP6.2291

