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Abstract. Emulators of Earth System Models (ESMs) are statistical models that approximate selected outputs of ESMs. Ow-

ing to their runtime-efficiency, emulators are especially useful whenever vast
::::
when

:::::
large

:
amounts of data are required, for

example, for thoroughly exploring
::::::
in-depth

::::::::::
exploration

::
of

:
the emission space, for investigating high-impact low-probability

events, or for estimating uncertainties and variability. This paper introduces an emulation framework that allows to emulate

spatially explicit
::::::
gridded monthly mean precipitation fields using spatially explicit

::::::
gridded monthly mean temperature fields as5

forcing. The emulator is designed as an additional module within the MESMER(-M) emulation
::::::::
extension

::
of

:::
the

:::::::
Modular

:::::
Earth

::::::
System

::::::
Model

::::::::
Emulator

::::::::::
(MESMER)

:
framework and its core relies on the concepts of Generalised Linear Models (GLMs).

Precipitation at each (land-)grid point and for each month is approximated as a multiplicative model with two factors. The first

factor entails the temperature-driven precipitation response and is assumed to follow a Gamma distribution with a logarithmic

link function. The second factor is the residual variability of the precipitation field. The residual variability ,
::::::
which is assumed10

to be independent of temperature, but may still possess spatial precipitation correlations. Therefore, the monthly residual field

is decomposed into independent Principal Components and subsequently approximated and sampled using a Kernel Density

Estimation with a Gaussian kernel. The emulation framework is tested and validated using 24 ESMs from the Sixth Phase of

the Coupled Model Intercomparison Project (CMIP6). For each ESM, we train on a single ensemble member across scenarios

and evaluate the emulator performance using simulations with historical and SSP5-8.5 forcing. We show that the framework15

captures grid point specific precipitation characteristics, such as variability, trend and temporal auto-correlations. In addition,

we find that emulated spatial (cross-variable) characteristics are consistent with that
::::
those of ESMs. The framework is also able

to capture compound hot-dry and cold-wet extremes, although it systematically underestimates their occurrence probabilities.

The emulation of spatially explicit, coherent monthly temperature and precipitation timeseries is a major step towards the
:
a

:::::::::::::
computationally

:::::::
efficient representation of impact-relevant variables of the climate systemin a computational efficient manner.20
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• Precipitation at gridpoint s  and for month m is assumed to fllow a multiplicative model 
consisting of two factors: 

MESMER-M-TP

• Derive monthly, spatially-explicit precipitation 
based off monthly, spatially-explicit temperatures
• Emulated precipitation data should be spatially 

and temporally consistent with temperature data 
used as forcing

Model formulation 
gridpoint!:
month#:
set of grid-points relevant for precipitation at 
gridpoint s and for month m $$,%:

Temperature-driven Precipitation 
Response Residual Variability

Predictors

s
'!,#

* !!,# +!,# = ,(!,#& )(!,#' ∗+,!,#()*+,)∑ (!,#-./∗+,/	0
/1& )+,!,#()*+,	∗∑ (!,#0.-./∗+,/03'

/1& 	
Gamma GLM with Log-Link

- !!,# +!,# = Φ ∗ * !!,# +!,#
/	

Trend of 1st PC (obtained by 
lowess smoothing) %&$,%	45678

Variability of 1st PC (obtained 
by subtracting trend) %&$,%9

2nd PC %&$,%:...

pth PC%&$,%;<:

1st order effects Interaction termsintercept

Local temperature data {	)5,%}5∈>!,#
highly correlated

First p PCs
uncorrelated

&

1. Computing empirical residuals (%$,%56$ = ?!,#
?!,#$%&'(

)
2. Perform log- and PCA-transforms on the field 

timeseries %56$ (conserves spatial correlations)
3. Fit KDE specific to each month
4. Sample from KDE and inverse transform to get 

additional, spatially consistent, variability 
realisations  

PCA

Sampling Strategy

-@,A

Set of predictors:

1 Introduction

Earth System Models (ESM) are process-based models built off
::
on

:
physical equations that govern the dynamic and thermo-

dynamic process of the Earth system (e.g., Schneider et al., 2017). Their physically based modelling approach makes ESMs

invaluable for understanding and explaining the impacts of human activities on the global climate. At the same time, the mod-

elling approach is computationally expensive - generating a single ESM simulation for the Sixth Phase of the Coupled Model25

Intercomparison Project (CMIP6) takes weeks to months to complete (e.g., Balaji et al., 2017). This limits the number of

times any ESM can be run. However, studying a broad variety of different emission scenarios along with estimating associated

uncertainties and sampling natural variability traditionally requires running an ESM many times (Lehner et al., 2020; Maher

et al., 2021).

Emulators of ESMs are runtime efficient models that approximate specific outputs of an ESM using statistical methods. An30

emulator (in this paper
:
, the term emulator always refers to ESM emulators) is trained to approximate relationships between a

set of predictor variables and selected target variable(s) from existing ESM data, which can then be applied to new predictor

data. The temporal and spatial properties of the emulated target variable(s) should , ideally , not be statistically distinguishable

:::::
ideally

:::
be

::::::::::
statistically

::::::::::::::
indistinguishable from those of the actual ESM output. Emulators typically focus on a small set of key

target variables, which reduces dimensionality and saves computational time as well as storage. This is a sensible
:::::::::
reasonable35

choice as for many downstream applications of ESM data only a small set of climatic variables is of interest: for example, the

Large Ensemble output of the Community Earth System Model (CESM-LE) consists of 1168 climatic variables of which 64%

are virtually never downloaded while 14% contribute to over 90% of downloads (Edwards et al., 2019). Emulators can generate
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thousands of realisations of ESM-like data, thereby overcoming the limitations of only having
:::::
having

:::::
only a small number of

ESM realisations. As such, ESMs and emulators are complementary.40

A number of such emulation frameworks of varying complexity exist. Some frameworks aim to approximate the mean

trend of a single variable (e.g., Tebaldi and Arblaster, 2014, and references therein), others also emulate variability as either

a stationary (e.g., Link et al., 2019) or a non-stationary (e.g., Nychka et al., 2018) process. Recent approaches target the

simultaneous emulation of multiple variables to also correctly mimic cross-variable covariance structures (e.g., Tebaldi et al.,

2022; Edwards et al., 2019; Liu et al., 2023). Emulators can also target different spatial and temporal scales (e.g. yearly:45

Beusch et al. (2020) or monthly: Nath et al. (2022)). Emulators often use global mean temperature (GMT) as a predictor

::::::
forcing variable (e.g., Quilcaille et al., 2022) and some use additional predictors

::::::
drivers, such as ocean heat uptake, land-sea

temperature contrast or time-shifted GMT (e.g., Herger et al., 2015; Beusch et al., 2022).

In this study, we focus on generating emulations of monthly gridded land precipitation from monthly gridded land temper-

atures, while aiming to represent
:::::::
conserve

:
the covariance structure between the two variables. Temperature and precipitation50

are two of the most important climatic variables and are needed
::::::
required

:
as input variables for most impact models (Lange,

2019).

There are already emulators targeted at jointly emulating temperature and precipitation. For example, Tebaldi et al. (2022)

built their emulator STITCHES using resampling methods. They pool together all available data from any scenario, re-arrange

it using constraints on global mean temperature and then ‘
:
“stitch” it back together. This enables STITCHES to generate55

multivariate, spatially-resolved emulations. However, the quality of the emulator is constrained by the amount of available ESM

training data and does not perform ideally when data is under-representative. Link et al. (2019) have extended their temperature

emulator, fldgen1.0, to also model precipitation (fldgen2.0; Snyder et al., 2019). Their framework relies on capturing the

signal’s mean response using pattern scaling (Tebaldi and Arblaster, 2014, and references therein) and then adding a variability

term. The variability term possesses the spatio-temporal (cross-)correlations and is generated by decomposing the original60

ESM signal into its principal components (PCs), applying a Fourier transformation to the PCs, applying random phase shifts

and then back-transforming. Fldgen2.0 has been developed and tested for yearly data and implicitly assumes stationarity in

the variability of temperature and precipitation. Recently, Liu et al. (2023) developed a precipitation emulator, PrEMU, that

targets the emulation of monthly gridded precipitation starting from monthly gridded temperatures. Their approach is able to

deterministically reconstruct 70% of the variance in global land average precipitation. However, PrEMU does not offer to65

emulate the remaining variance and cross-variable covariances have not been verified.

In this study, we present a novel approach that aims at fully emulating land precipitation fields at monthly resolution given a

time series field of land temperatures, while especially approximating the cross-variable covariance structures. We show that the

emulation framework
::::::
closely

:
resembles ESM output well and even captures monthly compound-extremes. Our emulator, called

MESMER-M-TP, serves as an additional module within the MESMER (Modular Earth System Model Emulator with spatially70

Resolved output) framework (Beusch et al., 2020). MESMER has originally been designed to approximate grid-point
:::
grid

::::
point

:
level annual mean temperatures changes as a function of global mean temperature change, while explicitly accounting

for spatial and temporal variability (Beusch et al., 2020). This approach has since been extended to also represent selected
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extreme weather indicators (MESMER-X), and key impact relevant variables such as fire weather and soil moisture (Quilcaille

et al., 2022, 2023). A temporal downscaling module to emulate monthly climate output has also been successfully implemented75

(MESMER-M) (Nath et al., 2022). We here provide a module that can be coupled to MESMER-M temperature output (or to

output from other emulators of monthly local temperatures) to generate bivariate temperature and precipitation emulations.

The core of the approach employs Generalised Linear Models (GLMs) (Dobson and Barnett, 2018). Our framework is easily

extendable to other variables that follow distributions within the exponential family and it allows for non-stationary variance

functions.80

This study is structured as follows: First, the methodological emulation framework is introduced in Sect. 2. Second, we

describe how the suggested methodology is applied to the ESM data in Sect. 3. To this end, we introduce the data set
::::::
dataset

(Sect. 3.1), give an overview on how the methodology is applied to the data (Sect. 3.2) and describe the validation of the

emulation framework (Sect. 3.3). Next, we present our results in Sect. 4. The results section contains exemplary emulation

output and validation metrics. Lastly, we summarise and discuss findings in Sect. 5. In addition, this paper comes with an85

extensive AppendixC that is mainly concerned with coupling
:
.
:::::::::
Appendix

::
B

:::::::
displays

:::::::::
additional

:::::::::::::
spatio-temporal

:::::::::
validation

::::::
metrics

:::
and

::::::::::::
complements

::::
Sect.

::
4.

::
In

:::::::::
Appendix

::
C,

:::
we

:::::::
explain

::::
how MESMER-M-TP

:
is

:::::::
coupled to an emulator that generates

temperature data . In the appendix,
:::
and

:::
we

:::::
carry

:::
out

:
validation and uncertainty estimations are carried out for the coupled

emulation chain.

2 Emulator Description90

2.1 Notation

T and P denote the spatially explicit monthly temperature and precipitation fields. We introduce the subscripts s, m and y, such

that ps,m,y (ts,m,y) is the precipitation (temperature) value at location s, for month m and year y. We set m= 1 as January and

m= 12 as December. P (and T ) can be expressed as a 2-dimensional matrix with columns corresponding to spatial locations

and rows referring to specific month-year combinations:95

P =



ps1,1,y1 ps2,1,y1 . . . psl,1,y1

ps1,2,y1 ps2,2,y1 . . . psl,2,y1

...
...

. . . . . .

ps1,12,y1
ps2,12,y1

. . . psl,12,y1

ps1,1,y2
ps2,1,y2

. . . psl,1,y2

...
...

. . . . . .

ps1,12,yk
ps2,12,yk

. . . psl,12,yk


, (1)

where l denotes the number of spatial locations and k the number of years. The matrix has dimensions dim(P ) = (12 ∗k)× l.

The precipitation timeseries at location s is the row-vector
::::::::::::
column-vector Ps = (ps,1,y1 ,ps,2,y1 , . . . ,ps,12,y1 ,ps,1,y2 , . . . ,ps,12,yk

)T ,

where the superscript T refers to the transpose. We define the gridpoint
:::
grid

:::::
point and month specific precipitation as the time-
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Figure 1. Schematic overview of our modelling approach. Precipitation is decomposed into a temperature-driven contribution and a contribu-

tion independent of temperature. We exploit local temperature information and the framework of Gamma GLMs to reconstruct precipitation

signals for each location and month. We then compute the empirical residuals and after applying a log and a PCA transform to disentangle

spatial correlations, we approximate the residuals individually by using a KDE. The framework is described in more detail in Sect. 2

series consisting of precipitation samples from the same month over different years: Ps,m = (ps,m,y1
,ps,m,y2

, ...,ps,m,yk
)T ,100

meaning Ps,m contains every 12th entry of Ps. All definitions work analogously for monthly temperatures.

2.2 General Approach

The goal of the emulator is to derive monthly, spatially-explicit precipitation based on monthly, spatially-explicit temperatures.

In particular, the emulated precipitation data should be spatially and temporally consistent with the temperature data. To this

end, we suggest a multiplicative framework that can be summarised as105

Ps,m = fs,m
(
{Tr,m}r∈Ss,m

)︸ ︷︷ ︸
1

∗ηs,m︸︷︷︸
2

, (2)

where the
:::::::
emulated

:
local precipitation at gridpoint

:::
grid

:::::
point s and for month m, Ps,m, is defined by two terms. (1) By the

deterministic temperature-driven precipitation response. We assume that a large fraction of Ps,m can be constructed from local

temperature information. Let Ss,m be the set of spatial locations with temperature timeseries that may contain useful
:::::::
relevant

information for reconstructing Ps,m. We then use {Tr,m}r∈Ss,m to build a 2-dimensional predictor matrix Xs,m. We assume110

that Xs,m relates to Ps,m via the response function fs,m. Note that fs,m acts independently on each gridpoint
::::
grid

::::
point

:
and
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for each month (see Sect. 2.3.2). And (2) by a stochastic, multivariate noise term, η. η is used to approximate the fraction of

the natural variability that can not
::::::
cannot be reconstructed from temperature information alone and thus appears random in our

modelling framework. We assume that the precipitation residuals still possess information across locations and months, but are

independent of temperature. η is evaluated at gridpoint
:::
grid

:::::
point

:
s and for month m.115

The suggested framework is equivalent to assuming an additive model for the logarithm of precipitation which is a common

choice when modelling precipitation (e.g., Snyder et al., 2019; Gudmundsson and Seneviratne, 2016; McCullagh, 2019).

2.3 Temperature-driven Precipitation Response

The aim of the temperature-driven precipitation response is to capture the fraction of the precipitation signal that is determin-

istically derivable from temperature data. We do not assume a causal relationship here. Rather, the motivation is to provide120

for a consistent multivariate extension. To this end, we assume that temperature is a good predictor for the general trend in

the precipitation signal as well as parts of the variability. In order to capture both contributions simultaneously, we rely on the

framework of GLMs (e.g. Dobson and Barnett, 2018; McCullagh, 2019). A GLM is a generalisation of ordinary linear regres-

sion and is applicable to any dependent variable that follows a specific distribution within an exponential family relative to the

predictor variable(s). The basic assumption is that the dependent variable is related to a linear combination of the independent125

variables via a link function.

2.3.1 A GLM for Precipitation

To apply the GLM framework to precipitation, we assume that Ps,m follows a Gamma distribution with shape parameter ks,m

and scale parameter Θs,m conditioned on a set of temperature predictors accounting for the local and global temperature con-

ditions, Xs,m(see .
::::
The

::::::::
predictor

:::::
matrix

:::::
Xs,m::

is
:::::::
derived

::::
from

:::
the

:::
set

::::::::::::
{Tr,m}r∈Ss,m ::

of
::::::
gridded

::::::::::
temperature

::::
data

:::
as

::::::::
described130

::
in Sect. 2.3.2). Precipitation is continuous and non-negative while the Gamma distribution is strictly positive. By replacing

zero precipitation values with a small threshold for quasi-zero, the condition for the Gamma distributions can be met. We

choose a logarithmic link function, g = log, such that the inverse link function is the exponential function, g−1 = e. The model

formulation then reads as follows:

E(Ps,m|Xs,m) = eXs,m∗βs,m + higher order terms = µs,m135

where E(Ps,m|Xs,m)
::::::::
Following

::::
this

::::::::::
assumption,

:::
the

:::::::
response

:::::::
function

:::::
fs,m is the expected value of Ps,m conditioned on the

predictors Xs,m , µs,m is the expected value of the Gamma distribution, and
:::::
(noted

::::::::::::::
E(Ps,m|Xs,m)):

fs,m
(
{Tr,m}r∈Ss,m

)
= E(Ps,m|Xs,m) = eXs,m∗βs,m+higher order terms

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(3)

:::::
where βs,m is a vector of linear coefficients (see Sect. 3.2 for details on the higher order terms). The mean

::::
value

:
of a Gamma

distribution can also be expressed using its scale and shape parameters:140

µE(P
:::

s,m|Xs,m)
:::::

= ks,m ∗Θs,m. (4)
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Equally,
::
we

::::
can

::::::
express

:
the variance of a Gamma distribution can be expressed as :

::
as

varV (P
:::

s,m|Xs,m)
:::::

= ks,m ∗Θ2
s,m., (5)

In GLMs, the shape parameter
:::::
where

:::::::::::::
V (Ps,m|Xs,m)

:::
is

:::
the

:::::::
variance

:::
of

:::::
Ps,m ::::::::::

conditional
::
on

::::
the

::::::::
predictors

::::::
Xs,m ::::::

(noted

:::::::::::::
V (Ps,m|Xs,m)).

::::::
When

::::::
fitting

:
a
::::::::

Gamma
:::::
GLM,

:::::
ks,m:

is usually held constant while the scale parameter
::::
Θs,m:

is varied.145

Therefore, by combining Eq. ?? and ?? we get the variance function for the Gamma GLM,
:::
This

:::::
leads

::
to

:::
the

:::::::::::::
mean-variance

:::::::::
relationship

:::
of

:
a
:::::::
Gamma

:::::
GLM:

:

V (Ps,m|Xs,m) = Φs,m ∗E(Ps,m|XTX
: s,m)2, (6)

where Φs,m is called the dispersion and is a constant and V (Ps,m|Xs,m) is the variance of Ps,m conditional on the predictors

Xs,m:::::
given

::
as

:::
the

::::::
inverse

::
of

::::
ks,m::::::::

(therefore
::::::::
constant). As the conditional mean of the precipitation distribution is changing with150

the background climate, this variance-mean relationship offers to model non-stationary behaviour in the precipitation response.

At the same time, imposing the variance function of a Gamma GLM is a strong assumption that may not hold true at all loca-

tions. However, using
::::
Using

:
a Gamma GLM to model precipitation has been shown to yield good approximations in other stud-

ies (George et al., 2016; Hauser et al., 2017; Chandler, 2020)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(George et al., 2016; Hauser et al., 2017; Chandler, 2020; Kemsley et al., 2024; Gudmundsson and Seneviratne, 2016)

and in Sect. 3.3, we empirically validate our choice.155

2.3.2 The Predictor Matrix Xs,m

Precipitation is a complex climatic variable that depends on many factors such as water availability, temperatures or the ter-

rain (Allen and Ingram, 2002; Trenberth et al., 2003; Tabari, 2020). As the goal is to reconstruct precipitation signals using

temperature information only, we try to exploit local temperature information as much as possible. We assume that, in order

to construct Ps,m, temperature information at all gridpoints
:::
grid

:::::
points

:
r in proximity to s is relevant. We denote Ss,m as160

the set of n spatial locations that are closest to s and we assume that all {Tr,m}r∈Ss,m
are relevant predictors for Ps,m. As

the timeseries’ in {Tr,m}r∈Ss,m are highly correlated, we perform a PCA transform and only keep the first p components.

That is, we project {Tr,m}r∈Ss,m onto its p-dimensional Eigenspace spanned by the vectors {PCAi
s,m}i∈{0,...,p−1}. The first

principal component, PCA1
s,m::::::::

PCA0
s,m, is now expected to contain a strong trend. As precipitation may scale differently

with temperature information on different timescales, we decompose PCA0
s,m into a trend and a variability term. The trend165

term is derived by LOWESS smoothing consistent with the methodology in Beusch et al. (2022). This leaves us with the set

T̂s,m = {PCA0,trend
s,m ,PCA0,var

s,m ,PCA1
s,m,PCA1

s,m, . . . ,PCAp−1
s,m }

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
T̂s,m = {PCA0,trend

s,m ,PCA0,var
s,m ,PCA1

s,m,PCA2
s,m, . . . ,PCAp−1

s,m }
as a set of feasible predictors. Xs,m is then constructed by using the set T̂s,m as row vectors and by adding column of ones to

allow for a constant intercept:
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Xs,m =


1 PCA0,trend

s,m,y0
PCA0,var

s,m,y0
PCA1

s,m,y0
PCA2

s,m,y0
. . . PCAp−1

s,m,y0

1 PCA0,trend
s,m,y1

PCA0,var
s,m,y1

PCA1
s,m,y1

PCA2
s,m,y1

. . . PCAp−1
s,m,y1

...
...

...
...

...
. . .

...

1 PCA0,trend
s,m,yk

PCA0,var
s,m,yk

PCA1
s,m,yk

PCA2
s,m,yk

. . . PCAp−1
s,m,yk

 . (7)170

:::
For

:::::::::
simplicity,

:::
we

:::::::::
sometimes

::::
refer

::
to

::::::::::
PCA0,trend

s,m :::
as

:::::::::
PCAtrend

s,m :::
and

:::::::::
PCA0,var

s,m :::
as

::::::::
PCA0

s,m. The model design also offers

to include higher order effects by, for example, including X2
s,m as additional predictors or

:
a
::::::::
predictor

::
or

::
by

:
including pairwise

interactions between predictors. Including higher-order effects is a calibration choice and is discussed in Sect. 3.2.

2.4 Residual Variability

We define the residual variability of the precipitation signal,
:::::
P res
s,m,

:
as the fraction of precipitation that cannot be derived from175

temperatures :
::::
using

:::::::
gridded

:::::::::::
temperatures

::::
alone

::::
and

::::::
assume

::
it

::::::
follows

::
a
::::::::::
multivariate

::::::::
stochastic

:::::::
process,

:::::
ηm,s,:

:

P res
s,m = Ps,m/fs,m(XT

s,m)∝ ηs,m.
::::::

(8)

We assume that P res
s,m is independent of temperature, but dependent on all other precipitation residuals. That is, the field P res

still possesses spatial correlations, for example, residuals between two gridcells in proximity are likely
:::::::
meaning

:::
we

:::::::
assume

:::
grid

:::::
cells

::
in

::::::::
proximity

::
to
::::

one
:::::::
another

:::
are

:::::
likely

::::
very

:
similar. As a Gamma-GLM does not contain any explicit assumptions180

about the distribution of the empirical residuals, we are relying on approximating the empirical
::::::::
residuals,

:::
our

::::
goal

::
is

::
to

:::::::
generate

:::
new

::::::::
residuals

::::
with

::
a
::::::::::
distribution

::::::
closely

:::::::::
resembling

::::
the distribution of the residuals and then sampling from them . To this

end, we first apply a log transform to the residuals to avoid difficulties with potentially modelling negative values. To
::::::::
empirical

::::::::
residuals.

:::
The

::::::::
empirical

::::::::
residuals

:::
are

:::::::::::
non-negative

::::
and

:::
we

:::
first

::::
map

:::::
them

::::
onto

:::
the

:::::
entire

:::::
space

::
of
::::

real
::::::::
numbers

::
by

::::::::
applying

:
a
::::::::::
logarithmic

::::::::::::
transformation.

:::::
Next,

:::
we

::::::
further

:::::
apply

::
a

::::
PCA

::
to

:
resolve the spatial dependencies across precipitation residuals,185

a PCA transform is applied to the residuals. For each month, the distribution of the resulting PCs is empirically estimated

using a
:
.
::::
This

::::::
allows

::
us

::
to

:::::::::::
approximate

:::
the

::::::::::
distributions

::
of

:::
the

:::::
PCA

::::::::::
components

:::::::::::
individually,

:::::
rather

::::
than

:::::::::
modelling

:::
the

::::
joint

::::::::::
distributions

::
of

:::
the

::::::
actual

::::::::
residuals.

:::
Let

::::::::::::::
{PCres

i,m}i∈1,...,q:::
be

:::
the

::::
first

:
q
::::
PCs

::
of

:::::
P res
m .

::::
We

::::::
assume

::::
that

:::
the

:::::::::
probability

:::::::
density

:::::::
function

:::::
(PDF)

::
of

::::
each

:::
of

:::
the

:::
PCs

::::
can

::
be

::::::::
modelled

::
as

:
a
::::::::::::
superposition

::
of

:::::
many

::::::::
Gaussian

::::::::::
distributions

::::
with

:::::
width

::::
hm:

PDF (PCres
i,m,y) =

1

k ∗hm

k∑
j=1

1√
2π

e−
1
2∗(

PCres
i,m,y−PCres

i,m,yj
h )2

:::::::::::::::::::::::::::::::::::::::::::::::::

(9)190

:::::
where

:
k
:::::::

denotes
:::
the

:::::::
number

::
of

::::::
sample

::::::
years.

::
In

:::::
other

::::::
words,

::
we

:::::::::::
characterise

:::
the

::::::
random

:::::::
process

::::
ηs,m:::

by
:::::::
applying

::
a Kernel

Density Estimation (KDE) with a Gaussian Kernel and bandwidth parameter hm:::::
kernel

::
to

:::
the

::::
PCs

::
of

:::
the

:::::::::
empirical

:::::::
residuals.

In order to generate additional, random
:::
and

::::::::
spatially

:::::::
coherent

:
variability realisations, we draw new samples from the KDE ,

employ the inverse PCA transform and then the inverse log transform
:::
and

::::::
inverse

::::::::
transform

::::
(first

:::::::
inverse

::::
PCA

:::::::::::::
transformation,

:::
then

:::::::
inverse

:::::::::
logarithmic

:::::::::::::
transformation).195
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2.5 Model Parameters

To summarise the above approach: We first construct the gridpoint
:::
grid

:::::
point and month specific predictor matrix Xs,m using

local temperature information. This offers two calibration parameters
:::::::::::::
hyperparameters: (i) the number of the n-closest spatial

locations that still influence precipitation at location s and (ii) the number of PCA components, p, that should be kept as pre-

dictors.
::
In

::::::::
addition,

::
we

::::
can

:::::
chose

::
to

::::::
include

::::::::::
higher-order

:::::
terms

::::
(for

:::::::
example,

::::::::::::
dependencies

::
on

:::::
X2

s,m::
or

:::::::::
interaction

::::::
terms).

:
The200

matrix Xs,m has p+2 columns (the first PC is divided into a trend and a variability contribution and we have a column of ones

to allow for a constant offset), leaving us with p+2 parameters for each grid point and month (the parameters are encompassed

in the coefficient vector βs,m). βs,m is fitted using the framework of a Gamma GLM and a log-likelihood estimation. As the

residuals of a Gamma GLM do not have a pre-described functional form, we are approximating the residuals using a KDE that

relies on a smoothing parameter (also called bandwidth)
::::::
another

::::::::::::::
hyper-parameter,

:::
the

:::::::::
smoothing

::::::::
parameter

:::
or

:::::::::
bandwidth, hm.205

3 Emulator Application

3.1 Data

The emulator is trained on monthly mean temperature and monthly mean precipitation data from CMIP6 experiments (Eyring

et al., 2016) of 24 different ESMs (see Table A1 in Appendix A). In this study, the term temperature refers to temperature

anomalies relative to the period 1850-1900 while precipitation refers to absolute precipitation. The ESM data went through210

a centralised pre-processing that includes the interpolation to a common 2.5◦ × 2.5◦ latitude-longitude grid and was obtained

from the CMIP6 next generation archive (Brunner et al., 2020). As variables are emulated over land only, grid cells with a land

area coverage of less than a third are filtered out, resulting in 2652 land grid points. Monthly precipitation data can contain

zero values and in some cases very small negative numerical residuals. Therefore, for each ESM, a cut-off for quasi-zero is

introduced by replacing zero and negative values with half of the smallest non-negative precipitation value found in the entire215

dataset. Data from five scenarios (
:::
that

::::::::
represent

::::::::::::
combinations

::
of

::::::
Shared

:::::::::::::
Socioeconomic

::::::::
Pathways

::::::
(SSPs)

:::
and

:::::::::::::
Representative

:::::::::::
Concentration

::::::::
Pathways

:::::::
(RCPs)

:::
are

::::
used,

:::::::
namely SSP1-1.9

:::::::
(notation

:::::::::
indicating

:::
the

::::::::::
combination

::
of

:::::
SSP1

:::
and

::::::::
RCP1.9), SPP1-

2.6, SPP2-4.5, SPP3-7.0, SSP5-8.5) and
:
as

::::
well

::
as
:

the historical simulations are considered (O’Neill et al., 2016).
::
We

:::::
refer

::
to

::::
these

::::::::
SSP-RCP

::::::::::::
combinations

::
as

::::
SSPs

:::
or

::::::::
scenarios. Not all 24 models provide temperature and precipitation data for each SSP

(see Table A1 in A).220

For each ESM, the emulator is trained independently based on a single ensemble member across all available SSPs. The

historical simulation and the SSP5-8.5 scenario of the remaining ESM ensemble members are used for evaluating the emulator

performance and are referred to as validation runs.
::::
When

:::::::::
generating

::::::::::
emulations

::::
from

::::::
actual

::::
ESM

:::::
data,

:::
we

:::::::
generate

:
a
::::::
single

::::::::::
precipitation

:::::::::
realisation

:::
for

::::
each

::::::::
available

::::::::::
temperature

:::::
field.

:::::::::
Therefore,

:::
the

::::::
number

:::
of

:::::::::
emulations

::::::
exactly

::::::
equals

:::
the

:::::::
number

::
of

:::::
ESM

::::
runs.

:
A special focus is put on the three models with the highest number of validation runs: ACCESS-ESM1-5,225

CanESM5 and MPI-ESM1-2-LR. These three models offer at least 30 ensemble members each which allows us to compare

ensemble statistics and, in particular, extreme event distributions.
::
As

::
an

::::::::
example,

:::::::::::::::
ACCESS-ESM1-5

::::
has

::
40

::::::::
ensemble

::::::::
members

9



:::
(see

:::::
Table

::::
A1).

::::
We

:::::::
calibrate

:::
on

::::::::
ensemble

:::::::
member

::::::::::
“r1i1p1f1”

:::::
across

::::::::
scenarios

::
to
:::::

then
:::::::
generate

:::
39

::::::::::
precipitation

::::::::::
emulations

:::::
across

::::::::
scenarios

:::::
based

::
on

:::
the

:::::::
gridded

:::::::::::
temperatures

::::
from

:::
the

:::::::::
remaining

::
39

::::::::
ensemble

:::::::::
members.

MESMER-M-TP has been designed as a module that can be coupled to existing temperature emulators. To additionally230

evaluate the emulator performance and the propagation of uncertainties in this context, the trained emulator is coupled to

emulated monthly temperatures of the historical simulation and the SSP5-8.5 scenario. The emulated temperature dataset

was specifically generated for this study and is described in Appendix C1.
::
We

::::::::
generate

::
an

::::::::
ensemble

:::
of

:::
100

::::::::::
temperature

::::
and

::::::::::
precipitation

::::::::::
realisations

:::
per

:::::
model

::::
and

:::::::
scenario.

:

3.2 Calibration235

The methodological framework described in Sect. 2 offers a few adjustable parameters
:::::::::::::
hyperparameters

:
(see Sect. 2.5) for

both, the temperature-driven precipitation response module and the residual variability module. As part of the temperature-

driven precipitation response, Ps,m, is reconstructed from information in the n closest temperature timeseries, {Tr,m}r∈Ss,m

with |Ss,m|= n. For simplicity and comparability, we assume that n is constant across models, months and gridpoints
:::
grid

:::::
points. Therefore, Ss,m only depends on the spatial location and reduces to Ss.

:::
The

::::::
choice

::
of

::
n
::
is

:
a
::::::::

trade-off
:::::::
between

::::::
model240

:::::::::
complexity

:::
(for

::::::
higher

::
n

::
the

:::::
PCA

:::
has

::::
more

::::::::::
coefficients

:::
and

:::::
takes

:::::
longer

::
to
::::::::
compute)

::::
and

:::::::::
prioritising

::::
local

::::::
modes

::
of

:::::::::
variability

:::
over

:::::::::::::::
large-scale/global

:::::::::::
relationships.

:
We find that across months and models, the strongest correlations between the variability

in temperature and the variability in precipitation occur in almost 80% of the cases within the closest 150 gridpoints. Thus
:::
grid

:::::
points.

:::::
Thus,

:
we set n= 150, such that we can derive precipitation based on the 150 closest temperature locations. In addition,

choosing a comparably small number of predictors offers to include more direct links to local modes of variability
::
We

:::::
have245

:::::
tested

:::
the

::::::::
approach

:::
for

:
a
::::::
variety

:::
of

:
n
::::

and
::::
find

::::
that,

:::::
across

::::
grid

::::::
points

:::
and

:::::::
months,

::::::
results

:::
for

:::::::::::
n ∈ [75,400]

:::
are

:::::::::::
comparable,

::::
while

::::::::::
introducing

::::::
larger

::
n

::
is

:::
too

::::::::::::::
computationally

::::::::
intensive.

:::
We

::::
also

::::::
tested

:::::
using

:
a
::::::
single

:::::
global

:::::::::::::
decomposition

:::
by

::::::
setting

::::::::
n= 2652

:::::
which

:::::
leads

::
to

::::
good

::::::
results

::
in

::::
some

:::::
areas

::::
(e.g.

:::::
North

::::::::
America)

:::
and

::::::::
performs

::::::
poorly

::
in

::::
other

:::::::
regions

::::
(e.g.

:::::::::
South-East

::::
Asia). As the set of {Tr,m}r∈Ss

are highly correlated, we apply a PCA transformation prior to using them as independent

variables for the GLM (see Sect. 2.3.2). The amount of explained variance in each PC falls off rapidly over the first five PCs250

and strives towards zero with increasing component number. To include as much information as possible, while not inflating the

model, we set p= 8. In addition, we include contributions from
:
It
::
is

:::::::
possible

::
to

:::::::
include

::::::::::
higher-order

:::::
terms

::
in

:::
the

::::::
model,

::::
that

::
is,

::
to

:::
add

::::::
Xs,m

2
::
as

::
a
::::::::
predictor

::
or

:::::
allow

:::
for

:::::::::
interaction

:::::
terms.

:::
We

:::::
found

::::
that

:::
the

:::::
model

:::::::::::
performance

::::::::
improved

:::::
when

:::
we

:::::
allow

::
for

:
1st order interaction terms between the trend in the 1st PC and all other PCs. This allows for

:::
The

:::::::
physical

::::::::::::
interpretation

::::
begin

::::
that

:
the relative importance of the PCs to vary

::::
varies

:
with the trend in local temperatures.

::::::::
Including

:::::::::
additional

:::::
terms255

:::
had

::::
little

:::::
effect

:::
on

:::
the

:::::
model

:::::::::::
performance.

:::::::::
Therefore,

:::
the

::::::::
calibrated

::::::
model

:::::::
equation

:::
for

:::
the

:::::
trend

::::::::::
contribution

::
to

:::::::::::
precipitation
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::::
reads

:

fs,m =
:::::

eβ
0
s,m

::::
intercept
::::::

∗eβ
1
s,m∗PCA0,trend

s,m +β2
s,m∗PCA0,var

s,m +
∑7

p=1 β
p+2
s,m ∗PCAp

s,m
:::::::::::::::::::::::::::::::::::::::::::

first order
:::::::

∗ePCA0,trend
s,m ∗(β10

s,m∗PCA0,trend
s,m +β11

s,m∗PCA0,var
s,m +

∑7
p=1 β

p+11
s,m ∗PCAp

s,m)
::::::::::::::::::::::::::::::::::::::::::::::::::::::

interaction.
:::::::::

(10)

Lastly, we set the parameters of the residual variability module. We apply a PCA on the precipitation residuals in order to

resolve spatial correlations and treat the PCs independently. We keep 98% of the variability in the original residual signals. The260

bandwidth of the KDE was chosen via k-fold cross validation and was mostly constant across months and models. To reduce

computational complexity, we have set hm = 0.1 as a global parameter.

3.3 Validation

The validation framework consists of two steps: (1) Evaluating the emulator’s performance when it emulates precipitation based

on actual ESM temperatures and (2) evaluating the model’s performance when it emulates precipitation based on emulated265

temperatures. The first evaluation step captures the direct error in the emulation framework while the second step also captures

the propagation of uncertainties from one emulator to another. Results for the former are shown in Sect. 4, while results for the

latter are shown in Sect.
::::::::
Appendix C. The evaluation procedure and result metrics are the same in both cases and described in

the following.

The emulator is trained on one ensemble member across all available scenarios (see Sect. 3.1). Temperature data from270

all remaining ensemble members is used to generate emulated precipitation data for the first evaluation step (for the second

evaluation step, we use the temperature dataset described in Sect.
::::::::
Appendix C1 as forcing). Both emulation datasets are

assessed against actual ESM precipitation data from all remaining ensemble members for the historical period (1850-1950)

and the projections from the high warming scenario SSP5-8.5 (2015-2100) independently. The time intervals and the scenario

are chosen such that the emulator’s behaviour in a stable period with limited climate change and its behaviour under an extreme,275

high-warming scenario can be equally analysed. As the three models ACCESS-ESM1-5, CanESM5 and MPI-ESM1-2-LR are

the only models that offer a large number of additional ensemble members for evaluation (30+), we focus on validating the

emulation approach using these three models and only schematically show results for all other models. In addition, we base our

evaluation on the SREX regions (Seneviratne et al., 2012)
::::
AR6

::::::
regions

::::::::::::::::::
(Iturbide et al., 2020) with an emphasis on four regions

that represent a diverse set of geographies and precipitation trends: Central North America (CNA
::::::::
Southern

::::::
Central

::::::::
America280

:::::
(SCA), Northern Europe (NEU), Central Africa (CAF), South East Asia (SEA) (see also Fig. A1). We validate the following

properties:

(1) Inter-annual trend and variability of precipitation. We aim at verifying the emulated estimates of inter-annual trend

as well as of year-to-year variability in Ps,m across regions. To this end, ESM and emulated (EMU) data are aggregated by

SREX
:::
AR6

:
region. Next, all quantiles between the 1st and 99th quantile are computed in steps of one and compared against285

one another for both the historic and the future period. In addition, we compute quantile deviations for the 10th, median and
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90th quantile for each region (see Nath et al., 2022; Beusch et al., 2020). The Gamma GLM is mainly responsible for correctly

estimating the trend in Ps,m, while the residual variability module determines the variability in Ps,m. Therefore, the deviations

allow to draw conclusions on the performance of both models.

(2) Month-to-month relationships of precipitation. The emulator was fitted for each month independently and only implic-290

itly inherits month-to-month relationships from the temperature data. Therefore, we verify the month-to-month relationships

using lagged auto-correlations. At each grid point and for each ensemble member, the correlation between the precipitation

timeseries and a temporally shifted version of the same precipitation timeseries is computed. The correlation coefficient is com-

puted for each ESM run and each EMU run individually and then averaged to obtain a single ESM/EMU value per gridpoint
:::
grid

::::
point.295

(3) Spatial precipitation structure. The spatial structure in the precipitation signal is partially inherited form the spatial

structure of the temperature field and partially explicitly enforced through the sampling strategy of the residuals. We verify

that the joint use of the GLM and the KDE produces spatially coherent precipitation fields. To this end, we compute the

month specific cross-correlation matrix between precipitation timeseries at different gridpints for each ensemble member.

More precisely, for a given month and ensemble member, we compute the correlation between precipitation at any given300

gridpoint
:::
grid

:::::
point and precipitation at all other grid points. As we have 2652 grid points this results in a correlation matrix of

dimension (2652, 2652) whose entry (i, j) describes the correlation between Psi,m and Psj ,m. We compute the ensemble-mean

of the correlation matrices and compare emulated estimates against ESM estimates.

(4) Spatial precipitation-temperature cross-variable correlations. The GLM relies on exploiting local temperature in-

formation to reconstruct precipitation. Verifying that spatial cross-variable correlations are approximated well, verifies the305

modelling approach and is important for downstream applications that rely on spatially and temporally consistent temperature

and precipitation data. We verify the cross-variable statistics by computing the cross-correlation matrix between the precipita-

tion and the temperature field for each month and for each ensemble member individually. Similar to (3), for a given month,

precipitation at any gridpoint
::::
grid

::::
point

:
is correlated with temperature at any other grid points. This results in a correlation

matrix of dimension (2652, 2652) whose entry (i, j) describes the correlation between Psi,m and Tsj ,m.310

(5) Compound temperature-precipitation extremes. As the mechanistic processes that govern the occurrence of extremes

are very different to the processes that determine long-term trends, verifying mean temperature-precipitation correlations alone

is not enough to draw conclusions about the joint distributions of the tails. Therefore, we verify compound extremes individu-

ally. At each grid point, the 10th and 90th quantiles of temperature and precipitation are computed across ensemble members

for ESM and EMU. To assess hot-dry extremes, we count the number of times a projection lies above the 90th temperature315

quantile and is simultaneously drier than the 10th precipitation quantile. Similarly, for cold-wet extremes, we count the number

of times a projection is cooler than the 10th temperature quantile and simultaneously wetter than the 90th precipitation quantile.

We then compute the mean across ESM and EMU estimates and scale the count to the number of events that would happen

during the course of 100 years.
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4 Results320

The result section is divided into two parts. In Sect. 4.1 we show all results that only concern precipitation characteristics,

these are inter-annual trend, inter-annual variability, month-to-month relationships and the spatial structure of the precipitation

signal (see properties (1)-(3) in Sect. 3.3). In Sect. 4.2, we show results concerning the joint characteristics of temperature and

precipitation, these are the cross-correlation structure between temperature and precipitation as well as compound extremes

(see properties (4) and (5) in Sect. 3.3). We mainly focus on validating results when temperature fields from actual ESMs325

are used as forcing. In Sect.
::::::::
Appendix C, we show all results from this section when the emulator is forced with emulated

temperatures.

4.1 Precipitation Characteristics

::
In

:::
Fig.

::
2,

:::
we

::::
show

:::::::::
exemplary

:::::
maps

::
of

:::
the

::::::
median

::::::
gridded

:::::::::::
precipitation

::::::::
ensemble

:::::
output

::
as

:::::::
seasonal

::::::::
averages

::::
over

:::::::::::::::::::::::
December-January-Feburary

:::::
(DJF),

:::::::::::::::
March-April-May

:::::::
(MAM),

:::::::::::::::
June-July-August

::::
(JJA)

::::
and

:::::::::::::::::::::::::
September-October-November

:::::
(SON)

:::::
under

::::::::
SSP5-8.5

:::
for

:::::
2024.330

:::
The

::::::::
emulator

:::::::::
adequately

::::::::::
reproduces

:::
the

:::::::::::
precipitation

:::::::
patterns

:::
of

:::
the

:::::::::
individual

:::::
ESMs

:::::
with

:::
the

::::::
largest

:::::::
relative

:::::::::
deviations

::::::::
occurring

::
in

:::
dry

:::::::
regions

:::::::
(Sahara

:::
for

:::::::::::::::
MPI-ESM1-2-LR

::::
and

::::::::::::::::
ACCESS-ESM1-5;

::::::::
Australia

:::
for

:::::::::::::::
MPI-ESM1-LR).

::::
This

::
is
::::

not

::::::::
surprising

::
as

:::
the

::::::
relative

:::::
error

:::::
metric

::::::::
amplifies

:::::::::
deviations

::::
when

:::
the

::::::
divisor

::
is

::::
close

::
to
:::::
zero.

::
In

:::::::
addition,

:::::::::
deviations

:::
are

::::::::
generally

:::::
largest

:::
for

:::::::::::::::
MPI-ESM1-2-LR,

::::
this

::
is

::::::
equally

::::::::
expected

:::::
given

::::
that,

::::::
among

:::
the

::::
three

:::::::
models,

:::
the

:::::::
original

:::::::::::::::
MPI-ESM1-2-LR

::::
data

:::
has

:::
the

:::::::
smallest

::::::::
numerical

:::::::::::::
representations

::
of

:::::::::
quasi-zero.

:::::::::
However,

::::
even

::
in

:::
the

:::::
worst

:::::::::
performing

::::::
cases,

:::
the

::::::
relative

:::::::::
deviations335

:::::
rarely

::::::
exceed

:::::
±15%

::::::
which

::::::::
compares

::::
pale

::
to

::::::::::
inter-model

:::::::::
differences

:::
that

:::::
reach

:::::::::
deviations

::
of

:::::
more

::::
than

:::::::
±100%.

:::
The

::::
10th

::::
and

::::
90th

:::::::
quantiles

:::
of

:::
the

::::::
gridded

:::::::::::
precipitation

::::::::
ensemble

::
is

::::::::
displayed

::
in

::::
Fig.

:::
B1

:::
and

:::
B1

::::
and

::::::::
highlight

::::::
similar

::::::::
deviations

::::
over

::::
dry

::::::
regions.

:

As exemplary shown in Fig. 3 for January, the emulator performs well in capturing inter-annual trends as well as inter-annual

variability across months and models. The emulator captures different precipitaton characteristics including quasi-stationarity340

(MPI-ESM1-2-LR in SEA), shift in the mean precipitation (CanESM5 SCA or ACCESS-ESM1-5 NEU) and a widening of

the distribution resulting in an intensification of high precipitation months (ACCESS-ESM1-5 CAF) or an intensification of

both high and low precipitation events (CanESM5 CAF). As shown in Fig. B3, the emulator performs similarly albeit slightly

worse for the month of July. In July, there are strong inter-model differences between precipitation projections from differ-

ent models (SCA and CAF), suggesting low predictive accuracy in the models. In some cases (ACCESS-ESM1-5 SEA and345

MPI-ESM1-2-LR CAF), the emulator systematically overestimates high-precipitation events (90th percentile).

In Fig. 4 and B3
:::
B4 we explore these deviations from ESM quantiles in more detail. Systematic deviations only become

apparent in the upper tail of the distribution (above 95th quantile in January and above 90th quantile in July), where the

emulated values tend to lie above those from ESMs (MPI-ESM1-2-LR in SEA for January and all models in NEU for July).

The emulated quantiles are usually within ±10% of the ESM quantiles. In particular, the deviations are small compared to350

inter-model differences (January: SEA MPI-ESM1-2-LR compared to SEA ACCESS-ESM1-5). Our modelling framework

implicitly suggests
::::::
assumes

:
that non-stationarity in the variability of precipitation can only be inherited from non-stationarity

13



:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

0.1

1

10

Precipitation [m
m

/day]

-15

-10

-5

0

5

10

15

Relative Deviation [%
]

ES
M

DJF MAM JJA SON

EM
U

    
Di

ff

    AC
CE

SS
-E

SM
1-

5

a.

ES
M

DJF MAM JJA SON

EM
U

    

Di
ff

    

Ca
nE

SM
5

b.

ES
M

DJF MAM JJA SON

EM
U

    

Di
ff

    M
PI

-E
SM

1-
2-

LR

c.

Figure 2.
::::
Maps

::
of

::::::
median

:::::::
gridded

:::::
output

:::::::::
aggregated

::
by

::::::
season

:::::
under

:::::::
SSP5-8.5

:::
for

:::::
2024.

::::
A.-c.

:::::
show

:::::
results

:::
for

:::::::::::::::
ACCESS-ESM1-5,

::::::::
CanESM5

:::
and

::::::::::::::
MPI-ESM1-2-LR,

:::::::::
respectively.

:::::
From

:::
left

::
to

::::
right,

:::
we

::::
show

::::::
results

::
for

::::
DJA,

::::::
MAM,

:::
JJA

:::
and

:::::
SON.

::
In

::::
each

::::::::
subfigure,

:::
the

:::
first

:::
row

:::::::::
corresponds

::
to

:::::::::
simulations

::::
from

::
the

:::::
actual

::::
ESM

::::::::
ensemble,

::
the

::::::
second

:::
row

::
to

::::::::
simulations

::::
from

:::
the

:::::::
emulated

:::::::
ensemble

:::
and

:::
the

::::
third

:::
row

:::::
shows

::
the

::::::
relative

::::::::
difference

::::::
between

:::::
actual

:::
and

::::
ESM

::::
data. 14
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Figure 3. Timeseries of January precipitation from 2015-2100 for three different models (columns: ACCESS-ESM1-5, CanESM5, MPI-

ESM1-2-LR) averaged over four SREX-regions
::::::::::
AR6-regions (rows: SCA, NEU, CAF, SEA). The timeseries highlight the year-to-year trend

and variability of January precipitation for SSP5-8.5. Orange /Blue
::::
(blue)

:
line indicates the median ESM /

:
(EMU

:
) timeseries with shaded

areas indicating 10%-90% quantile intervals. Orange / Blue
::::
(blue)

::::::
dashed lines represent precipitation estimates of a single ESM / (EMU

:
)

ensemble member. Note, the emulated timeseries was obtained using the ESM temperature field corresponding to the shown ESM precipita-

tion timeseries as forcing.
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y-axis) scattered against estimates from ESM data
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x-axis) for four different regions (columns: SCA, NEU, CAF, SEA). The quantiles were estimated for the historical period (1850-

1950) and the future period (2015-2100) independently and are displayed individually (circles vs. stars). Colours are used to distinguish data

from different models. Quantiles were derived as described in Sect. 3.3.
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Figure 5. Regional deviations of January ESM precipitation from the 10% (top), 50% (middle) and 90% (bottom) quantiles of the emulations

for the three focus models and across SREX
:::
AR6

:
regions (see Fig. A1 for a map of the SREX

:::
AR6 regions). Left: emulations based on ESM

temperatures, right: emulations based on emulated temperatures. Quantile deviations were computed over the historical period. Red (blue)

indicates that the emulations project higher (lower) values compared to ESM data (see Sect. 3.3).

in the temperature signals through the Gamma GLM. We do not account for potential non-stationarities in the residuals. The

deviations in the tails of the distributions could indicate that this simplification is not strictly valid. We will discuss this in more

detail in Sect. 5.355
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Figure 6. Same as the right panel in Fig. 5 but for the remaining 21 models.
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So far, we have only seen results for three models, for four regions and for precipitation emulations based on actual ESM

temperature data. Figure 5 gives an indication for the model performance in other regions as wells as for the difference in

performance when emulating based on emulated temperatures (see Beusch et al., 2020; Nath et al., 2022). The coupled emulator

(see Fig. B5 right panel) generally performs well in regions where the direct emulation error is small (for example NZ or CNA)

and usually suffers from stronger deviations whenever there already is a non-negligible error in the direct emulations (MPI-360

ESM1-2-LR GIC or WAF). In some cases, the coupled framework amplifies existing errors (ACCESS-ESM1-5 NWS and

NES) or introduces new errors (ACCESS-ESM1-5 NSA). However, the performance is robust across forcing data and regions.

We cannot estimate the direct emulation error for all 24 models due to a lack in
::
of available ESM data . In

:::::::::
(computing

:::::::
quantile

::::::::
deviations

:::::::
requires

:
a
:::::
large

::::::::
ensemble

::
of

::::::::
emulated

:::
data

::::
that

::::::
cannot

::
be

::::::::
generated

::
if

:::
we

::
do

:::
not

::::
have

::::::::
sufficient

:::::::
gridded

::::::::::
temperature

:::
data

:::::
from

::::::
ESMs).

:::::::::
Therefore,

::
in

:
Fig. 6

:
, we show the error in

:::::::
quantile

::::::::
deviations

:::::
from the coupled emulations for those models365

::
all

::::::::
available

::::::
models

:::
(in

::::
this

::::
case,

:::
we

::::
also

:::::::
emulate

::::
large

:::::::::
ensembles

:::
of

::::::
gridded

:::::::::::
temperatures

:::::::
leading

::
to

::::::::
sufficient

:::::::
amounts

:::
of

::::
data). The results are comparable to the deviations found for the three focus models. The emulation framework tends to slightly

overestimate the 10th quantile and the 90th quantile, while it underestimates the 50th quantile (the same holds true for July,

see Fig. 6). The underestimations of the 50th quantile over the historical period and the simultaneous overestimation of the

10th quantile could suggest that our modelling procedure struggles to adequately disentangle the
::::::
capture

:::
the

:::
full

::::::::::
complexity370

::
of

:::
the

::::::
signal.

::
It

:::::
seems

::::
that

:::
our

:::::
trend

::::::::
estimates

:::
are

::::
too

:::
low

::::
and

::::
there

::
is
::::

too
::::
little

:::::::::
variability.

::::::::::
Potentially,

:::::::::::
higher-order

:::::
terms

:::::
would

::
be

:::::::
required

:::
to

:::::
better

:::::::
represent

:::
the

:
trendand variability contributions to the signal. In addition, there are some systematic

overestimations
::::::::::::
overestimation of the 50th quantile in the July estimates (see Fig. B6), particularly in WAF, CAF and ARP.

We do not impose any constraints on month-to-month variations of precipitation, thereby implicitly assuming that precipita-

tion inherits the correct temporal properties from the temperature data. In Fig. 7, we explore this simplified assumption using375

lagged auto-correlations. In general, lagged auto-correlations are captured very well and strongly decrease with increasing

time-lag. The lag-1 correlations are slightly underestimated (in particular in MPI-ESM1-2-LR), but yield a consistent spatial

pattern even without explicitly enforcing this structure. In particular, there is a high inter-model agreement on the temporal

precipitation structure.

:::
We

::::::
further

:::::
verify

::::::::
temporal

::::::::::::
characteristics

:::
at

::::
grid

::::
point

:::::
level

::
in
::::

Fig.
::::

B2.
:

The spatial precipitation structure is partially380

constructed from the spatial correlations in the temperature field through the GLM, but mainly enforced relying on the sampling

strategy of the variability module (see Sect. 2.4). In Fig. 8 we see that pairwise precipitation relationships are captured well by

the model and note an overall good agreement across models and months (see Fig. B7). In particular, no systematic bias (for

example a systematic over- or underestimation) is visible. This suggests that the residual variability module is well-suited to

capture the spatial precipitation structures.
:::
We

::::
look

::::
into

:::::
spatial

::::::::::::
characteristics

:::
for

:
a
:::::::
selected

:::::::
number

::
of

::::
grid

:::::
points

::
in

::::
Fig.

:::
B1.

:
385

4.2 Joint Temperature-Precipitation Characteristics

As the precipitation emulations are built from local temperature data, we expect spatial cross-variable relationships between

temperature and precipitation to be depicted well. In Fig. 9,
:

we see that this is indeed the case. The emulator works particu-

larly well if strong correlations are present (see also Fig. B8), while weaker correlations seem to be associated with a larger

18
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Figure 7. Lagged auto-correlations across grid-points
:::
grid

:::::
points

:
for three different models (columns). Upper subfigure

:::::::
Subfigure

::
a: Spatial

distribution of lag-1 auto-autorrelations
::::::::::::
auto-correlations for ESM / (EMU

:
) data (

::
in

::
the

:
upper /(lowerpanel)

::::
panel. Lower subfigure

:::::::
Subfigure

:
b: Distribution of emulated auto-correlations (y-Axis

::::
y-axis) against ESM auto-correlations (x-Axis

::::
x-axis) for three different time lags (lag-1,

lag-2 and lag-3 in the upper, middle and lower panel, respectively). The orange line represents the ideal distribution (EMU estimates exactly

equal ESM estimates).The distribution was obtained using a KDE estimate with contour levels from 5%-95% in 5% intervals
:::
5%

::::::::
increments,

meaning
:::
such

:::
that

:
every shade of blue represent 5% of all data points,

:::::::
meaning

::::
95%

::
of

::
the

::::
data

:::::
points

::
lie

:::::
within

:::
the

:::::::
coloured

:::
area

:
and an

additional 5% lie outside the shaded area
:

of
:
it. 19
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Figure 8. Spatial correlations between precipitation signals for January. Upper subfigure
:::::::
Subfigure

:
a: Correlation between precipitation at a

randomly chosen gridpoint
:::
grid

::::
point (New Mexico with lat

:::::::::
coordinates: 36.25

::
°N, lon: -103.75

::
°E; coloured in dark red as the correlation of

a timeseries with itself is 1) and precipitation at all other gridpoints
:::
grid

:::::
points for three models (columns: ACCESS-ESM1-5, CanESM5,

MPI-ESM1-2-lR) and for ESM (upper panel) and EMU data (lower panel). Lower subfigure
:::::::
Subfigure

:
b: Correlations between any

::::
every

possible combination of precipitation timeseries (that is correlations between Prs,m=1 :::::
Ps,m=1:

and Prr,m=1 ::::::
Pr,m=1 for any

::::
every

:
possible

combination of spatial locations (s, r)). EMU estimates (y-Axis
::::

y-axis) plotted against ESM estimates (x-Axis
::::
x-axis). The orange line repre-

sents the ideal distribution (EMU estimates exactly equal ESM estimates). The distribution was obtained using a KDE with contour levels

from 5%-95% in 5% intervals
::
5%

:::::::::
increments, meaning

:::
such

:::
that

:
every shade of blue represent 5% of all data points,

:::::::
meaning

::::
95%

::
of

:::
the

:::
data

:::::
points

::
lie

:::::
within

:::
the

:::::::
coloured

:::
area and an additional 5% lie outside the shaded area

::
of

:
it.
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Figure 9. Spatial correlations between precipitation and temperature for January. Upper subfigure
:::::::
Subfigure

:
a: Correlation between precip-

itation at a randomly chosen gridpoint
:::
grid

::::
point

:
(New Mexico with lat: 36.25, lon: -103.75) and temperature at all other gridpoints

:::
grid

::::
points

:
for three models (columns: ACCESS-ESM1-5, CanESM5, MPI-ESM1-2-lR) and for ESM (upper panel) and EMU data (lower panel).

Lower subfigure
:::::::
Subfigure

:
b: Correlations between any possible combination of precipitation and temperature timeseries (that is correlations

between Prsi,m=1 ::::::
Psi,m=1:

and Tsj ,m=1 for any possible combination of spatial locations (si, sj)). EMU estimates (y-Axis) plotted against

ESM estimates (x-Axis). The orange line represents the ideal distribution (EMU estimates exactly equal ESM estimates). The distribution

was obtained using a KDE with contour levels from 5%-95% in 5% intervals
::
5%

:::::::::
increments, meaning

:::
such

::::
that every shade of blue represent

5% of all data points,
:::::::
meaning

::::
95%

::
of

::
the

::::
data

:::::
points

::
lie

:::::
within

:::
the

::::::
coloured

::::
area and an additional 5% lie outside the shaded area

::
of

:
it.
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Figure 10. Distribution of compound temperature-precipitation extremes in January. Number of compound extreme events are estimated at

each grid point (every dot represents one gridpoint
:::
grid

::::
point) and counted as explained in Sect. 3.3. Number of compound extremes found

in EMU (y-Axis
::::
y-axis) plotted against the number of events found in ESM data (x-Axis

:::::
x-axis). Orange line represents the ideal distribution

(number of events in EMU equals number of events in ESM).

error
:::::
larger

:::::
errors. The strongest systematic errors (underestimation) occurs

:::::
occur for MPI-ESM1-2-LR. Even though precip-390

itation is constructed from temperature signals in a certain proximity, strong long-range correlations are also approximated

(see Fig. B8). Noteworthy is the strong inter-model disagreement in the strength and direction of the temperature-precipitation

correlations for July (see Fig. B8); while CanESM5 projects fairly strong, positive long range correlations, MPI-ESM1-2-LR

projects moderate negative correlations.

Figure 10 displays the distribution of compound temperature and precipitation extremes. Our framework is generally able395

to capture compound temperature-precipitation extremes, but typically underestimates them. In January, the strongest under-

estimations of both (hot-dry and cold-wet) extremes occur in Australia, Central and Southern Africa and at the North-Eastern

parts of South America. In July, the strongest underestimations are present over the Sahel region, the Arabian Peninsula and

the area adjacent to the Gulf of Mexico. The strength of the underestimation is comparable for January and July (see Fig. B9).
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5 Discussion and Conlusion400

We have developed and validated an Earth System Model (ESM) emulator that derives monthly, spatially explicit precipitation

data from monthly, spatially explicit temperature data. We have shown that our framework captures temporal and spatial

precipitation structures and produces realistic cross-variable correlation structures. More precisely, we validated inter-annual

trend and variability characteristics along with month-to-month variability. The strongest deviations between the emulated

and the ESM distributions occur in the tails of the precipitation distribution (mainly above the 95% quantile) where we could405

observe some slight (usually smaller than 10%) systematic over-estimations of ESM quantiles. This might imply that some of

the assumptions underlying the emulation framework are not holding anymore in extreme cases.

Extreme precipitation events can be driven by different physical processes and variables. For example, in low latitudes

very extreme precipitation events are often linked to the occurrence of tropical storms or cyclones (Khouakhi et al., 2017). The

physical dynamics governing such singular events of strong convective precipitation are not resolved in our statistical approach.410

We aim at modelling precipitation across different temporal scales and different spatial locations relying on the same statistical

model. This naturally comes with limitations. These limitations also become visible when jointly modelling temperature-

precipitation extremes. Our framework is generally able to capture compound extremes and produces realistic spatial patterns.

However, our emulator generally underestimates the occurrence of joint extremes. The emulator tends to slightly overestimate

the magnitude of precipitation above the 95% quantile while simultaneously underestimating the occurrence rate of joint415

temperature-precipitation extremes, which suggests that the assumption of the precipitation residuals being independent of

temperature is likely not fully accurate. In reality, the residuals are likely still not fully stationary and either depend on global

or local temperature and potentially also the predictions from the temperature-driven precipitation response. In addition, the

emergence of compound extremes may depend on additional feedback effects, for example soil-moisture in the case of heat-

drought events (Jha et al., 2023). It is noteworthy, however, that the deviations of the emulated results from the actual ESM420

results are much smaller than inter-ESM differences.

In a next step, we have forced our precipitation emulator with emulated temperatures (see Appendix C1). The performance

is comparable to the results obtained using ESM data as forcing (spee Appendix C2).

There are multiple ways in which our approach could be further refined and adapted to different tasks. For once, instead of

solely relying on Gamma GLMs thereby imposing a fixed mean-variance relationships at each location, the approach could425

be adjusted to optimise for other distribution families. In addition, the validation approach could be extended to other SSP

scenarios. Specifically to scenarios that do not show continuous warming as transient and quasi-equilibrium climate states have

been show to have substantial local differences (King et al., 2021). To correctly model overshoot scenarios, it will also be

necessary to include additional predictors. While local temperatures over land to some extent follow GMT under a reversal

of the global mean temperature trend, changes in regional precipitation are not expected to be reversed in the short term in430

many regions (Pfleiderer et al., 2023). Beusch et al. (2022) have made some efforts to overcome these difficulties by including

ocean heat uptake as an additional predictive variable for local temperatures. Similar efforts could be pursued for precipitation.

Lastly, the modelling framework could be improved by adjusting the residual variability module to account for a link between
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the predicted mean response and the distribution of additional variability. This would allow for non-stationary relationships

in the variability module and overcome some limitations in the tails of the distribution.
:::
We

::::
also

::::
note

:::
that

::::
our

:::::
model

::
is
::::

not435

:::::::
designed

::
to

::::::
resolve

:::::::::
dynamics

:::::::::
underlying

:::::::::
long-range

::::::::::::::
tele-connections

::::
such

::
as

:::
e.g.

::::::
related

::
to
:::
the

:::
El

::::
Niño

::::::::
Southern

::::::::::
Oscillation.

:::
We

:::
see

:::
this

::
as

::
a

::::::::
promising

::::
area

::
of

:::::
future

::::::::::::
development.

To conclude, we offer a robust emulation framework for modelling spatially resolved, monthly precipitation from spatially

resolved, monthly temperatures. In particular, the emulated precipitation field is spatially and temporally consistent with the

temperature data used as forcing. Our emulation framework offers exciting new opportunities and is a step towards making440

climate science more accessible. While ESMs are costly and data intensive to run, Open Source emulators are available to

everyone for projecting regional climate impacts. This is particularly important as temperature and precipitation extremes are

among the most impactful consequences of climate change. In addition, the emulator provides numerous applications, for

example, coupling to impact models to provide an efficient modelling chain for translating emission scenarios directly into

climate impacts. A promising avenue for this could be to couple our emulator to an emulator offering agricultural variables445

(e.g., Abramoff et al., 2022).

Code and data availability. The current version of the model MESMER-M-TP is available on GitHub: https://github.com/sarasita/mesmer-m-tp.

The exact version of the model used to produce the results used in this paper is archived on Zenodo (https://zenodo.org/doi/10.5281/zenodo.11086167,

Schöongart, 2024). In addition, code for MESMER and MESMER-M can be found at https://github.com/MESMER-group/mesmer. When-

ever MESMER(-M) data was used in this study, we relied on MESMER v0.9.0 available on Zenodo (https://doi.org/10.5281/zenodo.10408206,450

Hauser et al., 2023). The analysis can be reproduced using the code on Zenodo and ESM data as described in Brunner et al. (2020) available

from the public CMIP archive at https://esgf-node.llnl.gov/projects/cmip6/.

Appendix A: Earth System Model Data
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Table A1. Overview of the 24 ESMs that are part of this study and the scenarios that are available for each model. The number of realisations

counts
::::::
includes

:
only ensemble members that have data for all indicated scenarios. The training run column contains the identifier of the

run that is used for training. All available runs except the training run are used for testing. If no testing run is available, we include the

training run. The three models with the largest number of available runs are highlighted and play a special role for evaluating the emulator

performance.

Model name Reference Available scenarios # of Training run

realisations

ACCESS-CM2 Dix et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 5 r1i1p1f1

ACCESS-ESM1-5 Ziehn et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 40 r1i1p1f1

AWI-CM-1-1-MR Semmler et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 1 r1i1p1f1

CESM2-WACCM Danabasoglu (2019b) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 3 r1i1p1f1

CESM2 Danabasoglu (2019a) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 1 r1i1p1f1

CMCC-CM2-SR5 Lovato and Peano (2020) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 1 r1i1p1f1

CNRM-CM6-1-HR Voldoire (2019b) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 1 r1i1p1f2

CNRM-CM6-1 Voldoire (2019a) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 6 r1i1p1f2

CNRM-ESM2-1 Seferian (2019) SSP1-1.9, SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 5 r1i1p1f1

CanESM5 Swart et al. (2019) SSP1-1.9, SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 50 r1i1p1f1

E3SM-1-1 Bader et al. (2020) SPP5-8.5 1 r1i1p1f1

FGOALS-f3-L YU (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 1 r1i1p1f1

FGOALS-g3 Li (2019) SSP1-1.9, SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 4 r1i1p1f1

FIO-ESM-2-0 Song et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 3 r1i1p1f1

HadGEM3-GC31-LL Good (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 4 r1i1p1f3

HadGEM3-GC31-MM Jackson (2020) SSP1-2.6, SPP5-8.5 4 r1i1p1f3

IPSL-CM6A-LR Boucher et al. (2019) SSP1-1.9, SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 7 r1i1p1f1

MPI-ESM1-2-HR Schupfner et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 2 r1i1p1f1

MPI-ESM1-2-LR Schupfner et al. (2021) SSP1-1.9, SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 30 r1i1p1f1

MRI-ESM2-0 Yukimoto et al. (2019) SSP1-1.9, SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 6 r1i1p1f1

NESM3 Cao (2019) SSP1-2.6, SPP2-4.5, SPP5-8.5 2 r1i1p1f1

NorESM2-LM Seland et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 1 r1i1p1f1

NorESM2-MM Bentsen et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 1 r1i1p1f1

UKESM1-0-LL Good et al. (2019) SSP1-2.6, SPP2-4.5, SPP3-7.0, SPP5-8.5 5 r1i1p1f2
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Figure A1. Map of all SREX
:::
AR6 regions including the 44

::
46

:
regions over land. From Iturbide et al. (2020).

Appendix B:
:::::::::
Additional Validation July

:::
for

::::::::::
Emulations

:::::
from

:::::
ESM

::::
data

::::
This

::::::
section

:::
acts

:::::::::::::
complementary

::
to

:::::
Sect.

:
4
::::
and

:::::::
provides

:::
all

::::::::
additional

::::::::
validation

:::::::
metrics.

:
455

B1
::::::::
Seasonal

:::::::::
Validation

::::
This

::::::
section

:::::
shows

:::::::::
additional

:::::::
seasonal

:::::::
gridded

::::::::::
precipitation

::::::
output.

:
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Figure B1.
::::

Same
:
as
::::

Fig.
:
2
:::
but

::
for

:::
the

::::
10th

::::::
quantile.
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Figure B2.
::::

Same
:
as
::::

Fig.
:
2
:::
but

::
for

:::
the

::::
90th

::::::
quantile.

B2
:::::::::
Validation

::::
July

This section includes all graphics that were displayed for the direct emulation error in Sect. 4, but for July.
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Figure B3. Same as Fig. 3 but for July.
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Figure B5. Same as Fig. 5 but for July.
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Figure B6. Same as Fig. 6 but for July.
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Figure B7. Same as Fig. 8 but for July.
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Figure B8. Sane as Fig. 9 but for July.

34



0

2

4

6

8
Ho

t-D
ry

 E
xt

re
m

es
 

 #
 o

f e
ve

nt
s i

n 
10

0 
ye

ar
s (

EM
U)

ACCESS-ESM1-5
slope: 0.61

CanESM5
slope: 0.61

MPI-ESM1-2-LR
slope: 0.48

0 2 4 6 8
# of events in 100 years (ESM)

0

2

4

6

8

W
et

-C
ol

d 
Ex

tre
m

es
 

 #
 o

f e
ve

nt
s i

n 
10

0 
ye

ar
s (

EM
U) slope: 0.67

0 2 4 6 8
# of events in 100 years (ESM)

slope: 0.55

0 2 4 6 8
# of events in 100 years (ESM)

slope: 0.46
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Appendix C: Forcing MESMER-M-TP with Emulated Temperatures460

B1 Generating a Dataset of Emulated Temperatures
:::::::::
Additional

::::::::::::::
Spatio-temporal

::::::::::
Validation

:::::::
Metrics

::
In

:::
this

:::::::
section,

:::
we

::::::
further

::::::
verify

:::::::::::::
spatio-temporal

::::::::::::
characteristics

::
of

::::
the

::::::::::
precipitation

:::::
field

::
at

::::
grid

::::
point

:::::
level.

:::
In

::::
Fig.

:::
B1

:::
we

:::::
assess

:::::::::::::
spatio-temporal

::::::::::::
characteristics

::
at
::::::::
localized

:::::
areas

::::::
around

::::::
chosen

::::
grid

::::::
points

:::::
using

::::::::::
variograms.

::
A

:::::::::
variogram

::::::::
measures

::
the

::::::::::::
semivariance

:::::::
between

::::
grid

::::::
points

:::
as

:
a
::::::::

function
::
of

::::::::
distance.

::
A
::::::::::::

semivariance
::
of

:::::
zero

:::::::
indicates

:::
no

:::::::::
difference

::::::::
between

:::
two

::::::
points

::::
with

:::::::::
increasing

:::::
values

:::
for

:::::::::
increasing

:::::::::::
dissimilarity

:::::::
between

:::::::::
timeseries

::
at

:::
two

::::
grid

::::::
points.

::::
The

::::::::
emulator

::::::::
performs465

::::
very

::::
well

:::::
across

:::::::
models

::::
and

::::::
regions

:::
for

::::::::
distances

:::::::
smaller

::::
than

:::::::
500km.

::::::
Above

:::::::
500km,

:::
the

::::::::
emulator

::::::
usually

::::::::::::
overestimates

::::::::::
semivariance

::::::::::::::
(underestimates

::::::::::
correlations)

::::::::
between

:::::::
different

::::
grid

:::::
points

:::::
with

:::::::::
differences

:::::::
between

:::::
ESM

::::
data

:::
and

::::::::::
emulations

::::
being

:::::
most

::::::::::
pronounced

:::::::
around

:::
the

:::::::
location

::
in

:::::
NEU.

::::::
These

:::::::::
deviations

:::
are

::::
well

::::::
within

::::::::::
inter-model

::::::::::
differences.

: ::
We

::::::
verify

:::::::
temporal

::::::::::::
characteristics

::
at

:::
the

:::::
same

::
4

:::::::
locations

:::::
using

::::::::::::
periodograms.

::
A
:::::::::::

periodogram
::
is
:::
an

:::::::
estimate

::
of

:::
the

:::::::
spectral

::::::
density

:::
of

::
the

::::::
signal,

::::
that

::
is

::
it

::::
gives

:::
an

:::::::
estimate

:::
of

::::
how

:::::
much

:::::
power

::
a

:::::
signal

:::
has

::
at
:::::

each
:::::::::
frequency.

:::::::::
Generally,

:::
the

:::::::
emulator

:::::
does

::::
well470

::
in

::::::::::::
approximating

::::
grid

::::
point

:::::
level

:::::::
temporal

:::::::::::::
characteristics.

::
In

:::
all

:::::
cases,

:::
the

:::::::::
periodicity

:::
of

:::
the

::::::
annual

::::
cycle

::
is
::::::::::
pronounced

::::
and
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Figure B1.
::::::::
Variograms

::
at

:::
four

::::::::
randomly

::::::
selected

:::
grid

:::::
points

::
in

::::
SCA

:::
(lat:

:::::
11.25,

:::::::::
lon:-83.75),

::::
NEU

::::
(lat:

:::::
63.75,

:::
lon:

::::::
16.25),

::::
CAF

:::
(lat:

:::::
-1.25,

:::
lon:

:::::
13.75)

:::
and

::::
SEA

::::
(lat:

:::::
-1.25,

:::
lon:

::::::
113.75)

:::
and

:::
the

:::
300

::::::
closest

:::
grid

:::::
points

::::::
around

:::
the

:::::::
location.

:::
The

::::
first

::::::
column

:::::::
indicates

::
the

:::::::
selected

:::
grid

:::::
points

:::
and

::::::::::
neighbouring

:::::::
locations

::
in
::::::
shades

::
of

:::
red

:::
and

::::::
orange.

:::
The

::::::
second,

::::
third

:::
and

:::::
fourth

::::::
column

:::::::::::::::
(ACCESS-ESM1-5,

:::::::::
CanESM5,

:::::::::::::
MPI-ESM1-2-LR)

:::::
show

::
the

::::::
median

::::::::::
semivariance

:::::
values

:::
and

::::::::
10th-90th

::::::::
uncertainty

:::::
ranges

::
as

::::::
vertical

::::
lines

:::::::
estimated

::::
from

::::
ESM

::::
data

:::::
(blue)

:::
and

::::
EMU

::::
data

::::::
(orange)

::
at

:::
the

::::::
selected

:::
grid

::::::
points.

:::::
Large

:::::
values

::::::
indicate

:::::::::
dissimilarity

:::::::
between

:::
two

:::
grid

:::::
points

::
at
:::
the

::::
given

:::::::
distance,

:::::
while

::::
small

:::::
values

::::::
indicate

::::::::
similarity.

:::::
Note,

:::
the

::::::::::
semivariance

::
in

::
the

::::
third

::::
and

:::::
fourth

:::
row

:::::
(CAF

:::
and

:::::
SEA)

:
is
::::

large
::::

such
::::

that
:::::::
10th-90th

:::::::
quantile

:::::::
estimates

::
are

::::
often

::::::::
contained

:::::
within

:::
the

::::::::
markersize

:::
and

:::
are

:::::::
therefore

::
not

::::::
visible.

36



:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Figure B2.
::::::::::
Periodograms

:::
for

:::
the

::::
same

:::
grid

:::::
points

::
as

:
in
::::::
Figure

::
B1

:::
(top

::
to

:::::::
bottom):

::::
SCA

:::
(lat:

:::::
11.25,

:::::::::
lon:-83.75),

::::
NEU

:::
(lat:

:::::
63.75,

:::
lon:

::::::
16.25),

::::
CAF

:::
(lat:

:::::
-1.25,

:::
lon:

::::::
13.75)

:::
and

::::
SEA

:::
(lat:

:::::
-1.25,

::::
lon:

::::::
113.75).

::::::
Results

:::::
show

::
the

::::::
median

:::::::::::
periodograms

:::::
along

:::
with

::::::::
10th-90th

:::::::::
uncertainty

:::::
ranges

:::::::
estimated

::::
from

::::
ESM

::::
data

::::
(blue)

:::
and

:::::
EMU

:::
data

:::::::
(orange)

:
at
:::

the
::::::
selected

::::
grid

:::::
points.

::
At

:::::::::
frequencies

:::::
where

:::
only

:::
the

::::
ESM

:::::
(blue)

:::
line

::
is

:::::
visible,

:::
the

::::
EMU

:::
and

:::::
ESM

:::::::
estimates

::::::
overlap.

::::::
similar

::::
albeit

::::::
mostly

:::::::
smaller

:::::::::::
pronunciation

::::::::
occurring

:::
on

::
in

:::::::::
half-yearly

::
or

::::::::
seasonal

:::::::
intervals.

:::
In

::::
some

::::::
cases,

::
the

::::::::
emulator

:::::
tends

::
to

::::::::::
overestimate

:::::
white

:::::
noise

::::::::::::::::::::
(NEUACCESS-ESM1-5

:::
and

:::::::::
CanESM5,

:::::
SEA

::::::::::::::::
ACCESS-ESM1-5).

::::
This

:::::::
suggests

::::
that

:::
we

::::::::
introduce

:::
too

:::::
much

:::::::::
additional

::::::::
variability

:::
in

:::
the

:::::
signal

::::
and

::::::
might

::
be

:::::
could

:::::
have

:::::::
multiple

:::::::
reasons.

::::
For

::::::::
example,

::
it

:::::
might

:::
be

::::
that

:::
we

::::::::::
occasionally

::::::::::::
under-estimate

:::
the

:::::
trend

::
or

::
it

:::::
could

::::
also

::
be

::::
that

:::
the

::::::::
combined

:::::::::
variability

:::::::
inherited

:::::
from

::::::::::
temperature

:::::::
through

:::
the475

::::
GLM

::::
and

::::
from

::::::::
sampling

::::
from

:::
the

::::::::::
multivariate

:::::::::
stochastic

:::::::
process,

::
in

:::::
some

::::
cases

::::::::::
superposes

:::
and

:::::
leads

::
to

:::
too

:::::
much

:::::
noise.
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Appendix C:
::::::
Forcing

::::::::::::::::
MESMER-M-TP

::::
with

:::::::::
Emulated

::::::::::::
Temperatures

::::::::::::::
MESMER-M-TP

::
is

::::::::
conceived

::
as

:
a
:::::::
module

:::
that

:::
can

:::
be

::::
used

:
in
::::::::::
conjunction

::::
with

:::::::
existing

::::::::::
temperature

::::::::
emulators

:::::::::::::::::::
(e.g. Nath et al., 2022)

:
.
:::
The

::::
idea

::
of
::::

this
::::::
section

::
is
::
to
::::::::::

understand
:::
and

::::::
assess

:::
the

:::::::::::
performance

::
of

:::
the

::::::::
emulated

:::::::::::
precipitation

:::::
fields

::
in

::::
such

::
a
:::::::
coupled

:::::
setting

::::
and

::
to

:::::
verify

:::
that

:::
our

:::::::::
emulation

:::::::
approach

::
is
::::::
robust

::::
with

::::::
respect

::
to

::
the

:::::::
gridded

::::::::::
temperature

:::::
input.

::::
The

::::::
coupled

:::::::::
emulation480

:::::::::
framework

:::::::
validated

::
in

::::
this

::::::
section

::::::::
translates

:::::
global

:::::
mean

:::::::::::
temperatures

:::
into

:::::::
gridded

::::::::::
temperatures

::::
and

::
the

:::::::
gridded

:::::::::::
temperatures

::::::::::
subsequently

::::
into

:::::::::::
precipitation

::::
field

:::::::::
timeseries

:::::
with

:::::::
coherent

::::::::::::
cross-variable

:::::::::::::
characteristics,

::::::::
meaning

:::
the

:::::::
coupled

::::::::
emulator

:::::
allows

::
to

:::
go

::::
from

::::::
global

::::
mean

:::::::::::
temperatures

::
to

:::::
joint

::::::::::
temperature

:::
and

:::::::::::
precipitation

::::
data.

C1
::::::::::
Generating

::
a

:::::::
Dataset

::
of

:::::::::
Emulated

::::::::::::
Temperatures

We have generated simplified temperature emulations solely for assessing the quality of emulated precipitation data when our485

modelling framework is employed in a chain of computationally efficient emulators. The temperature emulations are only

meant as a proof-of-concept to demonstrate the robustness of the approach to forcing data. Temperature emulations were

generated as follows.
:::
We

:::::::
generate

::::::::::
temperature

::::::::::
emulations

::::
using

::::::
global

:::::
mean

::::::::::
temperature

::
as

:
a
::::::
driver

::
as

::::::
follow: First, the tem-

perature field was
:
is projected onto its principal components (PCs). Next, a linear model was fitted

::
we

:::::::::
decompose

::::::
global

:::::
mean

::::::::::
temperature

::::::
(GMT)

::::
into

:
a
:::::
trend

:::
and

::
a
::::::::
variability

::::::::::
component

::
as

:::::::::
suggested

::
in

:::::::::::::::::
Beusch et al. (2020).

:::
We

::::
then

:::
fit

:
a
:::::
linear

::::::
model490

to each principal component individually with the trend and the variability in global mean temperature (GMT) as the two sole

predictive variables. GMT was decomposed into a trend and a variability component as suggested in Beusch et al. (2020). We

then computed
::::::
forcing

::::::::
variables.

::::
We

::::
then

:::::::
compute

:
the residuals as the difference between the original principal components

and the linear fit. Next, we used
:::
use

:
a Yeo-Johnson transform to ensure the residuals follow a normal distribution. Subse-

quently, we approximated
::::::::::
approximate

:
the residuals as an Auto-Regressive (AR) process of order 1

::::
with

:::
the

:::
AR

::::::::::
coefficients495

::::::
varying

::
by

::::::
month as suggested in Nath et al. (2022). In order to generate temperature emulations, we generated

:::
We

:::::::
calibrate

:::
the

:::::
model

:::::::::
parameters

:::::::::
following

:::
our

:::::::::
calibration

::::::::
approach

:::
for

:::::::::::
precipitation:

:::
We

::::
use

:
a
:::::
single

:::::
ESM

::::::::
ensemble

:::::::
member

::::::
across

:::::
SSPs

::
for

:::::::
training

::::
and

:::
use

::
all

:::::
other

::::::::
ensemble

::::::::
members

:::
for

::::::
testing

:::
(see

:::::
Sect.

::::
3.1).

:::::::::
Following

::::::::::::::::
Beusch et al. (2020)

:
,
:::
we

:::::::
generate

:
addi-

tional realisations of GMTas described in Beusch et al. (2020) and used the regression coefficient to get different realisations

of the trend in the PCs . Then, we drew .
::::

We
::::
then

::::
drive

:::
the

:::::
linear

::::::
model

::::
with

:::
the

::::
new

::::
GMT

::::::::::
realisations

::
to

:::
get

:::::
trend

::::::::
estimates500

::
of

:::
the

::::
PCs

:::
and

:::::
draw

:
new samples from the AR(1) process and employed the inverse power transform to emulate variabil-

ity. Lastly, we added the trend estimate and
:::
add

:::
the

:::::
trend

::::::::
estimates

::
to

:
the variability samples and applied

::::
apply

:
the inverse

of the PCA to get a set of emulated temperatures. This way
:::
For

:::
the

::::::::
validation

:::::::
section, we generated 100 temperature em-

ulations for each model. In Fig. C1 and C2 we exemplary show timeseries of emulated temperature data and actual ESM

temperature. An indication for the quality of the emulations are the quantile deviations shown in Fig. C3 and C4. The emu-505

lation approach usually works well, but is slightly underdispersive
:::::::
although

:::::::::::
temperatures

:::
are

:::::::
slightly

::::::::::::::
underdispersive,

::::::
similar

::
to

:::::
results

:::
in

::::::::::::::::::::::::::::::::
Beusch et al. (2020); Nath et al. (2022). In any case, we are only

::::::
mainly

:
interested in the emulated temperature

data to establish a proof of concept which is feasible with the presented emulation framework
::::
joint

::::::::
emulation

:::::
error

::::
and

:::
the

::::::::
robustness

:::
of

:::::::
emulated

:::::::::::
precipitation

::::::
results

::::
with

::::::
respect

::
to

::::::::
emulated

::::::::::
temperature

:::::
input.
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Figure C1. Same as Fig. 3 but for temperatures in January.
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Figure C2. Same as Fig. 3 but for temperatures in July.
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Figure C3. Same as Fig. 6 but for temperatures in January across all 24 models.
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C2 Results for Coupled Emulations510

This section presents all results shown in the main paper as well as in B2 for the coupled results.
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Figure C4. Same as Fig. 6 but for temperatures in July across all 24 models.
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Figure C5. ame as Fig. 3 but for the coupled emulations in January.
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Figure C6. Same as Fig. 3 but for the coupled emulations in July.
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Figure C7. Same as Fig. 4 but for the coupled emulations in January.
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Figure C8. Same as Fig. 4 but for the coupled emulations in July.
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Figure C11. Same as Fig. 7 8
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Figure C12. Same as Fig. 8 9
:

but for the coupled emulations in January.
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Figure C13. Same as Fig. 8 9
:

but for the coupled emulations in July.
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Figure C14. Same as Fig. 10 but for the coupled emulations in January.
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Figure C15. Same as Fig. 10 but for the coupled emulations in July.
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