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Abstract. Ground-based measurements of elemental carbon (EC) – classified under thermal-optical methods and considered 

as a surrogate for black carbon – are essential for assessing air quality and evaluating climate impacts. However, data gaps 

caused by technical challenges impede comprehensive analyses of long-term trends. This study proposes an ensemble learning 20 

method to address these challenges. The model uses readily accessible ground observation air pollutant data as proxies for EC-

related tracers, along with meteorological parameters, to enhance prediction accuracy. It integrates outputs from Gradient 

Boosting Regression Trees, eXtreme Gradient Boosting, and Random Forest models, combining them through ridge regression 

to produce robust predictions. We applied this approach to reconstruct hourly EC concentrations from 2013 to 2023 for four 

cities in Eastern China, filling 45-79% of missing data and improving prediction performance by 8-17% compared to individual 25 

models. Over the 11-year period, EC exhibited an overall decline (-0.20 to -0.14 µg m⁻³ a⁻¹), with a more significant decline 

from 2013 to 2020 (-0.24 to -0.15 µg m⁻³ a⁻¹) from 3.26 µg m⁻³ to 1.59 µg m⁻³, followed by a noticeable slowdown from 2020 

to 2023 (-0.12 to -0.04 µg m⁻³ a⁻¹). Additionally, a fixed emission approximation method based on ensemble learning is 

proposed to quantitatively analyze the drivers of long-term EC trends. The analysis reveals that anthropogenic emission 
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controls were the predominant contributors, accounting for approximately 92 % of the changes in EC trends from 2013 to 30 

2020. However, their influence weakened post-2020, contributing approximately 80 %. These findings highlight that while 

China's Clean Air Actions implemented since 2013 have significantly reduced black carbon concentrations, sustained and 

enhanced strategies are still necessary to further mitigate black carbon pollution in the country. 

1 Introduction 

Black carbon (BC), derived from the incomplete combustion of fossil or biomass fuels (Bond & Bergstrom, 2006), is a 35 

significant component of fine particulate matter (PM2.5) in the troposphere. BC has a strong capacity to absorb visible light 

(Bond et al., 2013), which can directly or indirectly affect global climate change (Ramanathan & Carmichael, 2008) and 

influence the structure of the urban boundary layer, exacerbating regional air pollution formation (Ding et al., 2016). 

Additionally, BC particles, which are small in size and rich in toxic substances on their surfaces, pose significant health risks 

(Valavanidis et al., 2013), leading to respiratory and cardiovascular diseases (Wei et al., 2023). Therefore, establishing long-40 

term trends of BC is crucial for studying its climate, environmental, and health impacts. 

Methods for determining ground-level BC concentrations and long-term trends generally include ground-based in-situ 

observations (Peng et al., 2019; Wei et al., 2020), satellite retrievals (Yu et al., 2024; Zhao et al., 2021), and atmospheric 

chemical transport model simulations (Yang et al., 2021). Satellite-based retrieval methods are often used to characterize 

ground-level BC concentrations. For instance, Li et al. (2022) used multi-angle polarization satellite observations to retrieve 45 

the spatiotemporal distribution of global BC concentrations. However, satellite data are susceptible to noise originating from 

clouds and other factors, leading to data gaps and large uncertainties (Bao et al., 2019; Zhao et al., 2021). For example, Gogoi 

et al. (2023) compared in-situ BC observations in India from 2019 to 2020 with BC concentrations retrieved by the Cloud and 

Aerosol Imager-2 (CAI-2) onboard the Greenhouse gases Observing Satellite-2 (GOSAT-2) and found a 33% bias. Beyond 

measurement uncertainties, satellite retrieval techniques also generally cannot provide long-term, continuous high-time-50 

resolution (e.g., hourly) datasets. 

To address the limitations of satellite retrievals, reanalysis datasets have developed, combining various in-situ, satellite 

observations, and short-term numerical weather prediction products through data reanalysis techniques. Notable datasets 

include the ECMWF Re-Analysis Interim (ERA-Interim) (Dee et al., 2011), MODIS Atmosphere and Land Reanalysis 

(MODIS) (Levy et al., 2013), and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) 55 

(Randles et al., 2017). MERRA-2, in particular, offers convenient high-time-resolution datasets for atmospheric pollutants, 

including BC (Bali et al., 2017). However, there are uncertainties when comparing ground-based observations to reanalysis 

data. For instance, several studies found that MERRA-2 overestimated BC concentrations at most Chinese stations by 

approximately 30% (Ma et al., 2021; Xu et al., 2020; Yu et al., 2024). Atmospheric chemical transport models are also 

commonly used to simulate the spatiotemporal distribution of BC concentrations. For example, Matsui (2020) et al. used the 60 

Community Atmosphere Model Version 5 (CAM5) and the Aerosol Two-dimensional bin module for foRmation and Aging 
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Simulation (ATRAS) model to simulate the increase in global BC concentrations from pre-industrial times to the present. 

However, uncertainties in parameterization schemes for some physical and chemical processes in numerical models remain 

(Ervens, 2015; Harrison, 2018). Additionally, emission inventories used in models have inherent uncertainties and may not be 

updated promptly, affecting simulation results (Xu et al., 2021).  65 

In situ observations remain the most direct and effective method for quantifying BC concentrations. In practice, elemental 

carbon (EC), measured using thermal-optical methods, is often employed as a surrogate for BC (Bond et al., 2013), especially 

in cases where optical methods are unavailable. These ground-based measurements (EC and/or BC) are central to long-term 

observational networks worldwide, such as the Atmospheric Science and Chemistry Measurement Network (ASCENT) in the 

United States (Ng et al., 2022), the Aerosol, Clouds, and Trace Gases Research Infrastructure (ACTRIS) in Europe (Laj et al., 70 

2024), and the China Atmosphere Watch Network (CAWNET) in China (Zhang et al., 2014). While these methods enable the 

establishment of time series for BC or EC concentrations, they lack the capacity to provide historical data without prior 

measurements. Furthermore, practical challenges such as instrument malfunctions, routine maintenance, and hardware 

limitations at observation sites often lead to data gaps. These interruptions hinder the continuity and completeness of long-

term datasets, posing significant challenges for trend analysis and comprehensive assessments. 75 

This study introduces an ensemble learning method leveraging ground-based observational data (including in-situ EC and 

air pollutant measurements), BC column concentration assimilation data, and meteorological datasets. Applying this approach, 

we successfully reconstructed hourly EC concentration time series for four representative cities in the Yangtze River Delta 

region in Eastern China from 2013 to 2023. Furthermore, an ensemble learning model was developed to evaluate the drivers 

of EC trends, enabling a quantitative analysis of the relative contributions of anthropogenic emission reductions and 80 

meteorological variations to the EC trends in these cities over the 11-year period. 

2 Data and Methods 

2.1 Air pollutant and metrological data 

The observation sites for this study are located in the representative cities of Nanjing, Suzhou, Xuzhou, and Zhenjiang 

within the Yangtze River Delta city cluster in Eastern China. All these sites are urban monitoring stations, and the coordinates 85 

of the sampling points are provided in Table S1. Gaseous pollutants at the corresponding sites in the four cities, including 

carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2), were sourced from the China National 

Environmental Monitoring Network (http://www.cnemc.cn/en/, last access 20 August 2024). The meteorological data used in 

this study are listed in Table S2. These meteorological conditions are derived from the ERA5 reanalysis dataset from the 

European Centre for Medium-Range Weather Forecasts (ECMWF). The spatial and temporal resolutions of ERA5 data are 90 

0.25° × 0.25° and 1 hour, respectively. 
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2.2 Measurements and inter-comparison of BC and EC 

In this study, the EC data was measured using the Sunset Laboratory semi-continuous OC/EC analyzer (Model-4) with 

an hourly resolution. The analysis employed the National Institute for Occupational Safety and Health (NIOSH) thermal-

optical transmittance (TOT) method to quantify EC. The thermal-optical approach, which forms the basis of the OC/EC 95 

analyzer, is detailed extensively in previous studies (Arhami et al., 2006; Birch & Cary, 1996; Jung et al., 2011; Zheng et al., 

2014). The refractory black carbon (rBC) data from our previous work (Yang et al., 2019) was measured by a single-particle 

soot photometer (SP2) (Liu et al., 2010; Cross et al., 2010) for the inter-comparison between rBC and EC data. Briefly, the 

SP2 operates on the principle of laser-induced incandescence (LII) (Liu et al., 2010), which involves heating individual rBC 

particles to high temperatures using a focused laser beam. The incandescence signal emitted during the heating process is used 100 

to quantify the rBC concentration based on the characteristic heating curve of rBC particles (Liu et al., 2010). 

 
Figure 1. Comparison of rBC and EC across different regions. The rBC data for the comparison in this study was obtained from our previous 

work for Nanjing (Yang et al., 2019), while the comparison results in other cities were sourced from Pileci et al. (2021). 

Generally, BC measurement methods could yield varying results depending on the technique used, leading to some 105 

limitations. BC measured using filter-based absorption methods is referred to as equivalent BC (eBC) (Petzold et al., 2013). 

This approach estimates BC content in particulate matter by measuring the light absorbed by the filter. Each of these methods 

carries inherent uncertainties: eBC measurements generally have an uncertainty of approximately 35% (Zanatta et al., 2016), 

rBC measurements around 25% (Schwarz et al., 2006), and EC measurements about 16% (Liu et al., 2013). The higher 

uncertainty in rBC measurements is largely attributed to the fraction of rBC mass outside the SP2 detection size range (Tinorua 110 

3

4
5
6

0.1

2

3

4
5
6

1

2

3

4
5
6

10

rB
C

 m
as

s 
co

nc
en

tra
tio

n 
(µ

g m
−3

) 

3 4 5 6 7
0.1

2 3 4 5 6 7
1

2 3 4 5 6 7
10

EC mass concentration  (µg
 
m−3

)

 Palaiseau (Pileci et al., 2021)
 Melpitz summer (Pileci et al., 2021)
 Cabauw (Pileci et al., 2021)
 Melpitz winter (Pileci et al., 2021)
 Bologna (Pileci et al., 2021)
 mrBC

 
= 0.92 mEC (Pileci et al., 2021) 

Bologna 
rBC = 0.65 EC   

Melpitz winter
rBC = 1.29 EC   

 Palaiseau
 rBC = 1.20 EC   

Melpitz summer  
rBC = 0.97 EC 

Cabauw
rBC = 0.53 EC

 
Nanjing
 rBC = 1.01 EC 

 Nanjing (This study)
 1:1 

https://doi.org/10.5194/egusphere-2024-2776
Preprint. Discussion started: 25 November 2024
c© Author(s) 2024. CC BY 4.0 License.



5 
 

et al., 2024). Savadkoohi et al. (2024) further underscored the importance of incorporating EC observations to reduce 

uncertainties inherent in eBC measurements. EC provides a more reliable representation of combustion-derived carbon 

components. Figure 1 presents the relationship between rBC and EC mass concentrations for datasets analyzed in this study 

and those from previous work (Pileci et al., 2021). The results indicate minimal bias (approximately 1%) between the rBC and 

EC mass concentrations on average in this study. Moreover, EC measurement methods are generally more accurate and stable, 115 

making them particularly effective in complex environments. 

2.3 BC data from simulations 

The Black Carbon Column Mass Density (BCC) and Black Carbon Surface Mass Concentration (BCS) data used in this 

study were obtained from MERRA-2 (M2T1NXADG, V5.12.4). MERRA-2 is a new reanalysis dataset released by the NASA 

Global Modeling and Assimilation Office (GMAO) in 2017. The spatial resolution of the data used in this study is 0.5° × 120 

0.625°, and the temporal resolution is 1 hour. To compare with the simulated BC concentration by atmospheric chemical 

transport model approach, we used the Tracking Air Pollution in China (TAP) dataset (http://tapdata.org.cn/, last access 20 

August 2024) (Geng et al., 2021). In brief, the TAP dataset includes the surface BC concentration data, which is simulated by 

the community multiscale air quality (CMAQ) model and machine learning method (Geng et al., 2021; Liu et al., 2022). BC 

in MERRA-2 and TAP is derived through model simulations. It is calculated based on atmospheric processes such as emission 125 

sources, chemical reactions, transport, and removal, and is therefore an output of the model (Gelaro et al., 2017; Geng et al., 

2020). As a result, BC values are influenced by factors such as model assumptions, emission inventories, and meteorological 

conditions (Yu et al., 2024; Liu et al., 2022). 

2.4 Ensemble learning models 

In this study, we utilize the ensemble learning (EL) method approach to address two issues. First, we developed a model 130 

to reconstruct long-term trend of EC at urban observation sites, filling in missing data. Second, we proposed an ensemble 

learning approach to evaluate the driving factors of EC trends, which can quantify the contributions of emission reduction and 

meteorological variation to the EC trends. The two modelling methodologies integrate the predictions of Gradient Boosting 

Regression Trees (GBRTs), eXtreme Gradient Boosting (XGBoost), and Random Forest (RF) using ridge regression. GBRTs 

and XGBoost iteratively train decision tree models respectively, which reduces residuals step by step to make predictions. The 135 

final prediction results are weighted sums of the predictions from each tree model, with different weights for each tree. The 

RF model consists of multiple decision trees, each of which providing a prediction. The prediction method averages the results 

from each decision tree to obtain the prediction output, with each tree having equal weight. The final ensemble learning model, 

integrating the results through ridge regression to determine coefficients ( 𝑚𝑚1, 𝑚𝑚2 and 𝑚𝑚3) for each machine learning model, 

is given by Eq. 1: 140 

𝐸𝐸𝐸𝐸 = 𝑚𝑚1GBRTs + 𝑚𝑚2XGBoost + 𝑚𝑚3RF ,         (1) 
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2.4.1 Reconstructing missing data of EC 

Reconstructing long-term EC data involves integrating hourly meteorological variables and emission indicators into an 

ensemble learning model. Individual ensemble learning models are established for each city. As shown in Table S2, the 

meteorological variables include 18 factors. The emission indicators include BCC and in-situ surface observations of CO, SO₂, 145 

and NO₂. These air pollutants, along with EC, are all mainly associated with fuel combustion processes: CO concentration is 

closely linked to fuel combustion source activities (such as agricultural crop, forest fires and fossil fuel) (Reid et al., 2005; 

Wang et al., 2011). SO2 is generally associated with industrial activities (such as coal combustion), while NO2 primarily 

originates from vehicle emissions. All of them could be thereby indirectly indicating EC sources. 

In our modeling approach, we used available in-situ EC observation data for each city, along with corresponding 150 

meteorological and emission indicator variables, as training and testing data set. The training data were used to establish the 

ensemble learning model for data reconstruction, while the testing data validated the model's performance, allowing us to 

determine the optimal model parameters for the best performance. All prediction parameters from 2013 to 2023 were then 

input into the ensemble learning model to reconstruct long-term EC data. As shown in Figure S1, the observation in Nanjing 

had 49161 valid data points and 92240 reconstructed data points, filling 47% of the missing data. The data completion rates 155 

for the other cities were 45% for Suzhou, 50% for Xuzhou, and 79% for Zhenjiang, respectively. 

2.4.2 Quantifying drivers of EC trend with fixed emission approximation (FEA) method 

The analysis of drivers behind EC trends differs from the reconstruction of missing EC data by excluding emission 

indicator variables from the prediction features. To quantify the factors influencing long-term reconstructed EC trends, we 

developed the FEA method. Using the reconstructed long-term EC data, we assume each year i (i = 2013, 2014, ..., 2023) can 160 

serve as a baseline year for the initial anthropogenic emission conditions, with data from the chosen year used to train the 

model. Reconstructed EC data and meteorological variables from the selected baseline year are employed as training and 

testing datasets to build ensemble learning models specific to individual cities. These models are subsequently applied to 

predict EC concentrations for the entire period from 2013 to 2023. The resulting predictions reflect variations driven solely by 

meteorological conditions, assuming fixed emissions at baseline-year levels. This approach effectively isolates the 165 

contributions of meteorological variations from changes driven by emissions. 

The difference in the observed EC concentrations (∆𝑂𝑂𝐵𝐵𝐵𝐵(𝑗𝑗,𝑘𝑘)) between two different years (𝑗𝑗, 𝑘𝑘) is jointly influenced by 

the inter-annual relative changes in EC concentrations driven by meteorological variables (∆𝑀𝑀𝐸𝐸𝐸𝐸(𝑗𝑗,𝑘𝑘)) and anthropogenic 

emissions (∆𝐴𝐴𝑁𝑁𝑁𝑁(𝑗𝑗,𝑘𝑘)). This relationship is described mathematically in Eq. 2 as follows: 

∆𝑂𝑂𝐵𝐵𝐵𝐵(𝑗𝑗,𝑘𝑘) = ∆𝐴𝐴𝑁𝑁𝑁𝑁(𝑗𝑗,𝑘𝑘) + ∆𝑀𝑀𝐸𝐸𝐸𝐸(𝑗𝑗,𝑘𝑘),          (2) 170 

This equation (Eq. 2) assumes that changes in meteorology and emissions are the primary factors affecting the observed 

EC concentration variations between years, allowing for a decomposition of their respective contributions to the trends. The 
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∆𝑀𝑀𝐸𝐸𝐸𝐸(𝑗𝑗,𝑘𝑘) can be estimated by comparing the predicted EC concentrations for two different years (𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖,𝑗𝑗) and 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖,𝑘𝑘)), 

where j and k represent the years for which predictions are made using the model trained with data from baseline year i.  

Specifically, j = 2013, 2014, ..., 2022, k = 2014, 2015, ..., 2023, and k > j). This relationship is expressed in Eq. 3, which 175 

isolates the influence of meteorological variations on inter-annual differences in EC concentrations, assuming emissions at the 

baseline year 𝑖𝑖 level. 

∆𝑀𝑀𝐸𝐸𝐸𝐸(𝑗𝑗,𝑘𝑘) = 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖,𝑘𝑘) − 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖,𝑗𝑗) ,          (3) 

Thus, the impact of anthropogenic emission controls on changes in EC concentrations can be determined by subtracting 

∆𝑀𝑀𝐸𝐸𝐸𝐸(𝑗𝑗,𝑘𝑘) , which reflects the contribution of meteorological variations, from ∆𝑂𝑂𝑂𝑂𝑂𝑂(𝑗𝑗,𝑘𝑘) , the observed inter-annual EC 180 

concentration change. This relationship is expressed in Eq. 4: 

∆𝐴𝐴𝐴𝐴𝐴𝐴(𝑗𝑗,𝑘𝑘) = ∆𝑂𝑂𝑂𝑂𝑂𝑂(𝑗𝑗,𝑘𝑘) − ∆𝑀𝑀𝐸𝐸𝐸𝐸(𝑗𝑗,𝑘𝑘)         (4) 

Here, ∆𝐴𝐴𝐴𝐴𝐴𝐴(𝑗𝑗,𝑘𝑘) represents the portion of the EC concentration change attributable to anthropogenic emission controls 

during the period between years j and k. 

 185 
Figure 2. Performance evaluation of the models for reconstructing hourly EC concentration. a-d Comparison of the ensemble learning 

predicted concentration and observed EC concentration. The legend indicates the number of data points at each binning interval, which is 

approximately 0.25 µg m⁻³.  e-f Comparison of the model performance parameters for four cities, i.e., Nanjing (NJ), Suzhou (SZ), Xuzhou 

(XZ), Zhenjiang (ZJ). 
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2.4.3 Model evaluation and uncertainty analysis 

In this study, the errors and uncertainties of the model were assessed by comparing the reconstructed results for the test 

set with ground-based observational data. The statistical methods for evaluating the deviation between ground-based observed 

(𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜) and reconstructed predicted (𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝) values include root mean square error (RMSE), mean squared error (MSE), mean 

absolute error (MAE), and correlation coefficient (R), as shown in Eqs 5, 6, and 7: 195 

RMSE = �1
𝑛𝑛
∑ �𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝�

2𝑛𝑛
𝑖𝑖=1  ,          (5) 

MSE = 1
𝑛𝑛
∑ �𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝�

2𝑛𝑛
𝑖𝑖=1  ,          (6) 

MAE = 1
𝑛𝑛
∑ �𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝�𝑛𝑛
𝑖𝑖=1  ,          (7) 

To validate and assess the model's performance in reconstructing missing data, we evaluated the prediction error metrics 

on the test set, including RMSE, MSE, MAE, and R. Figures 2 and S2 summarize the performance metrics for individual 200 

models, including XGBoost (R=0.81±0.05), GBRTs (R=0.84±0.03), and RF (R=0.87±0.03), as well as for the ensemble 

learning model. The ensemble learning model exhibited a notable improvement, achieving R=0.94±0.01, which represents a 

17% enhancement over the XGBoost model. Additionally, MAE, MSE, and RMSE decreased by 47%, 67%, and 42%, 

respectively. These findings highlight the excellent performance of the ensemble learning model compared to individual 

machine learning models, demonstrating its robustness and accuracy in reconstructing missing data. 205 

To evaluate the uncertainty in the analysis of EC trend change drivers, we propose a method for quantifying the 

uncertainty in the FEA. The term ∆𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑗𝑗) is determined by subtracting ∆𝑀𝑀𝐸𝐸𝐸𝐸(𝑖𝑖,𝑗𝑗) from  ∆𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖,𝑗𝑗). By substituting Eq. 3 from 

the manuscript into this calculation, the relationship is expressed as shown in Eq. 8. This formulation allows for a systematic 

evaluation of the uncertainties associated with the FEA approach, ensuring robust attribution of trends to anthropogenic 

emission controls and meteorological variations. Similarly, by substituting results for the two years i and j, we can obtain 210 

∆𝐴𝐴𝐴𝐴𝐴𝐴(𝑗𝑗,𝑖𝑖), as shown in Eq. 9. 

∆𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑗𝑗) = ∆𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖,𝑗𝑗) − (𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖,𝑗𝑗) − 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖,𝑖𝑖)) ,        (8) 

∆𝐴𝐴𝐴𝐴𝐴𝐴(𝑗𝑗,𝑖𝑖) = ∆𝑂𝑂𝑂𝑂𝑂𝑂(𝑗𝑗,𝑖𝑖) − (𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑗𝑗,𝑖𝑖) − 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑗𝑗,𝑗𝑗)) ,        (9) 

If the FEA method were entirely free of uncertainty, the relationship (𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖,𝑗𝑗) − 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖,𝑖𝑖)) + (𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑗𝑗,𝑖𝑖) − 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑗𝑗,𝑗𝑗)) = 0 

would hold true, implying that  ∆𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑗𝑗) + ∆𝐴𝐴𝐴𝐴𝐴𝐴(𝑗𝑗,𝑖𝑖) = 0. However, as with any method, some degree of uncertainty is 215 

unavoidable. To account for this, the uncertainty of the data for year j, predicted using year i as the training data ((𝑌𝑌𝑖𝑖(𝑗𝑗)), is 

determined by summing ∆𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑗𝑗) and ∆𝐴𝐴𝐴𝐴𝐴𝐴(𝑗𝑗,𝑖𝑖), and then normalizing by 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖,𝑗𝑗). This calculation is expressed in Eq. 10: 

𝑌𝑌𝑖𝑖(𝑗𝑗) =
∆𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑗𝑗)+∆𝐴𝐴𝐴𝐴𝐴𝐴(𝑗𝑗,𝑖𝑖)

𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖,𝑗𝑗)
 ,           (10) 

This approach provides a quantifiable measure of uncertainty inherent in the FEA method, facilitating a more robust evaluation 

of the predictions. When i = j, ∆𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑗𝑗) = ∆𝐴𝐴𝐴𝐴𝐴𝐴(𝑗𝑗,𝑖𝑖) = 0, and the uncertainty calculation at this point is expressed by Eq. 11. 220 
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𝑌𝑌𝑖𝑖(𝑖𝑖) =
𝑂𝑂𝐵𝐵𝐵𝐵𝑖𝑖−𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖,𝑖𝑖)

𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖,𝑖𝑖)
 ,           (11) 

As shown in Figure 3, the average uncertainty across the four cities over the eleven-year period is 4 ± 4%. The lowest 

uncertainty is observed in Xuzhou, with 3 ± 3%, while the highest is in Suzhou, with 6 ± 5%. Based on the uncertainty metrics, 

we find that assuming any year as the baseline for anthropogenic emissions results in prediction errors of less than 7% for the 

2013–2023 data, excluding the effects of anthropogenic emissions. However, when 2018 and 2019 are used as baseline years, 225 

the errors increase to 5.3% and 6.3%, respectively, likely due to missing meteorological parameters. For other baseline years, 

the errors remain below 5%. Therefore, we conclude that the attribution method used in this study is stable and reliable, and 

assuming year 𝑖𝑖 as the baseline year for anthropogenic emissions is a reasonable approach. In Section 3.2, we will further 

compare the FEA method with the widely used de-weathered approach developed by Grange et al. (2018). 

 230 
Figure 3. Cross-matrix uncertainty analysis of FEA method (a. Nanjing, b. Suzhou, c. Xuzhou, and d. Yangzhou). The 

uncertainty here refers to the relative difference of the results obtained from different year to train the model and different year 

for prediction by the model. 
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Figure 4. Comparison of EC or BC concentration from different data sets. a-d Trends in EC or BC concentration from the four data sets 235 
(EL, MERRA-2, TAP, and observation). e-f Monthly variations. i-l Relationship of reconstructed, MERRA-2, and TAP modeled EC or BC 

with observed EC. 

3 Results and discussion 

3.1 Reconstruction of missing data of EC and trend analysis 

As shown in Figure 4a-d, the reconstructed EC concentrations in the four cities closely match the trends observed in 240 

ground-based measurements. The reconstructed EC concentrations also align well with trends from the TAP BC data, 

respectively. Over the 11-year period, the declining trends in reconstructed EC (-0.20 to -0.14 µg m⁻³ a⁻¹) and TAP BC (-0.22 

to -0.14 µg m⁻³ a⁻¹) data are well consistent and significant (p<0.05). In contrast, the decline in MERRA-2 BC is less apparent, 
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particularly in Suzhou and Xuzhou, where the trend is also not statistically significant (P > 0.05). Additionally, MERRA-2 BC 

tend to overestimate EC concentrations, compared to our observations and reconstructions. Xu et al. (2020) also found similar 245 

discrepancies, noting that BC concentrations in cities like Shanghai and Hangzhou were significantly lower than that of 

MERRA-2. Figure 4e-h highlight that the reconstructed data exhibit excellent consistency in monthly variations with ground-

based observations. This could be due to two possible reasons. First, the 0.5° × 0.625° spatial resolution of the MERRA-2 data 

(Randles et al., 2017), where a single grid point can cover multiple ground-based observations. Second, severe air pollution, 

cloud, and precipitation might impact the deviation of assimilated satellite data, which could then lead to some uncertainty of 250 

the MERRA-2 to some extent (Xu et al., 2020). 

All four datasets reveal a clear seasonal pattern, with higher concentrations in autumn and winter and lower concentrations 

in spring and summer. These findings emphasize the importance of implementing stronger BC emission controls during the 

autumn and winter months. The TAP BC concentrations also show close alignment with monthly variations in ground-based 

data, while MERRA-2 BC overestimate the concentrations by approximately 147%. Figure 4i-l and Table S5 reveal that a 255 

moderate correlation remains (R = 0.65 ± 0.05), despite MERRA-2 BC overestimating ground-based observations. The TAP 

BC data presents a better correlation (R = 0.69 ± 0.04), compared to the MERRA-2 BC. The reconstructed data exhibit the 

highest correlation with ground-based observations (R = 0.97), indicating their high reliability during the observation period. 

To evaluate the quality of the reconstructed missing data, we analyzed its correlation with co-located air pollutants (CO 

and NO2), respectively. As shown in Figure S3, the observed EC concentrations exhibit good correlations with CO (R = 260 

0.66±0.10) and NO2 (R = 0.71±0.06) over the entire study period. Similarly, the reconstructed EC concentrations for the 

missing data also show good correlations with CO (R = 0.80±0.06) and NO2 (R = 0.85±0.04) (Figure S4a-h), respectively. 

Additionally, the correlation between TAP BC and observation (R = 0.65±0.05) is better than that of MERRA-2. Figure S4 m-

p indicate that the reconstructed EC for the missing data exhibits a good correlation (R = 0.72±0.04) with the TAP BC, with 

an 11% difference between the two datasets. Table S5 shows that the slope between TAP and observed EC is 0.60±0.20, while 265 

the slope between TAP and reconstructed EC for the missing data is 0.68±0.06. These comparisons suggest that the 

reconstructed data is reasonably accurate relative to ground-based observations. 

Using the reconstructed EC data, we analyzed the trends of EC in four cities from 2013 to 2023. EC concentrations 

significantly decreased, with reductions of 61% in Nanjing and Suzhou, 59% in Xuzhou, and 47% in Zhenjiang compared to 

2013 levels, respectively. In Nanjing and Xuzhou, the annual average EC concentrations decreased by 2.60 µg m⁻³ and 1.88 270 

µg m⁻³ over the 11 years, respectively. This trend aligns with findings from Zhou et al. (2024), who reported similar decreases 

from 2013 to 2020 based on observational data. These reductions indicate that China’s emission reduction policies have 

effectively mitigated BC in the Yangtze River Delta. In Suzhou and Zhenjiang, EC concentrations decreased by 1.84 µg m⁻³ 

and 1.17 µg m⁻³, respectively. The average EC concentrations over the 11-year period were 2.01±0.77 µg m⁻³ in Suzhou and 

1.98±0.50 µg m⁻³ in Zhenjiang, significantly lower than in the industrial cities of Nanjing and Xuzhou. 275 

As shown in Figure S5a-d, the diurnal variations in EC concentrations in the four cities significantly decreased over the 

11-year period, with peaks during the morning and evening rush hours primarily due to vehicle emissions. Notably, the rate of 
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EC reduction from 2020 to 2023 (-0.12 to -0.04 µg m⁻³ a⁻¹) was significantly lower than the overall rate from 2013 to 2023 (-

0.20 to -0.14 µg m⁻³ a⁻¹). Zhao et al. (2024) observed a slowdown in the decline of CO/CO₂ in the Yangtze River Delta, 

attributing it to limited improvements in the combustion efficiency of anthropogenic sources in recent years. Figures 4a-d and 280 

S5a-d show that EC concentrations in the four cities were substantially lower during the COVID-19 pandemic from 2020 to 

2022. This finding is consistent with Cui et al. (2021), who reported a significant decrease in BC concentrations during the 

pandemic due to lockdown measures. However, EC concentrations in Nanjing and Suzhou increased back during 2023, likely 

due to a rebound in anthropogenic emissions. Similarly, Liu et al. (2024) found that global carbon emissions, which temporarily 

decreased during the pandemic in 2021, rebounded and exceeded previous levels in 2022 and 2023. Despite significant 285 

achievements in reducing EC concentrations in the Yangtze River Delta over the past 11 years, the rate of decrease has slowed 

in recent years. 

 
Figure 5. Trend in emission-driven EC from 2013 to 2023. Comparison of the results obtained from two different methods, including the 

FEA method developed in this study and the widely used de-weathered method. 290 

3.2 Drivers of the EC trends 

A new meteorological normalization method, also known as the de-weathered method (Grange et al., 2018), has been 

widely used to quantify the drivers of trends in air pollutants and aerosol chemical composition (Grange et al., 2018; Li et al., 

2023; Vu et al., 2019; Zhang et al., 2019; Zhou et al., 2022). This method effectively separates the impacts of emissions and 

meteorology on these trends (Zheng et al., 2023). Detailed methodologies of this meteorological normalization can be found 295 
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in previous studies (e.g., Grange et al., 2018; Vu et al., 2019; Zhang et al., 2019; Zhou et al., 2022). To further compare the 

differences between our proposed FEA method and the traditional approach, we also quantified the emission-driven trend in 

EC using the meteorological normalization method. As shown in Table S6, the trends in anthropogenic emission drivers for 

the four cities analyzed using both methods passed the Mann-Kendall Test (P value < 0.05), with slope differences of less than 

8%. The trend changes driven by anthropogenic emissions analyzed by both methods show good consistency, with differences 300 

within 10% (see Figure 5), which supports the reasonable results obtained from our proposed FEA method. 

 
Figure 6. Drivers of the EC trend from 2013 to 2023. a-d the contributions of anthropogenic emission control and meteorological conditions 

on the trends in EC concentration in the four cities. 

To quantify the driving factors behind EC trends – namely anthropogenic emissions and meteorology – we conducted an 305 

analysis focusing on their relative contributions. As shown in Figure S6, EC concentrations exhibited a significant downward 

trend from 2013 to 2023, with meteorological conditions playing a minimal role, contributing only 9±1% to the decline. In 

contrast, anthropogenic emission control measures accounted for 91±1% of the decrease in EC concentrations. Table S7 further 

illustrates that CO, SO₂, and NO₂ concentrations in the four cities from 2013 to 2023 also significant decreases, which may 

further support that EC trends and predominantly were driven by emission controls with negligible influence from 310 

meteorological factors. Figure S5 a-d presents the diurnal variations in EC concentrations, showing elevated levels during rush 

hours each year, though these peaks have notably diminished in recent years. As shown in Figure S5e-h, we also calculated 

the diurnal variation of emission control-driven EC relative to 2013. The results reveal that significant reductions in emission 

control-driven EC are associated with rush hours in urban environments. This suggests that emission control measures targeting 

vehicle emissions have been particularly effective in reducing EC concentrations in urban environments. This finding aligns 315 

with previous studies, such as Zheng et al. (2018), which emphasized significant reductions in BC emissions from the 

transportation sector in China from 2010 to 2017. Since the implementation of China's Air Pollution Prevention and Control 
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Action Plan in 2013, significant progress has been achieved in air pollution control (Zheng et al., 2018). For instance, Zhang 

et al. (2019) demonstrated significant decreases in PM2.5 concentrations from 2013 to 2017, with dominant contributions from 

anthropogenic emission controls. To further quantify the relative contributions of different stages of emission control policies 320 

to EC concentration trends, we divided the 11-year period into three phases: 2013-2017, 2018-2020, and 2021-2023, 

respectively (see Figure 6).  

During the implementation of China's Air Pollution Prevention and Control Action Plan, cities in the Yangtze River Delta 

adopted targeted strategies to mitigate BC emissions, focusing on industrial pollution control and vehicle emission standards 

(Zheng et al., 2018). As economically developed urban centers, Nanjing and Suzhou prioritized the management of industrial 325 

parks, while Xuzhou, a city dominated by energy production and heavy industry, emphasized reducing coal consumption and 

industrial emissions (Guo et al., 2022; Zhang et al., 2018). These concerted efforts significantly curbed emissions, as shown 

in Figure 6. Between 2013 and 2017, EC concentrations in Nanjing, Suzhou, Xuzhou, and Zhenjiang decreased by 36%, 21%, 

18%, and 6%, respectively. The relatively smaller reduction in Zhenjiang could be attributed to its lower baseline EC 

concentration, which limited the effectiveness of emission reduction measures. Despite this, anthropogenic emissions were the 330 

predominant driver of EC concentration changes, accounting for 96%, 99%, 96%, and 98% of the observed reductions in these 

cities. These findings underscore the pivotal role of targeted emission control policies in achieving substantial reductions in 

EC pollution within the Yangtze River Delta.  Following the three-year action plan from 2018 to 2020, EC reductions in 

Nanjing, Suzhou, Xuzhou, and Zhenjiang were 24%, 47%, 44%, and 34%, respectively. Anthropogenic emission control in 

Nanjing and Xuzhou significantly contributed to changes in EC concentrations, showing average reductions of -0.82 µg m⁻³ 335 

and -1.25 µg m⁻³, respectively. These reductions were influenced by emission control measures and heightened by the 

substantial impact of COVID-19 lockdowns on these industrial cities in the Yangtze River Delta. Similarly, Zheng et al. (2021) 

observed reduced BC emissions in China during 2019-2020, particularly during the January-March lockdown, driven by abrupt 

emission reductions from industrial, residential, and transportation sources. The slowdown of EC concentration decline was 

observed during 2020-2023, with reductions of 20% (Nanjing), 7% (Suzhou), 11% (Xuzhou), and 14% (Zhenjiang), 340 

respectively. This deceleration primarily resulted from reduced contributions from anthropogenic emission controls. Figure 6 

indicates that meteorological influences during this period did not significantly deviate from their overall contribution over the 

11-year span. Throughout the 11 years, anthropogenic emission controls contributed to 91% of EC concentration changes, 

whereas during 2020-2023, these controls accounted for 93% (Nanjing), 68% (Suzhou), 67% (Xuzhou), and 86% (Zhenjiang). 

This suggests that China's emission reduction efforts have positively contributed to the overall decline in EC concentrations in 345 

the Yangtze River Delta. However, the efficiency of such decline has slowed in the post-pandemic years. 

4 Conclusion and implication 

This study presents an innovative ensemble learning approach to reconstruct hourly long-term in-situ EC data using 

meteorological variables and co-emitted source indicators of EC. Applied to four cities in the Yangtze River Delta of Eastern 
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China, the ensemble learning model outperformed individual algorithms such as XGBoost, GBRTs, and RF models by 17%, 350 

13%, and 8%, respectively. The reconstructed data filled an average of 55% of the missing EC data, validated through 

comparisons with ground-based EC, CO, and NO₂ data, as well as TAP BC data. This method offers an efficient solution to 

address missing EC data in ground-based observations and helps correct uncertainties in satellite and reanalysis BC data. Over 

the 11-year period, EC concentrations showed an overall decline ranging from -0.20 to -0.14 µg m⁻³ a⁻¹, with a more significant 

decline from 2013 to 2020 (-0.24 to -0.15 µg m⁻³ a⁻¹), followed by a notable slowdown observed from 2020 to 2023 (-0.12 to 355 

-0.04 µg m⁻³ a⁻¹). We further assessed the impacts of emission reductions and meteorological conditions on EC trends using 

the FEA method based on the ensemble learning model as well. Anthropogenic emission controls contributed 91% to the 

changes in EC from 2013 to 2023, highlighting the predominant role of anthropogenic emission controls. The deceleration in 

EC declines from 2020 to 2023 was primarily attributable to reduced contributions from emission controls (67-93%). The 

ensemble learning models developed in this study provide a robust framework for reconstructing missing EC data and can be 360 

adapted to address data gaps for other air pollutants. Furthermore, the methods proposed here – ensemble learning for data 

reconstruction and the FEA method for trend attribution – offer promising tools for broader applications in air quality research. 

This study also underscores the critical role of anthropogenic emission controls in reducing urban EC concentrations in the 

Yangtze River Delta. To sustain and further enhance EC or BC reductions in urban environments, ongoing advancements in 

emission control strategies and technological innovations will be essential. These findings emphasize the importance of 365 

strengthening and optimizing policies to mitigate urban air pollution and its associated climate impacts. 
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