

1	Cr(VI) reduction, electricity production, and microbial resistance variation in
2	paddy soil under microbial fuel cell operation
3	Huan Niu ^a , Xia Luo ^a , Peihan Li ^a , Hang Qiu ^a , Liyue Jiang ^a , Subati Maimaitiaili ^a ,
4	Minghui Wu ^a , Fei Xu ^b , Heng Xu ^b , Can Wang ^a *
5	a Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs,
6	School of Life Science and Engineering, Southwest Jiaotong University, Chengdu,
7	610031, Sichuan, P.R. China
8	b Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education,
9	College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
10	* Corresponding at No. 111 Second Ring Road, Chengdu, Sichuan, 610031, China. Tel:
11	+ 86 18728156952
12	E-mail: wangcan@swjtu.edu.cn (Can Wang)

14 Abstract figure:

17 Abstract: Microbial fuel cell (MFC) is an efficient in-situ approach to combat pollutants and generate 18 electricity. This study constructed a soil MFC (SMFC) to reduce Cr(VI) in paddy soil and investigate its 19 influence on microbial community and microbial resistance characteristics. Fe₃O₄ nanoparticle as the cathodic catalyst effectively boosted power generation (0.97 V, 102.0 mW/m²), whose porous structure 20 21 and reducibility also contributed to Cr reduction and immobilization. After 30 days, 93.67% of Cr(VI) 22 was eliminated. The bioavailable Cr decreased by 97.44% while the residual form increased by 88.89%. 23 SMFC operation greatly changed soil enzymatic activity and microbial structure, with exoelectrogens 24 like Desulfotomaculum (3.32% in anode) and Cr(VI)-reducing bacteria like Hydrogenophaga (2.07% in 25 cathode) more than 1000 folds of soil. In particular, SMFC operation significantly enhanced the 26 abundance of heavy metal resistance genes (HRGs). Among them, chrA, chrB, and chrR increased by 27 99.54~3314.34% in SMFC anode than control, probably attributed to the enrichment of potential 28 tolerators like Acinetobacter, Limnohabitans, and Desulfotomaculum. These key taxa were positively 29 correlated with HRGs but negatively correlated with pH, EC, and Cr(VI), which could have driven Cr(VI)

- 30 reduction. This study provided novel evidence for bioelectrochemical system application in contaminated
- 31 paddy soil, which could be a potential approach for environmental remediation and detoxification.
- 32 Keywords: Chromium; Microbial fuel cell; Microbial response; Metal resistance

33

Nomenclature	
SMFC	Soil microbial fuel cell
HRGs	Heavy metal resistance genes
HMs	Heavy metals
HGT	Horizontal gene transfer
EABs	Electrochemical active bacteria
GF	Graphite felt
ORR	Oxygen reduction reaction
WCV	Working circuit voltage
OCV	Open circuit voltage
ARGs	Antibiotic resistance genes
CMFC-A	Anode of the closed circuit group
OMFC-A	Anode of the open circuit group
CMFC-C	Cathode of the closed circuit group
OMFC-C	Cathode of the open circuit group
CMFC-S	Soil of the closed circuit group
OMFC-S	Soil of the open circuit group
NMFC-S	Soil of the non-electrode control group

34 **1. Introduction**

35	Chromium (Cr) is one of the main toxic heavy metals (HMs), which enters the environment mainly
36	due to its wide use in electroplating, tanning, and other industries (Coetzee et al., 2020). Mineral-sourced
37	phosphate fertilizer also contains high-level Cr, further promoting its spreading and migration in soil and
38	underground water (Chen et al., 2022a). Even a sub-dose of Cr (especially the Cr(VI) state) can promote
39	plasmid-mediated horizontal gene transfer (HGT) (Zhang et al., 2018), causing enrichment of heavy
40	metal resistance genes (HRGs), threatening environmental safety (Guo et al., 2021; Wang et al., 2023a;
41	Wang et al., 2023b; Wang et al., 2020a). Due to the cross-resistant effect of HMs and antibiotics, the
42	enrichment of HRGs and tolerators under Cr exposure has become an emerging concern.
43	Common remediation methods for Cr-influenced soil include chemical reduction and leaching
44	(Cong et al., 2022), electrokinetic remediation (Morales-Benítez et al., 2023), and phytoaccumulation
45	(Yaashikaa et al., 2022), which convert Cr(VI) into insoluble and low toxic forms (e.g., Cr(III)) by
46	adsorption, ion exchange, and redox (Rani et al., 2022). Among them, the microbial approach using
47	functional microbes is commonly used for the continuous treatment of soil-groundwater, which has a

48	low cost without side effects (Fan et al., 2023). However, pollutants can be tightly adsorbed by soil
49	particles and persistently remain (Wang et al., 2023a). The complex soil constituents and competition of
50	indigenous microorganisms inhibit the colonization and development of functional microbes and limit
51	their effectiveness (Guo et al., 2021).
52	Microbial fuel cell (MFC) technology can transform or immobilize HMs and generate electricity
53	utilizing electrochemical active bacteria (EABs) (Chen et al., 2022b; Gupta et al., 2023), which have
54	been used in sediment or soil to treat HMs and organics and monitor environmental toxicity (Li et al.,
55	2023b). At present, soil MFC (SMFC) has been used for pollution control, focusing on pollutant content
56	and forms as well as the electrochemical properties (Hamdan and Salam, 2023; Liu et al., 2023a). There
57	is a lack of systematic research about the MFC effect on soil microbial community structure shifting and
58	resistance characteristics.
59	In this study, an SMFC was constructed to remediate Cr(VI) contaminated paddy soil. EABs were
60	pre-loaded on the SMFC anode to promote electricity production and Cr transformation. Ferroferric
61	oxide (Fe $_3O_4$) nanoparticles, which can reduce and fix Cr(VI) directly, were used as a catalyst for
62	cathodic oxygen reduction reaction (ORR) (Liu et al., 2023b). During operation, Cr(VI) was reduced and
63	immobilized by bio-physical adsorption and electrochemical-microbial reduction, simultaneously. The
64	Cr(VI) reduction mechanism was comprehensively studied along with the analysis of microbial
65	community structure shaping and HRG variation. For the first time, SMFC-driven Cr(VI) reduction was
66	associated with microbial resistance, which evolved along with microbial adaption and development.
67	This study not only provides a reference for the microbial remediation of polluted soil but also improves
68	the practical field application of MFC.

69 2. Materials and Methods

70 2.1. Chemicals

- All the chemicals and reagents were analytical grade or premium pure from Kelong Chemical
- 72 Reagent Factory, Chengdu, China.

73 2.2 Construction of SMFC

74 2.2.1 Soil

75 Paddy soil from Jintang County, Chengdu, China (30°74' N, 104°59' W) was collected and used to

76 construct SMFC. The soil has organic matter, organic carbon, and total nitrogen of 8.84±0.02%,

77 1.74±0.01%, and 321.67±1.25 mg/kg, respectively. Potassium dichromate was added to the soil to

78 achieve a final Cr(VI) concentration of 118.8 mg/kg before use.

79 2.2.2 Electrodes Preparation

80 Aluminum foam (66.0×54.0×5.0 mm) (SANZHENG Metal material, Chengdu, China) was used 81 as anode. The anode microflora was derived from municipal sludge (Chengdu Sixth Sewage Treatment 82 Plant, China) after acclimating with 100 mg/L Cr(VI). Before assembling, the aluminum foam was 83 cultivated in the anode microflora for 2 weeks. Then the anode was tied to titanium mesh tightly with 84 titanium wire. Graphite felt (GF) (100.0×50.0×3.0 mm) was used as the cathode (Table S1). Before 85 use, it was cleaned, dried, and loaded with Fe₃O₄ as the ORR catalyst, as detailed in section 1 of the 86 supplementary material. For characterization, we utilized a scanning electron microscope (SEM) to 87 examine the structure and morphology of the electrode surface. In addition, we performed X-ray 88 photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) to analyze the valence state

89	and element c	omposition.	The phase	composition	was determin	ed using an	n X-ray	diffractometer	(XRD)).
----	---------------	-------------	-----------	-------------	--------------	-------------	---------	----------------	-------	----

- 90 2.2.3 SMFC construction
- 91 A plastic box (140.0×85.0×165.0 mm) was used as the SMFC reactor, with 1.50 kg soil and
- 92 overlying water of 3.0 cm to simulate the flooded state during rice planting. The cathode was floated on
- 93 the water surface while the anode was buried (about 3.0 cm from the bottom). The cathode and anode
- 94 were connected to a 2000 Ω resistor using titanium wire. The water level was kept constant by daily
- 95 replenishment.

96 2.3 Design and Operation

- 97 Three treatments were set up as shown in Fig. S1. Three parallel was set for each group.
- 98 1. NMFC: The control group with no electrode. It only contains an equal amount of overlying water
- and paddy soil.
- 100 2. OMFC: The open circuit group with disconnected electrodes and equal amounts of overlying
- 101 water and paddy soil.
- 102 3. CMFC: The complete closed-circuit SMFC capable of producing electricity, with electrodes
- 103 connected by a 2000 Ω resistor, and equal amounts of overlying water and paddy soil.
- 104 The experiments were conducted at 25°C. A Raspberry Pi data acquisition system (ARMv7
- architecture) was connected at both ends of the resistor of CMFC to monitor the voltage. A multimeter
- 106 was used for verification. The detailed code information can be found in the supplementary material
- 107 (Section 2). Soil and water samples were taken every 5 days until day 35, and the operation continued
- 108 for another 10 days until day 45. The electrochemical properties of the SMFC including the polarization
- 109 curve and power density curve were tested using an electrochemical workstation on days 15 and 30

110	(Ch660e, Shanghai Chenhua Instrument Co., Ltd., Shanghai, China) (Chen et al., 2022b).
111	2.4 Cr Migration and Transformation
112	To determine total Cr, 0.50 g soil was subjected to acid digestion (HCl-HNO ₃ -HClO ₄) before
113	measurement using flame atomic absorption spectrometry (FAAS) (PinAAcle 900T AA Spectrometer,
114	PerkinElmer, America). To determine Cr speciation, BCR sequential extraction was applied to divide Cr
115	into HOAc extractable, reducible, oxidizable, and residual fractions with mobility and availability from
116	high to low (Wang et al., 2020a). Also, Cr(VI) concentration in overlying water was determined by a
117	spectrophotometer at 540 nm, while Cr(VI) in soil was determined using FAAS after alkaline digestion
118	(Fan et al., 2021). Duplicates, method blanks, and standard reference materials were used for quality
119	control. Cr recovery in standard reference materials was 92~108%.
120	2.6 Microbial response during operation
121	2.6.1 Soil biochemical response
122	Soil dehydrogenase (DHA) activity was measured using 2, 3, 5-triphenyl tetrazolium chloride (TTC)
123	method. Urease activity was determined by the phenol sodium hypochlorite colorimetric assay. Invertase
124	activity was determined by the 3, 5-dinitro salicylic acid colorimetric assay. The acid phosphatase (ACP)
125	activity was determined by the p-nitrophenyl disodium phosphate colorimetric assay (Wang et al., 2019;
126	Wang et al., 2017).
127	2.6.2 Microbial community structure
128	The microbial community structure of the electrodes and soil was determined by high-throughput
129	sequencing. Majorbio (Shanghai, China) performed 16S rRNA gene sequencing using the Illumina HiSeq

130	platform. 0.50 g of fresh homogenized samples were used to extract the total bacterial DNA with a
131	universal DNA Kit (Omega Biotek Inc., USA). After amplification and purification, the V3-V4
132	hypervariable regions of the bacterial 16S rRNA gene were amplified with primer pairs 338F and 806R.
133	After sequencing, the operational taxonomic units (OTUs) with a 97 % similarity cutoff were clustered
134	using UPARSE version 7.1, and chimeric sequences were identified and removed. The taxonomy of each
135	OTU representative sequence was analyzed by RDP Classifier version 2.2 against the 16S rRNA database
136	using a confidence threshold of 0.7. The alpha diversity, beta diversity, microbial community structure
137	change, and environmental factor correlation analysis were conducted. (Wang et al., 2023c)
138	2.6.3 HRG Fluctuation
139	The abundance of HRGs in the surface soil of SMFC and OMFC anode after operation was analyzed
140	using an SYBR Green real-time fluorescence quantitative PCR system (7500, Thermo Fisher, USA)
141	(Wang et al., 2023a). The soil of OMFC was used for comparison. The detected genes included HRGs
142	(chrA, chrB, chrR, recG, nfsA, zupT, fpvA) and MGEs (intI, tnpA02, tnpA04, tnpA05). The primer
143	sequences are provided in Table S2.
144	2.7 Data analysis
145	The experimental data were evaluated using one-way analysis of variance (ANOVA) based on three
146	tests. The mean values and standard deviations were calculated using SPSS 22.0 software (IBM, USA).
147	A significance level of $P < 0.05$ was considered statistically significant, while $P < 0.01$ was defined as
148	highly statistically significant. Graphs were plotted using Origin 2022 software.

149 **3. Results**

150 **3.1 Electrodes characterization**

- As demonstrated in Fig. S2, Fig. 1, and Fig. 2, the raw GF had smooth surfaces with C, and O as
- 152 the main elements (Fig. S2). After Fe₃O₄ loading, black patches constituted with spherical particles
- appeared, bringing Fe (13.17%) and O (19.97%) on the GF surface (Fig. 1a-c and Table S3). XPS found
- that peaks of 710.8 and 724.4 eV were consistent with typical Fe₃O₄ peaks (Fig. 2a-b), indicating its
- 155 successful loading. The CV curves of the cathode (Fig. 2c) presented an obvious oxidation peak at 0.85
- 156 V, indicating its excellent electrochemical performance.

157 After operation, the typical peaks of Cr(III), Cr(VI), and element Cr (576.1 and 578.92) were

- 158 observed on both electrodes by XPS (Fig. 2d-e), indicating the reduction and immobilization of Cr(VI)
- 159 by the electrodes. GF was found loaded with many soil elements including Cr, Na, Mg, and Ca (Table
- 160 S3). SEM also observed many microorganism cells and extracellular organic-like substances, implying
- 161 the biofilm formation on the cathode (Fig. 1d-f).

162 As presented in Fig. S2C, the raw aluminum foam showed a rough porous structure with mainly Al

- 163 and O on the surface (Table S3). After loading EAB, many spherical and rod-shaped bacteria were
- 164 observed, indicating a good capacity to carry microorganisms (Fig. 1g-i). After the operation, many
- 165 millimeter-scale soil particles were embedded in the anode interspace, indicating the intense mass
- transfer between the anode and soil (Fig. 1j-l).

168 **Fig. 1** Characterization of electrode materials before and after operation by EDS and

- 170 images of cathode after the SMFC operation; (g-h) EDS and SEM images of anode
- 171 microorganisms; (j-l) EDS and SEM images of the anode after SMFC operation.

188	$mW/m^3 \ (102.0 \ mW/m^2)$ on day 30 (Table S4). The result indicated that the electrochemical performance
189	of SMFC enhanced gradually probably due to the microbial adaption. Even after 45 days, the CMFC still
190	had a WCV of around 0.75 V, indicating its substantial electricity-producing capacity. Compared with
191	the literature, the SMFC in the current work has an outstanding power generation capacity (Table S5).
192	3.3 Cr(VI) reduction and immobilization during operation
193	HMs forms determined the bioavailability and toxicity (Jia et al., 2022). After operation, Cr forms
194	in soils were significantly changed ($P < 0.05$) (Fig. 3). In CMFC, the acid-soluble Cr decreased
195	substantially by 97.44%, the oxidizable and reducible fractions did not change significantly, while the
196	residual form of Cr increased by 88.89% (Fig. 3a). However, in NMFC, the acid-soluble Cr increased
197	substantially by 61.54% on day 35. In OMFC, the acid-soluble Cr increased before decreasing, which
198	was opposite to its oxidizable state. On day 35, the Cr bioavailability of OMFC (11.9%) and NMFC
199	(18.9%) was 3866-6200 folds of CMFC (0.3%). It is inferred that the electric field and the microbial
200	communities' evolvement may lead to better Cr immobilization.
201	In the meantime, the Cr(VI) concentration (Fig. 3c) dropped in all the groups, and Cr (VI) in
202	CMFC soil was significantly lower than OMFC and NMFC (P <0.05) after the experiment. On day 35,
203	CMFC showed 13.59% and 20.87% higher Cr(VI) elimination than OMFC and NMFC, respectively.
204	The overlying water was initially free of Cr. During the experiment (Fig. S3), 0.21~12.72 mg/L Cr was
205	determined, which could be released from the soil. A low level of $Cr(VI)$ (less than 3.15 mg/L) was
206	detected but vanished later (day 15), which could be attributed to the dynamic adsorption-desorption of
207	soil particles and electrodes.

208

209	Fig. 3 (a) Percentage share of Cr in different chemical fractions in CMFC, OMFC,
210	and NMFC soil; Changes in soil (b) total chromium and (c) Cr(VI) concentrations
211	during SMFC operation.

- 212 3.4 Soil properties
- 213 3.4.1 Soil Physicochemical Property

The soil pH decreased in all the groups (Fig. S4A). The pH of CMFC decreased fastest from the initial 7.71 to about 6.83 on day 35, with a minimum of 6.77 on day 30, which was 0.14-7.87% lower than others (*P*<0.05). During the experiment, oxygen in the flooded soil decreased rapidly due to microbial consumption, and acidic products (e.g., low-molecule organic acids) were produced to increase soil acidity. Microorganisms (especially EABs) decompose soil organic matter and release a large

219	number of electrons and protons, making oxidizing substances such as nitrate and high valence metals
220	(Fe(III), Mn(IV), and Cr(VI)) to accept electrons for reduction, causing protons (H^+) accumulation (He
221	et al., 2016). Such a phenomenon was more intense in CMFC due to the rapid electron transfer through
222	wire to the cathode, leaving protons elevated near the anode.
223	In all three groups, EC increased rapidly from the initial 1.55 ms/cm before stabilizing (Fig. S4B),
224	which maximized 2.6, 2.4, and 2.4 ms/cm in CMFC, OMFC, and NMFC (P>0.05), respectively. The
225	rapid increase in EC could be attributed to the inundation that increased the soluble salt content of the
226	soils. The electromigration in the MFC electric field may also increase soil mass transfer and positively
227	affect soil electrical conductivity (Zhang et al., 2020).
228	3.4.2 Soil Biochemical Response
229	In all the groups, the DHA activity increased significantly (2 244.0~3 138.0% higher than the initial
230	value) and continuously (P<0.05) (Fig. S5A). Under flooding, microbial activity changed from aerobic
231	to anaerobic, leading to a sharp decline in soil redox potential, accompanied by the stimulation of soil
232	DHA (Sardans and Peñuelas, 2005). During operation, urease activity in CMFC showed a gradual
233	increase (2.70~12.40% higher than day 0 from days 10~35), while it in OMFC and NMFC showed a
234	slight decrease (6.10~7.10% lower than day 0 from days 5~35) (Fig. S5B). SMFC electric field and Fe(II)
235	promote extracellular electron transfer (EET) (Chen et al., 2023a), which promotes the enrichment of
236	ammonia-nitrogen transforming bacteria in soil could have caused the higher urease activity in CMFC
237	than NMFC and OMFC (P<0.05). Soil invertase activity decreased initially but increased later for CMFC
238	and OMFC, but showed an opposite trend for NMFC. After operation, CMFC had a significantly higher
239	invertase activity than others (P <0.05) (Fig. S5C). Soil ACP showed a similar trend with urease, with 15

240 CMFC continuously increasing by 13.20~48.90% and considerably higher than OMFC and NMFC (Fig.

241 S5D).

242 **3.5 SMFC operation reshaped soil microbial community**

243 Microbial community structures in the electrodes were analyzed, which obtained 15 dominant phyla

- 244 and 50 dominant genera (>1.0%). Overall, Firmicutes (73.93%), Proteobacteria (62.53%), and
- 245 Chloroflexi (21.73%) were found the dominant phyla, while Bacteroides (21.48%), Enterococcus
- 246 (17.26%), and *Hyphomicrobium* (15.34%) were the dominant genera.

247 The alpha diversity analysis indicated a significant difference in the microbial community among

- 248 the samples (Fig. 4a). The higher chao1 index in soils than the electrodes demonstrated the higher
- 249 microbial richness. Most of the alpha index in OMFC-A and OMFC-C were significantly higher than
- 250 CMFC-A and CMFC-C, demonstrating a higher microbial richness and diversity in OMFC. The results
- 251 indicated the different microbial evolution patterns in different electrodes and the selection effect of the
- 252 electricity field during CMFC operation. The Venn diagram (Fig. S6) found no OTU coincidence among
- 253 the samples, indicating their obvious specificity. In comparison, 2130 OTUs were shared by CMFC-S,
- 254 OMFC-S, and NMFC-S, indicating the similarity of the soil microbial community (Fig. S6B). 45 OTUs
- 255 were shared by Raw-A, CMFC-A, and OMFC-A, accounting for 45.92%, 1.95%, and 1.16%,
- 256 respectively, indicating the successful colonization and development of the preloaded EABs.

community structure is based on (b) the phylum level and (c) the genus level.

260 3.5.1 Soil microbial community reshaping on phylum level

Before the operation (Fig. 4b), the anode was dominated by *Firmicutes* (73.93%), *Bacteriodota* (22.74%), and *Proteobacteria* (1.27%). After the operation, *Firmicutes* and *Bacteriodota* decreased by 49.83% and 66.84% in CMFC-A, and 73.20% and 26.52% in OMFC-A, respectively. While *Proteobacteria* increased by 1 698.43% in CMFC-A and 475.59% in OMFC-A. Besides, many other phyla emerged, including *Acidobacteriota* (9.41%~21.40%), *Actinobacteriota* (0.23%~9.52%), *Halanaerobiaeota* (1.48%~4.77%), *Myxococcota* (1.51%~3.93%), *Chloroflexi* (0.01%~2.57%), probably due to the penetration of soil indigenous microbe.

268 The cathode was free of microorganisms initially. However, many phyla were observed after the 269 operation. The CMFC-C was dominated by *Proteobacteria* (62.53%), *Actinobacteriota* (6.24%),

270	Planctomycetota (6.04%), Chloroflexi (5.88%), and Bacteroidota (3.81%), while OMFC-C was
271	dominated by Proteobacteria (47.93%), Chloroflexi (9.75%), Cyanobacteria (8.30%), Acidobacteriota
272	(8.01%), Actinobacteriota (3.97%), Myxococcota (3.92%), and Gemmatimonadota (2.87%). The
273	Proteobacteria phylum was rich in EABs, its advantage in both electrodes of CMFC indicated that SMFC
274	operation was favorable for EAB colonization and development. All the soils were dominated by
275	Chlorobacteria, Acidobacteria, Proteobacteria, Bacteroidetes, and Myxococcota, and the difference was
276	not significant.
277	3.5.2 Soil microbial community reshaping on genus level
278	At the genus level (Fig. 4c), MFC operation presented a selection effect, with Terrisporobacter
279	increasing from 0.81% to 13.71% and <i>Bacteroides</i> decreasing from 12.48% to 0.53% in CMFC anode.
280	Compared with the Raw-A, many EABs in CMFC-A decreased, including Clostridium_sensu_stricto_5
281	(from 12.99% to 0.052%), Clostridium_sensu_stricto_15 (from 4.70% to 0.47%), Enterococcus (from
282	17.26% to 0.03%) (Choi, 2022; Zhang et al., 2023). However, the Desulfotomaculum in CMFC-A
283	increased to 3.32% compared with 0.003% in the soil (CMFC-S). Besides, soil indigenous bacteria
284	including Ramlibacter, Methyloversatilis, and Acinetobacter colonized in the anode and elevated by
285	4.89~1 579 fold compared with soil. Nevertheless, multiple dominant genera in the soils decreased in
286	CMFC-A than in OMFC-A. For example, <i>SBR1031</i> accounted for 3.63%~6.18% in the soils, but 0.33%
287	in CMFC-A and 1.08% in OMFC-A. <i>Bacteroidetes_vadinHA17</i> accounted for 2.48%~3.09% in the soils,
288	but 1.03% in CMFC-A and 5.13% in OMFC-A. Anaerolinea accounted for 2.37%~3.63% in the soils,
289	but 0.25% in OMFC-A, and 1.89% in OMFC-A. The electric field action to a certain extent helped the
290	anode to resist external microbial intrusion to ensure the stability of the anodic microbial community.

291	During operation, the prolonged interaction between the soil and water phases resulted in the
292	gradually evolving unique biofilm structure of the cathode. For instance, <i>Hyphomicrobium</i> (3.56~15.34%
293	in soils), an aerobic chemoheterotroph capable of degrading a wide range of organics, accounted for
294	15.34% and 3.56% of CMFC-C and OMFC-C, respectively (He et al., 2019). <i>Hydrogenophaga</i> , a gram-
295	negative bacteria capable of denitrification and Cr(VI) reduction, accounted for 2.07% of CMFC-C
296	(Wang et al., 2022). Meanwhile, the SMFC operation caused the enrichment of several resistant bacteria.
297	Subgroup_7, a typical HM-tolerant bacterium (Li et al., 2023a), was enriched in both cathode and soil.
298	Acinetobacter and Limnohabitans, also tolerators that carry HRGs and ARGs, were found 4.31% and
299	3.03% in CMFC-A (Dahal et al., 2023; Zhang et al., 2021).
300	The increase of iron in the soil and water due to the use of $\mathrm{Fe_3O_4}$ as the cathode catalyst may be
301	responsible for the enrichment of Terrisporobacter and Anaeromyxobacter in the CMFC-A and OMFC-
302	A. They were found closely associated with Fe^{3+} reduction to gain energy in various environments (Lin
303	et al., 2007; Wang et al., 2020b).
304	3.5.3 Soil metal resistance gene variation
305	Under Cr(VI) stress, certain microbes would utilize pathways like specific or non-specific Cr(VI)
306	reduction, free radical detoxification, DNA damage repair, etc. to survive in toxic environments (Morais
307	et al., 2011). Using qPCR analysis, the abundance of typical HRGs and MGEs in the anodic soils was
308	determined (Fig. 5a), which varied greatly during operation (P<0.05). Compared with OMFC and NMFC,
309	<i>chrA</i> in CMFC increased by 237.83% and 3414.34%, <i>chrB</i> by 141.52% and 153.63%, <i>chrR</i> by 221.86%
310	and 839.41%, <i>IntI</i> by 151.77% and 167.91%, <i>tnpA02</i> by 331.86% and 1118.97%, and <i>tnpA05</i> by 416.91%
311	and 99.54%.

312	The elevation of HRGs and MGEs could be due to the enrichment of multiple metal-resistant
313	bacteria (MRB) such as Acinetobacter, Limnohabitans, and Brevundimonas. Moreover, the anodic
314	Desulfotomaculum, which accounted for 3.23% of CMFC-A, is a typical sulfate-reducing bacterium
315	(SRB) that produces H_2S , a natural signaling molecule that contributes to tolerance triggering,
316	maintenance, and diffusion through community sensing, which facilitates HRG elevation through HGT
317	(Shatalin et al., 2021). Besides, Cr(VI) reducing bacteria like Hydrogenophaga (1.31% in CMFC-A) may
318	also up-regulate the Cr reductase gene chrR (Sundarraj et al., 2023).
319	Furthermore, pH changes may also affect soil resistance characteristics. Liu et al. (2023c) observed
320	the abundance of multidrug efflux pump genes in the acid soil was significantly positively correlated
321	with soil acidity. The intensified proton generation and accumulation in CMFC could have led to the
322	HRG elevation. In addition, HMs toxicity exerts direct selective pressure, which affects microbial
323	community structure and their function, leading to the thriving of tolerators like Desulfotomaculum sp,
324	Hydrogenophaga, and Methylophilus (Hernández-Ramírez et al., 2018), hence the spontaneous HRG
325	elevation(Wang et al., 2023a).

327Fig. 5 (a)qPCR results of heavy metal resistance gene changes in soil around anode-328soil after SMFC operation (*chrA*, *chrB*, *chrR*, *intI*, *tnpA02*, *tnpA05*). Different letters329denote significant differences among treatments (P < 0.05); (b) principal component330analysis (PCA) of SMFC soil physicochemical properties with Enzyme activity,331HRGs, and native bacterial genera and (c) Spearman's correlation heatmap (mean332relative abundance > 1%). * P < 0.05, according to LSD test (mean ± S.E., n = 3);* *</td>333P < 0.01.</td>334

335 **3.6 Correlation analysis**

336 To visually analyze the correlation between bacterial communities and environmental factors,

337	spearman correlation analysis and principal component analysis (PCA) were conducted (Fig. 5b).
338	Spearman correlation analysis (Fig. 5c) isolated four main bacterial genera clusters. Cluster 1
339	(Terrisporobacter, Methyloversatilis, Acinetobacter, Hydrogenophaga, and Desulfotomaculum) was
340	positively correlated with HRGs (chrA, chrB, intI, tnpA02) and ACP (P<0.01), but negatively correlated
341	with pH and Cr(VI) (P<0.01), suggesting they may contribute to HGT and HRGs enrichment. Cluster 2
342	(Anaeromyxobacter, Subgroup_7, Anaerolinea, SB-5, Sphingomonas, etc.) was negatively correlated
343	(P<0.01) with HRGs (chrA, chrB, intI, tnpA02) and ACP, but positively correlated with pH and Cr(VI)
344	(P<0.01). Cluster 3 (Bacteroidetes_vadinHA17 and Candidatus_Solibacter) was positively correlated
345	(P<0.01) with soil EC and DHA. Cluster 4 (Ramlibacter, and Brevundimonas) were positively correlated
346	with urease and invertase but negatively correlated with EC.
347	PCA analysis (Fig. 5b) found that soil pH, EC, Cr(VI) concentration, and DHA were positively
348	correlated with each other but negatively correlated with urease, ACP, invertase, and HRGs. Especially,
349	$Cr(VI)$ was significantly negatively correlated with HRGs ($P \le 0.01$), which could be partially explained
350	by the tolerators thriving and Cr(VI) reduction during SMFC operation.
351	4. Discussion
352	In this study, Cr(VI) reduction, microbial community variation, and HRG fate in SMFC were
353	investigated for the first time. The results proved that SMFC was an effective method to eliminate Cr(VI)
354	(93.76%), immobilize Cr (97.44%), and generate electricity (0.97 V).
355	In the SMFC system, Cr(VI) reduction was a synergic result of adsorption/biosorption,
356	bioelectrochemistry reduction, and microbial reduction (Fig. 6). The preloading of Fe_3O_4 and EABs on

357 the electrodes significantly improved Cr(VI) reduction and power generation by accelerating SMFC

358	stabilization. The Cr forms, soil physicochemical properties, soil enzyme activities, and microecological
359	structure mirrored each other, helping to understand Cr transformation patterns and target the key factors
360	affecting metal resistance changes. The detailed explanation is as follows:
361	(1) The electricity-producing process of SMFC can inhibit HMs' release and migration in soil (Feng
362	et al., 2024; Zhu et al., 2019). In this study, Cr forms changed greatly from acid-soluble to a more stable
363	residual fraction. The Fe $_3O_4$ -modified cathode not only directly adsorbs or reduces Cr(VI) due to the high
364	specific area and ferrous iron, but also enhances the electrochemical effect of the system. The electrons
365	derived from anodic microbial metabolism can directly reduce Cr(VI) in the soil to Cr(III), while part of
366	them is transmitted to the cathode, where Cr(VI) in the overlying water compete with oxygen as electron
367	acceptors and complete the current loop (Thapa et al., 2022).
368	(2) Microorganisms can also directly or indirectly reduce or fix Cr. Biosorption, sulfide, and
369	hydroxide precipitation are the main immobilization mechanisms of HMs by microorganisms (Ma et al.,
370	2024). For example, <i>Desulfotomaculum sp.</i> , a typical SRB, enriched to 3.23% in CMFC-A, may produce
371	sulfide ions by reducing alienated sulfate, thus forming highly insoluble metal sulfide to fix Cr through
372	microorganism-induced sulfide precipitation (MISP). Hydrogenophaga, which dominated in both
373	electrodes, was a known Cr-reducing bacteria. Some iron-reducing bacteria (e.g., Anaeromyxobacter and
374	Terrisporobacter) may also contribute to Cr(VI) reduction by participating in the Fe cycle through EET,
375	while the ferrous iron reduces Cr(VI). Additionally, the CMFC in this work contains many genera capable
376	of transforming nitrogen. For example, Hyphomicrobium, a typical denitrifying bacterium, that can
377	effectively reduce nitrate and nitrite (Ernst et al., 2021), dominated in CMFC-C (15.34%). Methylophilus,
378	a methylotrophic microorganism (Yang et al., 2020), accounted for 2.93% of CMFC-A but was much

379	lower in other groups. The bacteria mentioned above were found with high urease-producing ability,
380	whose enrichment not only improves soil urease activity and nutrient cycling but also immobilizes Cr
381	through microorganism-induced carbonate precipitation (MICP) (Qian et al., 2017).
382	(3) Under electrochemical selection and HMs stress, the microbial community gradually evolved
383	with higher richness and diversity, along with the HRG enrichment and nutrient cycling vriation. Firstly,
384	some soil indigenous bacteria were much lower in CMFC-A than OMFC-A, indicating the electric field
385	contributed to the anode stability by preventing external bacteria intrusion and is less vulnerable to
386	environmental fluctuations. The microbial community change is significantly related to HRG enrichment.
387	Many EABs and MRBs are significantly enriched. For example, Desulfotomaculum, an SRB with a dual
388	role of electroproduction and HMs reduction (Jiang et al., 2020; Yin et al., 2021). Other examples also
389	include cumulative-resistant bacteria like Acinetobacter and Limnohabitans that are only enriched in the
390	CMFC-A (AL-Jabri et al., 2018; Dahal et al., 2023). Their enrichment directly causes vertical gene
391	transfer and HRG elevation.
392	HMs existence in soil can induce HGT occurrence and cause ARG elevation, which has become a
393	major concern (Chen et al., 2023b; Fu et al., 2023). Sub-lethal levels of metal ions can increase mutation
394	rates and enrich de novo mutants with significant resistance to multiple antibiotics (Li et al., 2019). This
395	study focused on the toxic alleviation of a single HM (Cr) in SMFC, during which tolerator accumulation
396	caused considerable HRG enrichment. SMFC is an eco-friendly and cost-effective technology for the in-
397	situ bioremediation of contaminated soil/sediment and powering environmental sensors in remote areas.
398	It has the potential to be used as a novel early warning system for soil environmental hazards.
399	Nevertheless, before the commercialization of large-scale applications in the field, significant efforts

- 400 should be made to reveal the HRG enrichment mechanism during SMFC operation and pay attention to
- 401 ARG change under HMs contamination or HMs-antibiotic co-contamination.

- 403 **Fig. 6** Cr(VI)reduction Mechanism of during SMFC operation
- 404

405 **5.** Conclusion

414	bioelectrochemical technology in the field.
415	Author contribution:
416	Huan Niu: Conceptualization, Investigation, and Writing; Xia Luo: Investigation, Visualization;
417	Peihan Li: Investigation, Visualization; Haitao Ma: Methodology; Hang Qiu: Methodology; Liyue Jiang:
418	Writing-review and editing; Subati Maimaitiaili: Writing-review and editing; Minghui Wu: Funding
419	acquisition, Supervision; Fei Xu: Funding acquisition, Supervision; Heng Xu: Funding acquisition,
420	Supervision; Can Wang: Funding acquisition, Supervision.
421	Acknowledgments
422	This work was financially supported by the Sichuan Science and Technology Program
423	(2024NSFSC0384), the Government Guides Local Science and Technology Development Project of
424	Tibetan Autonomous Region of China (XZ202401YD0001), the China Postdoctoral Science Foundation
425	(2022M712630), and the Fundamental Research Funds for the Central Universities (2682023ZTPY079).
426	We thank Dr. Weizhen Fang from the Analysis & Testing Center and Dr. Cuijuan Wang from the School
427	of Chemistry, Southwest Jiaotong University, for the technical support. We thank Lijuan Zhang from
428	SCI-Go (www.sci-go.com) for the XPS analysis.
429	Declaration of interests
430	The authors declare that they have no known competing financial interests or personal relationships
431	that could have appeared to influence the work reported in this paper.

432 Reference

AL-Jabri, Z., Zamudio, R., Horvath-Papp, E., Ralph, J.D., AL-Muharrami, Z., Rajakumar, K., Oggioni,
M.R., (2018). Integrase-Controlled Excision of Metal-Resistance Genomic Islands in
Acinetobacter baumannii. Genes 9(7), 366. https://doi.org/10.3390/genes9070366.

436	Chen, C., Fang, Y., Zhou, D., (2023a). Selective pressure of PFOA on microbial community: Enrichment
437	of denitrifiers harboring ARGs and the transfer of ferric-electrons. Water Research 233, 119813.
438	https://doi.org/10.1016/j.watres.2023.119813.
439	Chen, M., Cai, Y., Li, G., Zhao, H., An, T., (2022a). The stress response mechanisms of biofilm formation
440	under sub-lethal photocatalysis. Applied Catalysis B: Environmental 307, 121200.
441	https://doi.org/https://doi.org/10.1016/j.apcatb.2022.121200.
442	Chen, P., Zhang, T., Chen, Y., Ma, H., Wang, Y., Liu, W., Wang, Y., Zhou, G., Qing, R., Zhao, Y., Xu, H.,
443	Hao, L., Wang, C., Xu, F., (2022b). Integrated Chamber-free Microbial Fuel Cell for Wastewater
444	Purification and Bioenergy Generation. Chemical Engineering Journal, 136091.
445	https://doi.org/10.1016/j.cej.2022.136091.
446	Chen, X., Du, Z., Song, X., Wang, L., Wei, Z., Jia, L., Zhao, R., (2023b). Evaluating the occurrence
447	frequency of horizontal gene transfer induced by different degrees of heavy metal stress. Journal
448	of Cleaner Production 382, 135371.
449	https://doi.org/https://doi.org/10.1016/j.jclepro.2022.135371.
450	Choi, S., (2022). Electrogenic Bacteria Promise New Opportunities for Powering, Sensing, and
451	Synthesizing. Small 18(18), 2107902. https://doi.org/10.1002/smll.202107902.
452	Coetzee, J.J., Bansal, N., Chirwa, E.M.N., (2020). Chromium in Environment, Its Toxic Effect from
453	Chromite-Mining and Ferrochrome Industries, and Its Possible Bioremediation. Exposure and
454	Health 12(1), 51-62. https://doi.org/10.1007/s12403-018-0284-z.
455	Cong, Y., Shen, L., Wang, B., Cao, J., Pan, Z., Wang, Z., Wang, K., Li, Q., Li, X., (2022). Efficient
456	removal of Cr(VI) at alkaline pHs by sulfite/iodide/UV: Mechanism and modeling. Water
457	Research 222, 118919. https://doi.org/10.1016/j.watres.2022.118919.
458	Dahal, U., Paul, K., Gupta, S., (2023). The multifaceted genusAcinetobacter: from infection to
459	bioremediation. Journal of Applied Microbiology 134(8).
460	https://doi.org/10.1093/jambio/lxad145.
461	Ernst, C., Kayastha, K., Koch, T., Venceslau, S.S., Pereira, I.A.C., Demmer, U., Ermler, U., Dahl, C.,
462	(2021). Structural and spectroscopic characterization of a HdrA-like subunit from
463	Hyphomicrobium denitrificans. The FEBS Journal 288(5), 1664-1678.
464	https://doi.org/10.1111/febs.15505.
465	Fan, C., Qian, J., Yang, Y., Sun, H., Song, J., Fan, Y., (2021). Green ceramsite production via calcination
466	of chromium contaminated soil and the toxic Cr(VI) immobilization mechanisms. Journal of
467	Cleaner Production 315, 128204. https://doi.org/10.1016/j.jclepro.2021.128204.
468	Fan, Q., Fan, L., Quach, WM., Zhang, R., Duan, J., Sand, W., (2023). Application of microbial
469	mineralization technology for marine concrete crack repair: A review. Journal of Building
470	Engineering 69, 106299. https://doi.org/10.1016/j.jobe.2023.106299.
471	Feng, H., Jin, A., Yin, X., Hong, Z., Ding, Y., Zhao, N., Chen, Y., Zhang, Y., (2024). Enhancing
472	biocathode denitrification performance with nano-Fe3O4 under polarity period reversal.
473	Environmental Research 241, 117641. https://doi.org/10.1016/j.envres.2023.117641.
474	Fu, Y., Zhu, Y., Dong, H., Li, J., Zhang, W., Shao, Y., Shao, Y., (2023). Effects of heavy metals and
475	antibiotics on antibiotic resistance genes and microbial communities in soil. Process Safety and
476	Environmental Protection 169, 418-427. https://doi.org/10.1016/j.psep.2022.11.020.
477	Guo, S., Xiao, C., Zhou, N., Chi, R., (2021). Speciation, toxicity, microbial remediation and

478	phytoremediation of soil chromium contamination. Environmental Chemistry Letters 19(2),
479	1413-1431. https://doi.org/10.1007/s10311-020-01114-6.
480	Gupta, S., Patro, A., Mittal, Y., Dwivedi, S., Saket, P., Panja, R., Saeed, T., Martínez, F., Yadav, A.K.,
481	(2023). The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-
482	microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology
483	readiness level. Science of The Total Environment 879, 162757.
484	https://doi.org/10.1016/j.scitotenv.2023.162757.
485	Hamdan, H.Z., Salam, D.A., (2023). Sediment microbial fuel cells for bioremediation of pollutants and
486	power generation: a review. Environmental Chemistry Letters 21(5), 2761-2787.
487	https://doi.org/10.1007/s10311-023-01625-y.
488	He, Q., Gui, J., Liu, D., Li, X., Li, P., Quan, S., (2016). Research progress of soil property's changes and
489	its impacts on soil cadmium activity in flooded paddy field. Journal of Agro-Environment
490	Science 35(12), 2260-2268. https://doi.org/10.11654/jaes.2016-0892.
491	He, S., Guo, H., He, Z., Yang, C., Yu, T., Chai, Q., Lu, L., (2019). Interaction of Lolium perenne and
492	Hyphomicrobium sp. GHH enhances the removal of 17a-ethinyestradiol (EE2) from soil.
493	Journal of Soils and Sediments 19(3), 1297-1305. <u>https://doi.org/10.1007/s11368-018-2116-y</u> .
494	Hernández-Ramírez, K.C., Reyes-Gallegos, R.I., Chávez-Jacobo, V.M., Díaz-Magaña, A., Meza-Carmen,
495	V., Ramírez-Díaz, M.I., (2018). A plasmid-encoded mobile genetic element from Pseudomonas
496	aeruginosa that confers heavy metal resistance and virulence. Plasmid 98, 15-21.
497	https://doi.org/10.1016/j.plasmid.2018.07.003.
498	Jia, J., Bai, J., Xiao, R., Tian, S., Wang, D., Wang, W., Zhang, G., Cui, H., Zhao, Q., (2022). Fractionation,
499	source, and ecological risk assessment of heavy metals in cropland soils across a 100-year
500	reclamation chronosequence in an estuary, South China. Science of The Total Environment 807,
501	151725. https://doi.org/10.1016/j.scitotenv.2021.151725.
502	$Jiang, Y., Shang, Y., Gong, T., Hu, Z., Yang, K., Shao, S., (2020). \ High \ concentration \ of \ Mn^{2+} \ has \ multiple$
503	influences on aerobic granular sludge for aniline wastewater treatment. Chemosphere 240,
504	124945. https://doi.org/10.1016/j.chemosphere.2019.124945.
505	Li, C., Huang, H., Gu, X., Zhong, K., Yin, J., Mao, J., Chen, J., Zhang, C., (2023a). Accumulation of
506	heavy metals in rice and the microbial response in a contaminated paddy field. Journal of Soils
507	and Sediments. https://doi.org/10.1007/s11368-023-03643-3.
508	Li, X., Gu, A.Z., Zhang, Y., Xie, B., Li, D., Chen, J., (2019). Sub-lethal concentrations of heavy metals
509	induce antibiotic resistance via mutagenesis. Journal of Hazardous Materials 369, 9-16.
510	https://doi.org/10.1016/j.jhazmat.2019.02.006.
511	Li, Y., Chen, Y., Chen, Y., Qing, R., Cao, X., Chen, P., Liu, W., Wang, Y., Zhou, G., Xu, H., Hao, L.,
512	Wang, C., Li, S., Zhu, Y., Haderlein, S., Xu, F., (2023b). Fast deployable real-time bioelectric
513	dissolved oxygen sensor based on a multi-source data fusion approach. Chemical Engineering
514	Journal 475, 146064. https://doi.org/10.1016/j.cej.2023.146064.
515	Lin, B., Hyacinthe, C., Bonneville, S., Braster, M., Van Cappellen, P., Röling, W.F.M., (2007).
516	Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of
517	the polluted Scheldt estuary, Northwest Europe. Environmental Microbiology 9(8), 1956-1968.
518	https://doi.org/10.1111/j.1462-2920.2007.01312.x.
519	Liu, S., Feng, Y., Li, H., (2023a). Degradation mechanism of saliferous compounding heavy metals-

520	organic wastewater by manganese and iron cycling in the microbial fuel cell. Chemical
521	Engineering Journal 473, 145389. https://doi.org/10.1016/j.cej.2023.145389.
522	Liu, XC., Zhang, KX., Song, JS., Zhou, GN., Li, WQ., Ding, RR., Wang, J., Zheng, X., Wang,
523	G., Mu, Y., (2023b). Tuning Fe ₃ O ₄ for sustainable cathodic heterogeneous electro-Fenton
524	catalysis by acetylated chitosan. Proceedings of the National Academy of Sciences 120(13),
525	e2213480120. https://doi.org/10.1073/pnas.2213480120.
526	Liu, Z., Zhao, Y., Zhang, B., Wang, J., Zhu, L., Hu, B., (2023c). Deterministic Effect of pH on Shaping
527	Soil Resistome Revealed by Metagenomic Analysis. Environmental Science & Technology
528	57(2), 985-996. https://doi.org/10.1021/acs.est.2c06684.
529	Ma, S., Mao, S., Shi, J., Zou, J., Zhang, J., Liu, Y., Wang, X., Ma, Z., Yu, C., (2024). Exploring the
530	synergistic interplay of sulfur metabolism and electron transfer in Cr(VI) and Cd(II) removal by
531	Clostridium thiosulfatireducens: Genomic and mechanistic insights. Chemosphere 352, 141289.
532	https://doi.org/10.1016/j.chemosphere.2024.141289.
533	Morais, P.V., Branco, R., Francisco, R., (2011). Chromium resistance strategies and toxicity: what makes
534	Ochrobactrum tritici 5bvl1 a strain highly resistant. BioMetals 24(3), 401-410.
535	https://doi.org/10.1007/s10534-011-9446-1.
536	Morales-Benítez, I., Montoro-Leal, P., García-Mesa, J.C., López Guerrero, M.M., Vereda Alonso, E.,
537	(2023). New magnetic chelating sorbent for chromium speciation by magnetic solid phase
538	extraction on-line with inductively coupled plasma optical emission spectrometry. Talanta 256,
539	124262. https://doi.org/10.1016/j.talanta.2023.124262.
540	Qian, X., Fang, C., Huang, M., Achal, V., (2017). Characterization of fungal-mediated carbonate
541	precipitation in the biomineralization of chromate and lead from an aqueous solution and soil.
542	Journal of Cleaner Production 164, 198-208.
543	https://doi.org/https://doi.org/10.1016/j.jclepro.2017.06.195.
544	Rani, L., Kaushal, J., Lal Srivastav, A., (2022). Biochar as sustainable adsorbents for chromium ion
545	removal from aqueous environment: a review. Biomass Conversion and Biorefinery.
546	https://doi.org/10.1007/s13399-022-02784-8.
547	Sardans, J., Peñuelas, J., (2005). Drought decreases soil enzyme activity in a Mediterranean Quercus ilex
548	L. forest. Soil Biology and Biochemistry 37(3), 455-461.
549	https://doi.org/10.1016/j.soilbio.2004.08.004.
550	Shatalin, K., Nuthanakanti, A., Kaushik, A., Shishov, D., Peselis, A., Shamovsky, I., Pani, B.,
551	Lechpammer, M., Vasilyev, N., Shatalina, E., Rebatchouk, D., Mironov, A., Fedichev, P.,
552	Serganov, A., Nudler, E., (2021). Inhibitors of bacterial H ₂ S biogenesis targeting antibiotic
553	resistance and tolerance. Science 372(6547), 1169-1175.
554	https://doi.org/10.1126/science.abd8377.
555	Sundarraj, S., Sudarmani, D.N.P., Samuel, P., Sevarkodiyone, S.P., (2023). Bioremediation of hexavalent
556	chromium by transformation of Escherichia coli DH5a with chromate reductase (ChrR) genes
557	of Pseudomonas putida isolated from tannery effluent. Journal of Applied Microbiology 134(1),
558	lxac019. https://doi.org/10.1093/jambio/lxac019.
559	Thapa, B.S., Kim, T., Pandit, S., Song, Y.E., Afsharian, Y.P., Rahimnejad, M., Kim, J.R., Oh, SE., (2022).
560	Overview of electroactive microorganisms and electron transfer mechanisms in microbial
561	electrochemistry. Bioresource Technology 347, 126579.

562	https://doi.org/https://doi.org/10.1016/j.biortech.2021.126579.
563	Wang, C., Jia, Y., Li, J., Li, P., Wang, Y., Yan, F., Wu, M., Fang, W., Xu, F., Qiu, Z., (2023a). Influence
564	of microbial augmentation on contaminated manure composting: metal immobilization, matter
565	transformation, and bacterial response. J. Hazard. Mater. 441, 129762.
566	https://doi.org/https://doi.org/10.1016/j.jhazmat.2022.129762.
567	Wang, C., Jia, Y., Li, J., Wang, Y., Niu, H., Qiu, H., Li, X., Fang, W., Qiu, Z., (2023b). Effect of
568	bioaugmentation on tetracyclines influenced chicken manure composting and antibiotics
569	resistance. Science of The Total Environment 867.
570	https://doi.org/10.1016/j.scitotenv.2023.161457.
571	Wang, C., Jia, Y., Li, J., Wang, Y., Niu, H., Qiu, H., Li, X., Fang, W., Qiu, Z., (2023c). Effect of
572	bioaugmentation on tetracyclines influenced chicken manure composting and antibiotics
573	resistance. Science of The Total Environment 867, 161457.
574	https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.161457.
575	Wang, C., Li, Y.Z., Tan, H., Zhang, A.K., Xie, Y.L., Wu, B., Xu, H., (2019). A novel microbe consortium,
576	nano-visible light photocatalyst and microcapsule system to degrade PAHs. Chemical
577	Engineering Journal 359, 1065-1074. https://doi.org/10.1016/j.cej.2018.11.077.
578	Wang, C., Tan, H., Li, H., Xie, Y., Liu, H., Xu, F., Xu, H., (2020a). Mechanism study of Chromium
579	influenced soil remediated by an uptake-detoxification system using hyperaccumulator, resistant
580	microbe consortium, and nano iron complex. Environ. Pollut. 257, 113558.
581	https://doi.org/10.1016/j.envpol.2019.113558.
582	Wang, C., Zhou, Z., Liu, H., Li, J., Wang, Y., Xu, H., (2017). Application of acclimated sewage sludge
583	as a bio-augmentation/bio-stimulation strategy for remediating chlorpyrifos contamination in
584	soil with/without cadmium. Science of The Total Environment 579, 657-666.
585	https://doi.org/10.1016/j.scitotenv.2016.11.044.
586	Wang, K., Jia, R., Li, L., Jiang, R., Qu, D., (2020b). Community structure of Anaeromyxobacter in Fe(III)
587	reducing enriched cultures of paddy soils. Journal of Soils and Sediments 20(3), 1621-1631.
588	https://doi.org/10.1007/s11368-019-02529-7.
589	Wang, Q., Song, X., Wei, C., Jin, P., Chen, X., Tang, Z., Li, K., Ding, X., Fu, H., (2022). In situ
590	remediation of Cr(VI) contaminated groundwater by ZVI-PRB and the corresponding
591	indigenous microbial community responses: a field-scale study. Science of The Total
592	Environment 805, 150260. https://doi.org/10.1016/j.scitotenv.2021.150260.
593	Yaashikaa, P.R., Kumar, P.S., Jeevanantham, S., Saravanan, R., (2022). A review on bioremediation
594	approach for heavy metal detoxification and accumulation in plants. Environmental Pollution
595	301, 119035. https://doi.org/10.1016/j.envpol.2022.119035.
596	Yang, Y., Wang, H., Zheng, Y., Zhu, B., Wu, X., Zhao, F., (2020). Extracellular electron transfer of
597	Methylophilus methylotrophs. Process Biochemistry 94, 313-318.
598	https://doi.org/10.1016/j.procbio.2020.05.001.
599	Yin, Y., Chen, Y., Wang, J., (2021). Co-fermentation of sewage sludge and algae and Fe ²⁺ addition for
600	enhancing hydrogen production. International Journal of Hydrogen Energy 46(13), 8950-8960.
601	https://doi.org/10.1016/j.ijhydene.2021.01.009.
602	Zhang, J., Liu, Y., Sun, Y., Wang, H., Cao, X., Li, X., (2020). Effect of soil type on heavy metals removal
603	in bioelectrochemical system. Bioelectrochemistry 136, 107596.

604	https://doi.org/https://doi.org/10.1016/j.bioelechem.2020.107596.
605	Zhang, Y., Gu, A.Z., Cen, T., Li, X., He, M., Li, D., Chen, J., (2018). Sub-inhibitory concentrations of
606	heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in
607	water environment. Environmental Pollution 237, 74-82.
608	https://doi.org/10.1016/j.envpol.2018.01.032.
609	Zhang, Y., Shen, G., Hu, S., He, Y., Li, P., Zhang, B., (2021). Deciphering of antibiotic resistance genes
610	(ARGs) and potential abiotic indicators for the emergence of ARGs in an interconnected lake-
611	river-reservoir system. Journal of Hazardous Materials 410, 124552.
612	https://doi.org/10.1016/j.jhazmat.2020.124552.
613	Zhang, Y., Zheng, S., Hao, Q., Wang, O., Liu, F., (2023). Respiratory electrogen Geobacter boosts
614	hydrogen production efficiency of fermentative electrotroph Clostridium pasteurianum.
615	Chemical Engineering Journal 456, 141069. https://doi.org/10.1016/j.cej.2022.141069.
616	Zhu, J., Zhang, T., Zhu, N., Feng, C., Zhou, S., Dahlgren, R.A., (2019). Bioelectricity generation by
617	wetland plant-sediment microbial fuel cells (P-SMFC) and effects on the transformation and
618	mobility of arsenic and heavy metals in sediment. Environmental Geochemistry and Health
619	41(5), 2157-2168. https://doi.org/10.1007/s10653-019-00266-x.
620	

31