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Abstract. Anthropogenic greenhouse gas emissions cause multiple changes in the ocean and its ecosystems through climate 

change and ocean acidification. These changes can occur progressively with rising atmospheric carbon dioxide concentrations, 15 

but there is also the possibility of large-scale abrupt, and/or potentially irreversible changes, which would leave limited 

opportunity for marine ecosystems to adapt. Such changes, either progressive or abrupt, pose a threat to biodiversity, food 

security, and human societies. However, it remains notoriously difficult to determine exact limits of a “safe operating space” 

for humanity. Here, we map, for a variety of ocean impact metrics, the crossing of limits, which we define using the available 

literature and to represent a wide range of deviations from the unperturbed state. We assess the crossing of these limits in three 20 

future emission pathways: two climate mitigation scenarios, including an overshoot scenario, and one high-emission no-

mitigation scenario. These scenarios are simulated by the latest generation of Earth system models and large perturbed-

parameter ensembles with two Earth system models of intermediate complexity. Using this comprehensive model database, 

we estimate when and at which warming level 4 mitigation limits based on expert judgement for 14 different impact metrics 

are exceeded along with an assessment of uncertainties. We find that under the high-emissions scenario, the two highest limits 25 

are exceeded with high confidence for the marine heatwaves’ duration, expansion of ocean areas that are undersaturated with 

respect to aragonite, decreases in plankton biomass, and loss of Arctic summer sea ice extent. The probability of exceeding a 

given limit generally decreases clearly under low-emissions scenario. Yet, exceedance of ambitious limits related to Arctic 

aragonite undersaturation, plankton biomass, and Arctic summer sea ice extent are projected to be difficult to avoid (high 

confidence) even under the low-emissions scenario. The scenario including a temporary overshoot reduces with high 30 

confidence the risk of exceeding mitigation limits by year 2100 related to the marine heatwave duration, metabolic index, 

plankton biomass, Atlantic meridional overturning circulation, aragonite undersaturation, global deoxygenation, and Arctic 
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summer sea ice extent compared to the high-emissions scenario. Our study highlights the urgent need for ambitious mitigation 

efforts to minimize extensive impacts and potentially irreversible changes to the world's oceans and ecosystems. 

1 Introduction 35 

Earth system models (ESMs) are invaluable tools to simulate the climate outcomes of future emission pathways. However, 

due to computational constraints, ESMs are limited in terms of spatial resolution and complexity of represented processes 

(Chen et al., 2021). Consequently, it remains notoriously difficult to assess climate change impacts that occur at smaller scales 

or in systems that are not exhaustively represented in ESMs, for example, marine ecosystems. Large-scale changes in important 

drivers of marine ecosystem processes (for example, warming, deoxygenation, and acidification) are often taken as a measure 40 

of potential ecosystem damage (“ecosystem stressors”). As such changes will usually occur simultaneously, the term “multiple 

potential ecosystem stressors” has been coined to describe the threat that climate change poses to marine ecosystems (Bopp et 

al., 2013; Gattuso et al., 2015; Gruber, 2011; Kwiatkowski et al., 2020). 

Although it is generally well-known which climate variables will have an adverse impact on ecosystems and societies if they 

are altered by human activity, exact limits that should not be exceeded are often difficult to define. This might be the case 45 

either because impacts occur gradually with changes in a driver variable (and it thus remains an ethical or economic question 

how much damage can be accepted), or because a limit exists but is uncertain. The latter will be the case if tipping points exist 

in the system, a crossing of which will lead to large and irreversible changes (e.g., Lenton et al., 2008; Armstrong McKay et 

al., 2022). For ecosystems in particular, the possibility exists that gradual changes in the physical or biogeochemical state lead 

to the crossing of tipping points (Heinze et al., 2021). Nevertheless, our knowledge on the impacts of these changes on marine 50 

ecosystems is growing. Thermal changes induced by global warming are altering the productivity of phytoplankton functional 

types and reshape established interspecific competition in marine ecosystems (Kordas et al., 2011; Dutkiewicz et al., 2013; 

Anderson et al., 2021). The shoaling of the calcium carbonate (CaCO3) saturation horizon due to ocean acidification is 

threatening calcifying organisms (Orr et al., 2005; Doney et al., 2020). Ocean deoxygenation and the expansion of oxygen 

minimum zones contribute to marine aerobic habitat loss (Diaz and Rosenberg, 2008; Pinsky et al., 2020; Morée et al., 2023; 55 

Fröb et al., 2024). Shifting circulation patterns affect fish migrations and human societies (Van Gennip et al., 2017; Schwinger 

et al., 2022). Finally, upper-ocean stratification changes alter ocean primary productivity and community structures by 

exacerbating surface nutrient depletion (e.g., Fu et al., 2016). 

In this study, we follow the approach of Steinacher et al. (2013) and define a set of 14 impact metrics associated to 4 mitigation 

limits. We aim at determining the probability of staying within a given mitigation limit based on scenario simulations from 60 

state-of-the-art Earth system models from the latest Coupled Model Intercomparison Project (CMIP6), while earlier studies 

addressing multiple limits relied on perturbed parameter ensembles from Earth system models of intermediate complexity 

(EMICs) (e.g., Steinacher et al., 2013; Battaglia and Joos, 2018). As an original aspect of our study, we also include results 

from perturbed parameter ensembles of two EMICs for comparison with our CMIP6 model ensemble.  
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2 Method 65 

2.1 Definition of impact metrics and mitigation limits 

We consider 14 illustrative impact metrics, and each of them are associated with 4 mitigation limits (Table 1). Mitigation limits 

are ordered according to the expected severity of impacts when exceeding the limit, that is, exceeding mitigation limit 4 for a 

given metric is expected to result in more severe impacts than exceeding mitigation limit 1, and correspondingly, staying under 

limit 1 is more ambitious because a higher emission reduction would be needed to stay below this limit. Mitigation limits at a 70 

given level are not necessarily dependent, i.e., they can be exceeded at different time and global warming levels. 

A literature review combining observations with simulation studies on critical limits and thresholds in the ocean system is 

conducted to define the impact metrics and mitigation limits. While the aim of this study is to define mitigation limits based 

as much as possible on the literature, many metrics suffer from a lack of knowledge regarding the assessment of actual impacts 

that an exceedance would have on the Earth system or ecosystem functioning. Some physical metrics have been more 75 

thoroughly investigated, while biogeochemical metrics are less constrained. Observations and laboratory experiments suggest 

numerous critical limits for key ecosystem stressors. Moreover, these limits are species-dependent and can vary over a wide 

range. Thus, for some metrics, we favour illustrative limits for relative changes to characterise reasonably safe levels instead 

of absolute changes. These choices could be refined with future research and further dialogue with stakeholders. If the literature 

does not permit to define mitigation limits for a specific metric, then we use ad hoc limits that cover the simulated mitigation 80 

space from very strong mitigation to very little or no mitigation effort. 

The impact metrics include five physical parameters, related to surface atmospheric warming, marine heatwaves, steric sea 

level rise, sea ice extent, and the Atlantic Meridional Overturning Circulation (AMOC), five chemical parameters, related to 

global and regional ocean acidification and deoxygenation, and four ecosystem parameters, related to productivity, biomass, 

organic matter export, and metabolic performance. 85 

 

Physical metrics 

Global mean surface air temperature (SAT) is an important metric of the climate system and has strong and direct influences 

on ecosystems as well as human systems, i.e., many other important indicators and metrics co-vary with temperature. We pick 

the mitigation limits of 1.5°C and 2°C increase since the 1850-1900 mean based on the Paris agreement (UNFCCC, 2015). 90 

Two additional limits of 3°C and 4°C represent temperature limits beyond which severe impacts and the triggering of global 

tipping elements could be possible (Armstrong McKay et al., 2022; Masson-Delmotte et al., 2021). These limits for global 

mean SAT increase have also been previously used in Steinacher et al. (2013). We consider marine heatwaves due to their 

strong global and regional impact on marine ecosystems (Oliver et al., 2021). We define a marine heatwave day as the local 

daily mean sea surface temperature (CMIP6 variable tos) above the 90th percentile relative to a fixed seasonally varying 1850-95 

1900 baseline. Then we average globally the duration over the year. Because such global metric is poorly constrained by 
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observations, we spread evenly the mitigation limit values over the year as 90, 180, 270, and 360 (i.e., permanent heatwave) 

days.  

The third physical metric chosen is the rise of steric sea level (SSL). Sea level is rising and accelerating, which poses a 

significant challenge to coastal ecosystems and community livelihoods. We are only considering the SSL rise because the 100 

models used in our study do not simulate the melting of glaciers and ice sheets. While strongly connected to global warming, 

SSL rise shows a delayed response due to the various time scales on which its components operate. The SSL rise is 

approximated to be 40 % of the total sea-level rise of 0.2 m today (Church et al., 2011; Fox-Kemper et al., 2021; WCRP Global 

Sea Level Budget Group, 2018). O’Neill et al. (2017) estimate that risks related to SSL rise are at a moderate level at about 

0.1 m above the 1986-2005 level, and transition to high risks are expected at around 1 m above the same reference level. Hinkel 105 

et al. (2014) find that under no adaption, 0.25-1.23 m of global sea-level rise (i.e., 0.1 to 0.5 m of SSL rise assuming a constant 

steric to sea level rise ratio) in 2100 would expose 0.2 - 4.6 % of the global population to flooding annually. Hermans et al. 

(2021) found a mean SSL rise of 0.27 m in 2100 simulated by CMIP5 and CMIP6 ensembles under high-emissions scenarios. 

Thus, we chose to define the four limits as 0.2, 0.3, 0.4, and 0.5 m relative to the period 1850-1900, to encompass the range 

found in the literature. 110 

Changes in summer Arctic sea-ice extent have a direct impact on the climate system through the albedo feedback. Furthermore, 

a substantial reduction of Arctic sea ice could threaten the livelihood of organisms that depend upon habitats provided by sea 

ice. Arctic sea ice is projected to decline, and an ice-free summer state is a possibility even with a stabilised global warming 

of 1.5°C (~1 % chance of individual ice-free years by the end of the century; Pörtner et al., 2019). The ice-free state is defined 

as a September sea ice extent below 106 km2. We further define three more limits up to 4 x 106 km2 following the projected 115 

range from Stroeve et al. (2012) and Peng et al. (2020). The 4 x 106 km2 limit has already been reached in 2012 and 2020. 

A collapse of the Atlantic meridional overturning circulation (AMOC) is often considered a more distant tipping point (Lenton, 

2012) even though recent literature estimated that we cannot rule out that AMOC is on course to collapse (Van Westen et al., 

2024). The estimated probabilities from expert elicitation for the shutdown of AMOC (until 2100) is 0-0.2 for low (<2°C), 0-

0.6 for medium (2-4°C), and 0.05-0.95 for high climate change (4-8°C), according to Zickfeld et al. (2007) and Kriegler et al. 120 

(2009). A weakening of the AMOC this century is expected (Pörtner et al., 2019; Fox-Kemper et al., 2021), which can cause, 

for example, changes in the rainfall, storm frequency in Northern Europe and a decrease in marine productivity in the North 

Atlantic (Pörtner et al., 2019). The four limits are chosen to cover a typical range of model responses (Weaver et al., 2012; 

Weijer et al., 2020). We compute the strength of the AMOC as the vertical maximum of the stream function at 26°N below 

500 m depth. 125 

 

Ocean acidification metrics 

Ocean Ω aragonite (Ωarag), or the level of saturation of the least-stable form of calcium carbonate in seawater, is a common 

indicator of the potential for biotic calcification. Ocean acidification could lead to undersaturation (Ωarag<1) and dissolution of 

calcium carbonate in parts of the surface ocean during the 21st century, which might have detrimental effects on marine 130 
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ecosystems (Orr et al., 2005). Studies have shown that no prominent present-day coral reefs exist in environments with Ωarag<3 

(Guinotte et al., 2003; Hoegh-Guldberg et al., 2007; Kleypas et al., 1999). A lower limit of 1.5 has been used previously to 

signify water which may be stressful to larvae of shellfish such as oysters (Ekstrom et al., 2015; Gimenez et al., 2018). For 

Ωarag<1.5, marine organisms are believed to have trouble forming shells during the first few days of their life (Waldbusser et 

al., 2015). Guinotte et al. (2006) estimated that over 95 % of cold water bioherm-forming corals were found in areas that were 135 

supersaturated (Ωarag>1). We define three ocean acidification metrics in terms of area fractions. The first two metrics, ASO and 

AArctic, are respectively the surface area fractions of the Southern Ocean (south of 50°S) and the Arctic Ocean (north of 70°N) 

undersaturated with respect to aragonite (Ωarag<1; annual mean), which means that seawater becomes corrosive to aragonitic 

shells of marine organisms (Doney et al., 2009; Fabry et al., 2009). The selected limits for these metric range from 20 % to 80 

% following Steinacher et al. (2009, 2013). The third ocean acidification metric, AΩ>3, addresses areas with high saturation 140 

states (Ωarag>3) that are mainly found in the tropics and subtropics. We define this variable as the percentage of the global 

ocean surface area with Ωarag>3 that has been lost since pre-industrial times and select limits from 50 % to 100 % (Steinacher 

et al., 2013). 

To account for carbonate chemistry biases in the present-day mean state simulated by the CMIP6 ESMs, we follow the 

methodology of Terhaar et al. (2020). Changes in aragonite saturation state (Ωarag) have been computed offline using mocsy 145 

2.0 (Orr and Epitalon, 2015) from regridded annual CMIP6 model outputs of dissolved inorganic carbon (DIC), alkalinity, sea 

water temperature (T), and sea water salinity (S). These modelled changes have then been added to the contemporary saturation 

state that we derived from the observation-based GLODAPv2 data product for DIC and alkalinity (Lauvset et al., 2016), and 

the World Ocean Atlas 2013 for T and S (Locarnini et al., 2013; Zweng et al., 2013).  

 150 

Other biogeochemical metrics 

Marine species have been observed to die after exposure to a wide range of critical O2 levels, from 8.6 mg O2 L-1 (ca. 275 μmol 

L-1) to anoxia (Vaquer-Sunyer and Duarte, 2008). Critical O2 levels are species- and stage-specific (Ekau et al., 2010), making 

it challenging to define common limits. Globally, dissolved O2 is projected to decline by 1.81 to 3.45 % by year 2100 under 

CMIP5 representative concentration pathways (RCP) (Bopp et al., 2013). Subsurface (100-600 m) O2 is projected to decline 155 

by 3.1-4 % under RCP8.5 and 0.1-0.5 % under RCP2.6. The projected decline in the subsurface (100-600 m) dissolved O2 

concentration for CMIP6 models under CMIP6 shared socioeconomic pathways (SSP) vary from -6.36 to -13.27 μmol L-1 by 

the end of the century (Kwiatkowski et al., 2020). The equivalent range for CMIP5 models under RCP scenarios is from -3.71 

to -9.51 μmol L-1. Due to large differences between models and when compared to observations, we decided to define relative 

limits for two metrics: mean global full-depth O2 concentration and volume of hypoxic waters above 1000 m depth (i.e., waters 160 

with <63 μmol L -1; Limburg et al., 2020). 

The decline of marine net primary productivity (NPP) is considered one of the main stressors of open ocean ecosystems (Bopp 

et al., 2013). Mitigation limits for marine NPP are defined in terms of relative changes for the same reason as above. 

Kwiatkowski et al. (2020) shows changes from -0.56 ± 4.12 % under SSP1-2.6 to -2.99 % ± 9.11 % under SSP5-8.5 for CMIP6 
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models, while the range for CMIP5 models is from -3.42 ± 2.47 % under RCP2.6 to -8.54 ± 5.88 % under RCP8.5 until year 165 

2100. Thus, we set the limits to 2, 3.5, 4 and 8 % relative to 1850-1900. In addition to NPP, we consider changes in plankton 

biomass (ΔBiomass) because projected plankton biomass has been considered as a more robust metric reflecting the impact of 

climate change on marine ecosystems (Bopp et al., 2022; Tittensor et al., 2021). The ΔBiomass metric represents the change 

in the sum of phytoplankton and zooplankton biomass (CMIP6 variables zooc and phyc) and its limits are the same as those 

for NPP. 170 

We consider changes in the upper ocean metabolic index and changes in POM export between 30°S and 30°N as indicators of 

the compound effects of warming and oxygen changes on viable habitat and the survival of marine species (Battaglia and Joos, 

2018). The metabolic index, Φ, is defined as the ratio of O2 supply to an organism’s resting O2 demand. Warming ocean and 

lower partial pressure of O2 is expected to reduce the globally averaged upper ocean metabolic index, which was shown to 

restrict viable habitats (Deutsch et al., 2015). Φ has been calculated using the mean ecophysiotype of the 61 species used in 175 

Fröb et al. (2024) and further described in Deutsch et al. (2020).  The export of particulate organic material is the primary food 

source for deep-sea organisms. Thus, the POM export between 30°S and 30°N serves as an indicator of food availability in 

deep sea habitats. The limits of 4, 6, 8, and 10 % for these two indicators are based on the result of Battaglia and Joos (2018). 

 
Table 1. Impact metrics and corresponding mitigation limits for changes until year 2100. Mitigation limits that are considered for 180 
ESMs only are marked with an asterisk. 

Impact metric Description Level 1 Level 2 Level 3 Level 4 Unit 

ΔSAT Increase in mean annual global surface 

atmospheric temperature relative to 1850-

1900 

1.5 2 3 4 °C 

MHW* Global mean duration of marine heatwaves 

within a year 

90 180 270 360 day 

ΔSSL Mean annual steric sea level rise relative to 

1850-1900 

0.2 0.3 0.4 0.5 m 

SIE* Arctic September sea-ice extent 4 3 2 1 106 km2 

ΔAMOC Change in mean annual strength of the 

AMOC relative to 1850-1900 

-20 -25 -30 -40 % 

ASO Mean annual area proportion of Southern 

Ocean surface waters (south of 50°S) with 

aragonite undersaturation (Ωarag<1) 

20 40 60 80 % 
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AArctic Mean annual area proportion of Arctic 

Ocean surface waters (north of 70°N) with 

aragonite undersaturation (Ωarag<1) 

20 40 60 80 % 

AΩ<3 Mean annual area proportion of global 

ocean surface waters with Ωarag<3 

50 70 90 100 % 

Subsurface ΔO2 Change in mean annual volume of hypoxic 

waters (<63 umol L-1) above 1000 m 

relative to 1850-1900 

2 4 6 8 %  

Global ΔO2 Change in mean annual global O2 content 

relative to 1850-1900 

-1.8 -2.4 -2.6 -3.5 % 

ΔNPP* Change in mean annual depth-integrated 

net primary production relative to 1850-

1900 

-2 -3.5 -4 -8 % 

ΔBiomass* Change in mean annual depth-integrated 

plankton biomass relative to 1850-1900 

-2 -3.5 -4 -8 % 

ΔΦ Change in mean annual upper-ocean (depth 

< 400 m) metabolic index relative to 1850-

1900 

-5 -10 -15 -20 % 

ΔPOM Change in mean annual particulate organic 

matter flux at 100 m depth (30°N-20°S) 

relative to 1850-1900 

-4 -6 -8 -10 % 

 

2.2 CMIP6 Earth system model ensemble 

Our CMIP6 model ensemble is composed of 9 ESMs (Table 2). This ensemble is based on the one used in Canadell et al. 

(2021), but excluding model family duplicates, and using the variant r1i1p1f1 (or equivalent). We use 3 scenarios from CMIP6 185 

covering the period 2015-2100, which are initialized from the end of the historical simulation (1850 to 2014) that is based on 

estimates of historical forcings (O’Neill et al., 2016). These scenarios cover very different possible futures: The low-emission 

high-mitigation scenario SSP1-2.6 assumes that the world gradually shifts toward a more sustainable pathway, and that early 

and consistent climate mitigation limits the end-of-century radiative forcing to 2.6 W m-2. In contrast, the SSP5-8.5 scenario 

assumes resource-intensive, strong economic growth based on the exploitation of fossil fuel reserves and no climate mitigation. 190 

The very high CO2 emissions in this scenario lead to a radiative forcing of 8.5 W m-2 at the end of this century. The SSP5-3.4-

OS scenario follows the SSP5-8.5 pathway up to year 2040. Then, strong climate mitigation policies are implemented, 

including carbon dioxide removal from the atmosphere, leading to a peak and decline in surface temperature and a final 
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radiative forcing level of 3.4 W m-2 in 2100. To use the same model ensemble for all scenarios, we excluded models that do 

not provide SSP5-3.4-OS. 195 

 
Table 2. CMIP6 ensemble and variable availability per model. 

Model Reference Variable availability 

ACCESS-ESM1-5 Ziehn et al. (2020) SAT, SIE, O2, Φ, MHW, AMOC, Ωarag, SSL, POM, NPP 

CanESM5 Swart et al. (2019) SAT, SIE, O2, Φ, MHW, Biomass, AMOC, Ωarag, SSL, POM 

CESM2-WACCM Danabasoglu et al. (2020) SAT, SIE, Biomass, AMOC, Ωarag, POM, NPP 

CMCC-ESM2 Cherchi et al. (2019) SAT, O2, Φ, MHW, Biomass, Ωarag, SSL, POM, NPP 

CNRM-ESM2-1 Séférian et al. (2019) SAT, SIE, O2, Φ, MHW, Biomass, AMOC, Ωarag, SSL, POM, NPP 

IPSL-CM6A-LR Boucher et al. (2020) SAT, SIE, O2, Φ, Biomass, AMOC, Ωarag, SSL, POM, NPP 

MIROC-ES2L Hajima et al. (2020) SAT, SIE, O2, Φ, Biomass, AMOC, Ωarag, POM, NPP 

NorESM2-LM Seland et al. (2020) SAT, SIE, O2, Φ, MHW, Biomass, AMOC, Ωarag, SSL, POM, NPP 

UKESM1-0-LL Sellar et al. (2019) SAT, SIE, O2, Φ, MHW, Biomass, Ωarag, SSL, POM, NPP 

 

All ESM model outputs used in this study have been regridded to a 1°-resolution regular grid (360x180 grid cells) before 

analysis. Since most of the impact metrics are expressed as a change relative to the period 1850-1900, model biases would 200 

only be an issue for the analysis presented here if the response to forcing would significantly depend on the baseline state. 

However, we removed potential model drifts from two sensitive metrics (ΔSSL and Global ΔO2) by calculating the difference 

between the projected signal and its equivalent from the corresponding preindustrial experiment (piControl). As previously 

described, the impact metrics related to aragonite saturation state are also bias-corrected. 

For all impact metrics, time series have been smoothed using a 20-year running mean before identifying the years and global 205 

warming levels when a certain mitigation limit is exceeded. The exceedance is identified by the time and global warming level 

at which a given mitigation limit is exceeded for the first time. This definition does not account for “overshooting” limits of 

an impact metric. Cases where a limit is first exceeded, but the system returns to a state below the limit later in time, is counted 

as an exceedance. Nevertheless, we provide analysis that allows for identifying cases where such overshooting of limit happens 

(Figs. 3 and 4). Our analysis is complicated by the fact that some mitigation limits might be exceeded by only a part of all 210 

available models or ensemble members, while other mitigation limits might be exceeded by all models or ensemble members 

within the time horizon of the scenario simulations (until 2100). A model that does not exceed a given mitigation limit does 

not provide any information on the time of exceedance. Consequently, our exceedance estimates are characterised in terms of 

uncertainty and confidence. We define exceedance uncertainty as the interquartile range of an exceedance estimate in a given 

model ensemble for a given experiment, impact metric, and limit. We define exceedance confidence as the proportion of 215 

models exceeding a mitigation limit across all models that provide data for a given impact metric and limit. We assign high 
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confidence to an estimate of exceedance time (or warming level) if a mitigation limit is exceeded by at least 80 % of our 

CMIP6 ensemble (i.e., at least 8 out of 9 ESMs) or of the ensemble members of an individual EMIC, medium confidence if 

50-79 % of the models or ensemble members exceed the limit, and low confidence if less than 50 % of models or ensemble 

members exceed the limit. One complication related to this methodology is that exceedance time (or warming levels) can be 220 

based on a different ensemble of ESMs for different scenarios, particularly if the exceedance estimates have different 

confidence levels. This could have been avoided by using ensemble means, and uncertainty intervals such as ensemble standard 

deviation to define exceedances, but a lot of information on the distribution of exceedances within the ensemble would have 

been lost leading to an underestimation of the resulting exceedance uncertainty. We will further discuss this issue below with 

some examples. We note that there are small differences as to which CMIP6 ESMs can be used for which metric, since not all 225 

models provide all data necessary for all impact metrics (Table 2). 

2.3 Large perturbed-parameter ensembles from two Earth System Models of Intermediate Complexity 

In addition to output from CMIP6 ESMs, we also analyse scenario simulations of two Earth system models of intermediate 

complexity (EMICs), the Bern3D-LPX model and the University of Victoria Earth System Climate Model (UVic). Both 

EMICs have simulated large perturbed-parameter ensembles to estimate the range of parametric (model) uncertainty. The 230 

EMIC perturbed-parameter ensembles were run over the historical period as well as for the SSP1-2.6, SSP5-3.4-OS, and SSP5-

8.5 scenarios. Ensemble generation, sampled parameters, and calculation of ensemble member skill scores differ between the 

two models and are briefly outlined below. 

 

Bern3D-LPX model 235 

The model setup, ensemble generation, and evaluation as well as the experimental protocol of the Bern3D-LPX ensemble are 

the same as detailed in Jeltsch-Thömmes et al. (2024). The model features a three-dimensional dynamic ocean (Edwards et al., 

1998; Müller et al., 2006) including sea-ice, a single-layer energy and moisture balance model of the atmosphere (Ritz et al., 

2011), and a comprehensive terrestrial biosphere component (LPX-Bern v1.5) with dynamic vegetation, fire, nitrogen, nitrous 

oxide, methane, permafrost, peatland, and land-use modules (Lienert and Joos, 2018). 240 

The sampling approach for the perturbed-parameter ensemble builds upon work by Steinacher et al. (2013) and is used 

thereafter in several follow-up studies (e.g., Steinacher and Joos, 2016; Battaglia et al., 2016; Battaglia and Joos, 2018; Lienert 

and Joos, 2018). A 1000-member perturbed parameter ensemble is generated from the prior distributions of 27 key model 

parameters using Latin hypercube sampling (Mckay et al., 2000; Steinacher et al., 2013). 

To reduce uncertainties, we exploit a broad set of observation-based data (Fig. A1) to constrain the model ensemble to 245 

realisations that are compatible with observations, thereby probing both the mean state and the transient response in space and 

time of the ensemble members. Further details on the methods used to constrain the Bern3D-LPX model ensemble with 

observations are provided in Jeltsch-Thömmes et al. (2024).  
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UVic ESCCEM v2.10 250 

The UVic ESCM v2.10 (Mengis et al., 2020; Weaver et al., 2001) has a three dimensional ocean with a horizontal resolution 

of 3.6° longitude, 1.8° latitude, and 19 vertical levels. The atmosphere is a two-dimensional energy-moisture balance model 

with the same horizontal resolution. The oceanic physics follows the Modular Ocean Model version 2 (MOM2) (Pacanowski, 

1996) and the ocean biogeochemistry model is outlined by (Keller et al., 2012). A thermodynamic-dynamic sea ice model 

(Bitz et al., 2001) employing elastic visco-plastic rheology (Hunke and Dukowicz, 1997) is coupled to the ocean. The 255 

atmosphere is represented by a two-dimensional atmospheric energy moisture balance model (Fanning and Weaver, 1996). 

The terrestrial component accounts for vegetation dynamics and incorporates five different plant functional types (Meissner et 

al., 2003). Additionally, the model includes a representation of permafrost carbon (MacDougall et al., 2017) using a diffusion-

based scheme, which approximates the process of cryoturbation. 

A 325-member perturbed parameter ensemble is generated using a multi-wave history matching approach (Andrianakis et al., 260 

2015; Bower et al., 2010). History matching (HM), or iterative refocusing, is based on running an ensemble in a predefined 

parameter space, using it to train statistical emulators that predict key metrics from the model output, and then using the 

emulator to identify the set of inputs that would give an acceptable match between the model output and the observed data. In 

our case, we performed six waves of 80 simulations each and compared model outputs with observations after each wave. 

Gaussian  Process (GP) emulators (Kennedy and O’Hagan, 2001; Rasmussen and Williams, 2005; Sacks et al., 1989) are then 265 

constructed to predict these outputs as functions of the perturbed parameters to reject regions of the input space which are 

unlikely to produce results consistent with observations. For each quantity that we compare to observation, an implausibility 

measure (Andrianakis et al., 2015; Williamson et al., 2015) is computed following Eq. (2): 

𝐼!(𝑥) 	=
"#!	%	&∗'(!(*),"

[.#	/	.$(*)	/	.%]&/(
,           (2) 

where 𝑔!(𝑥) is the function describing the relationship between a vector of model inputs 𝑥 and a specific model output 𝑗. Since 270 

we employ GP emulation, we have the expectation provided by the emulators 𝐸∗*𝑔!(𝑥)+. The corresponding observation is 𝑧!. 

The term 𝑉2, 𝑉3(𝑥), and 𝑉4 represent the variance associated with the observational uncertainty, the code uncertainty as given 

by the emulator, and the model discrepancy. The latter is simply defined as 10 % of the ensemble range due to the difficulty 

to estimate model discrepancy. The value of 𝐼 is large if it is unlikely for the model to produce an acceptable match with 

observation when using the input combination 𝑥. We adopt a similar approach as described in Jeltsch-Thömmes et al. (2024) 275 

for the Bern3D-LPX model to compute a score 𝑆 based on our calculated implausibility measure 𝐼!(𝑥). We generate a large 

Latin hypercube sampling plan and reject parameter combinations with emulated 𝐼!(𝑥) > 3. The emulated 1978-member 

ensemble was weighted using the score 𝑆 and used for all statistical computations in this work. 

https://doi.org/10.5194/egusphere-2024-2768
Preprint. Discussion started: 12 September 2024
c© Author(s) 2024. CC BY 4.0 License.



11 
 

3 Results and Discussion 

3.1 CMIP6 ESM 280 

The uncertainty, and confidence related to the time and global warming levels at which mitigation limits are exceeded are 

highly variable across impact metrics, limits, and scenarios (Figs. 1 and 2). The confidence in exceedance estimates decreases 

with higher mitigation limits (since generally less models exceed the higher mitigation limits), except for ASO and SIE. Almost 

all (except for ΔSSL and ASO) of the most ambitious mitigation limits (limit 1) are exceeded in the short- to mid-term (before 

2060) for all scenarios. If mitigation limit 1 is exceeded with high confidence (marked by full size black dots in Figs. 1 and 2) 285 

in all scenarios, the median time of exceedance is generally very similar across scenarios (ΔSAT, SIE, ΔBiomass, AArctic), 

because during earlier times the three scenarios share the same historical forcing or have only slightly diverged. Also, before 

2040, the two scenarios of the SSP5 family are identical by construction, such that if all models exceed a mitigation limit 

before 2040, the median exceedance time is identical for SSP5-3.4-OS and SSP5-8.5. Lower exceedance confidence and larger 

difference in the timing of exceedance are found for ΔPOM, ΔNPP, global ocean ΔO2, and subsurface ΔO2. The low 290 

confidence in exceedance of ΔNPP mitigation limits across all scenarios is consistent with the high uncertainty in ΔNPP 

projections found by Kwiatkowski et al. (2020), while, in contrast, the higher confidence for the metric ΔBiomass is consistent 

with the findings of Tittensor et al. (2021). Substantial uncertainties in ΔO2 were found in earlier multi-model studies (Cocco 

et al., 2013; Hameau et al., 2020). 

 295 

The varying exceedance confidence of some metrics and limits complicates the comparison across scenarios because of the 

difference in the number models contributing to the exceedance distribution. This can lead to counterintuitive results. For 

example, in Fig. 1, for the first limit of ΔPOM, the 25th percentile and the median of the exceedance years varies across 

scenarios before 2015 even though the historical period (1850-2014) is identical for all scenarios. On another hand, the 

exceedance distribution of the first limit of ΔBiomass shows earlier median exceedances under the low-emissions SSP1-2.6 300 

scenario because one model does not exceed the limit under SSP1-2.6 at all (MIROC-ES2L, not shown), while this model 

exceeds the same limit the latest under the high-emissions SSP5-8.5 scenario (year 2053). 
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Figure 1: Box plots showing the distribution of exceedance years for each mitigation limits of the impact metrics (abbreviations 305 
follow Table 1) for CMIP6 models. Green, purple and red colors depict the three scenarios historical-SSP1-2.6, historical–SSP5-3.4-
OS and historical–SSP5-8.5. Boxes’ lengths and circled black dots depict the interquartile range and the ensemble median, 
respectively. Whiskers extend to the most extreme data value that is not considered as an outlier (i.e., not greater than 1.5 times the 
interquartile range). Crosses indicate outliers. The size of the black dots indicates the exceedance confidence defined as the 
proportion of models exceeding a mitigation limit across the models providing data for a given impact metric (Full size: >80 %, half 310 
size: 50-80 %, small size: <50 %). 
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Figure 2: Same as Figure 1, but relative to global warming during this century instead of time. 

For the less ambitious mitigation limits, exceedance time estimates generally move towards later times and higher warming 315 

levels, and the exceedance confidence decreases (less models exceed the less ambitious mitigation limits). In the low emission 

scenario SSP1-2.6, limit 4 is not exceeded by more than 80 % of the CMIP6 ESMs for any of the impact metrics due to the 

low radiative forcing in SSP1-2.6 compared to, for example, SSP5-8.5 scenario. However, there are some metrics not following 

this behaviour: In Figure 2, the exceedance distribution of the fourth limit of subsurface ΔO2 under SSP1-2.6 is centred on 

lower global warming levels than the one of the third limit (Figure 2). This shift in the distribution is due to some models 320 

exceeding only the third limit, and consequently the exceedance confidence is lower for the fourth limit. Similarly, many 

exceedances occur at lower global warming level under SSP1-2.6 scenario compared to SSP5-8.5 scenario (e.g., in limit 2, 

ΔBiomass, ΔAMOC, ΔPOM, and global ΔO2). This is explained by the sustained but slow-paced changes of these metrics that 

eventually leads to an exceedance even under the global warming stabilization induced by SSP1-2.6 scenario.  
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If we focus on exceedance estimates that have a high confidence (i.e., where more than 80 % of models exceed the mitigation 325 

limit), we can provide an estimate of the time when mitigation limits are likely to be exceeded (Figs. 3 to 6). The first mitigation 

limit of AArctic is likely already passed in the CMIP6 model ensemble in all scenarios, consistent with the findings of Terhaar 

et al. (2021). The first mitigation limit of SIE is expected to be passed during 2013-2034 (median year 2023). So far, according 

to satellite-based estimates, Arctic summer sea-ice extent fell below 4 106 km2 only in 2012 and 2020 during the last decade 

(https://nsidc.org/, visited on March 14th, 2024). The fourth level of mitigation limits is exceeded with high confidence only 330 

for ASO in SSP5-3.4-OS and SSP5-8.5 as well as for SIE in SSP5-8.5. 

 

 
Figure 3: Proportion of models exceeding a given mitigation limit of the impact metrics compared to the available models for each 
metric. Abbreviations are included for SSP1-2.6 (L), SSP5-3.4-OS (OS) and SSP5-8.5 (H). 335 

Avoiding emissions as high as in the SSP5-8.5 scenario and following an emission pathway similar to SSP5-3.4-OS will likely 

avoid an exceedance of any of the mitigation limits for ASO, ΔPOM, and Global ΔO2 during this century. In addition, avoiding 
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the SSP5-3.4-OS scenario by early mitigation (as in SSP1-2.6) will likely avoid exceedances of any mitigation limit related to 

MHW, ΔBiomass, ΔΦ and ΔAMOC until year 2100. The mitigation limits of AΩ<3, AArctic, subsurface ΔO2, SIE, ΔSSL and 

ΔSAT are likely to be exceeded across all scenarios. The effect of ambitious mitigation in SSP5-3.4-OS after 2040 can be seen 340 

for ΔSAT, SIE, ΔAMOC, ΔSSL and ΔBiomass. For these metrics, some of the mitigation limits are first exceeded around 

mid-century, but later this exceedance is reversed. The uncertainty of ΔNPP, ΔPOM, global and subsurface ΔO2 projections 

does not allow us to conclude with confidence that none of the corresponding mitigation limits will be exceeded (Fig. 4). 

 

 345 
Figure 4: Time periods where mitigation limits are exceeded with high confidence according to the CMIP6 model ensemble (>80 % 
of models) for each impact metrics and for the scenarios SSP1-2.6 (L), SSP5-3.4-OS (OS) and SSP5-8.5 (H). 

In Figs. 5 and 6, the summary of high confidence exceedance estimates for all impact metrics is quite conservative, since (1) 

high confidence is defined as at least 80 % of models exceeding a limit (i.e., at least 8 out 9 models, which is practically 88 

%) and (2) medium confidence exceedances (where up to 79 % of the CMIP6 models would show an exceedance of a given 350 

mitigation limit) are not included. For the low-emission scenario, already the two most ambitious levels of limits of a few 

impact metrics (ΔSAT, SIE, AArctic, and AΩ<3) are exceeded with high confidence. In contrast, most of the mitigation limits are 

exceeded with high confidence in the high-emission SSP5-8.5 scenario, particularly toward 2100. The absence of high 

confidence in the exceedance for global and subsurface ΔO2 is explained partly by a model disagreement within our CMIP6 

ensemble. Another reason for low-to-medium confidence in the exceedance for global and subsurface ΔO2 and ΔSSL before 355 

year 2100 is that changes in subsurface and whole ocean parameters have been shown to accrue beyond year 2100 and 

aggravate over many centuries due to the long overturning time scales of the ocean (Battaglia and Joos, 2018). There is a very 

clear effect of the ambitious mitigation assumed in SSP5-3.4-OS after 2040 in all timeseries of impact metrics, such that the 

significantly lower exceedance rate of mitigation limits, particularly by the end of the century, clearly illustrated the benefits 

of stringent and ambitious mitigation. Some metrics show strong hysteresis under cumulative carbon emissions (Boucher et 360 

al., 2012; Jeltsch-Thömmes et al., 2020; Samanta et al., 2010; Santana-Falcón et al., 2023). Due to hysteresis, sustained 
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negative emissions are required to return to and stay under a specific limit, particularly for high climate sensitivities and peak-

and-decline scenarios with carbon dioxide removal (Jeltsch-Thömmes et al., 2020). This aspect needs to be emphasized in the 

case of our study due to the use of simulations ending in 2100. 

 365 
Figure 5: Exceedance of mitigation limits with high confidence (>80 % of the CMIP6 models) in the near-term (2021-2040), mid-
term (2041-2060) and long-term (2081-2100) periods under (left) SSP1-2.6, (right) SSP5-3.4-OS and (middle) SSP5-8.5 scenarios. 
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Figure 6: Same as Figure 5 according to global warming levels (1.5°C, 2°C and 3°C) under SSP5-8.5 scenario. 

3.2 EMIC & ESM comparison 370 

There is broad agreement for a range of variables on the limit exceedances between the CMIP6 and the two (skill-weighted) 

EMIC ensembles under SSP5-8.5, but also major disagreements are identified (Figs. 7 and 8). Note that the median and 

interquartile ranges are only given for those models or ensemble members that pass the limits. Thus, for a good agreement 

between ensembles both confidence and median needs to match. For the limit set 2, the median value of exceedance agrees 

within 25 years and 1°C for ΔAMOC, AΩ<3, AArctic, ASO, ΔPOM, and ΔSAT between the CMIP6 and the two EMIC ensembles. 375 

However, confidence is variable among ensembles. The two EMIC ensembles generally show systematically high confidence 

in limit exceedances in the first two limit sets (except UVic’s ΔΦ limit 2) while the CMIP6 ensemble shows 5 exceedances 

with medium confidence over the same limit sets. The CMIP6 ensemble shows somewhat larger warming than the EMIC 

ensemble with earlier exceedance but a smaller fraction of CMIP6 models exceeding the limits than the (skill-score weighted) 

EMIC ensembles. This is consistent with the fact that the CMIP6 ensemble includes models with climate sensitivity larger 380 

than observation-constrained estimates (Nijsse et al., 2020; Tokarska et al., 2020). The CMIP6 models show medium 

confidence in the exceedance of the subsurface O2 for the third and fourth limit sets, whereas the EMIC ensembles show no 

exceedance or with little confidence. The finer spatial resolution used in CMIP6 models compared to the EMIC ensemble 

could explain this difference, particularly for subsurface O2. The Bern3D-LPX model is the only ensemble showing high 

confidence in all exceedances. 385 
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Regarding to the exceedance uncertainties represented by interquartile ranges in Fig. 7, the three ensemble agrees generally 

well over many metrics, except a few metrics such as ΔPOM and subsurface ΔO2. For these metrics, the uncertainty range 

from the CMIP6 ensemble is larger than the EMIC ensembles. We hypothesize that the parametric uncertainty sampled in the 

perturbed-parameter EMIC ensembles is a significant underestimation of the full uncertainty signal of some metrics as it lacks 

the structural model uncertainty inherent to the CMIP6 ensemble. 390 

 
Figure 7: Box plots showing the interquartile range distribution of exceedance years for each mitigation limit of the impact metrics 
(abbreviations follow Table 1) for SSP5-8.5. Orange, purple, and green show data from the Bern3D-LPX, UVic, and CMIP6 

https://doi.org/10.5194/egusphere-2024-2768
Preprint. Discussion started: 12 September 2024
c© Author(s) 2024. CC BY 4.0 License.



19 
 

ensemble, respectively. Dots indicate the median and the size of the dots indicates the percentage of ensemble members that have 
crossed the respective limit. Note that the median and interquartile ranges are only given for those models or ensemble members 395 
that pass the limits. MHW, SIE, NPP and ΔBiomass are not shown because EMIC ensembles were not able to provide data for these 
metrics.  

Despite such differences, robust conclusions emerge. First, both the CMIP6 and EMIC ensembles demonstrate that most of 

the stringent limits of set 1 and set 2 are passed with high confidence within this century for global warming of 2°C and 2.5°C, 

respectively (Fig. 8). Exceptions are ΔΦ, ΔSSL (known to lag surface warming and continues to increase over centuries), and 400 

subsurface ΔO2, for which the CMIP6 and EMIC ensembles disagree. Second, both the CMIP6 and EMIC ensembles 

demonstrate that many less stringent limits of set 3 and set 4 are not passed with high confidence within this century for global 

warming of 1.5°C and 2°C, respectively (Fig. 8). Taken together, the results of the model ensembles collectively show that 

limiting global warming below 2°C avoids passing the considered Earth system limits during this century with potentially 

dangerous impacts on eco- and socio-economic systems. 405 
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Figure 8: Same as Figure 7 but according to global warming following ΔSAT definition. 

Conclusion 

This study assesses different types of IPCC emission pathways (low, high, overshoot) with respect to multi-dimensional safe 

marine operating spaces including a wide range of ocean impact metrics and corresponding mitigation limits based on the 410 

literature. It contributes to identifying viable mitigation pathways for the 21st century projected by state-of-the-art Earth System 
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Models, complemented by two observation-constrained ensembles from Earth System Models of Intermediate Complexity. 

Assessing the exceedance of mitigation limits for multiple impact metrics requires large model ensembles to be able to obtain 

high-confidence signals and corresponding uncertainties for the exceedance estimates (years and global warming levels) linked 

to the projection pathways. The large uncertainties found for exceedance estimates of many of the impact metrics highlight the 415 

need for better constraining and/or weighting the CMIP6 ensemble. Simulations beyond year 2100 are needed to assess the 

long-term impacts of anthropogenic emissions, especially for subsurface and global oxygen, and steric sea level rise. 

Our results show that ambitious mitigation limits will be exceeded with high or medium confidence even if a low-emission 

pathway is followed, but that exceeding less ambitious mitigation limits (associated with a higher risk for severe impacts) is 

unlikely in a low-emission scenario. In contrast, under the high-emission scenario, many of the less ambitious and more risk-420 

prone mitigation limits are exceeded with high to medium confidence. The benefit of strong mitigation efforts in the overshoot 

pathway is clearly measurable as a decrease in the exceedance probability of the least ambitious and most risk-prone mitigation 

limits. 

Appendix 

 425 
Figure A1: Hierarchical weighting scheme used to calculate the skill scores of individual ensemble members of the Bern3D-LPX 
model ensemble. Data sets at each level have equal weight. For example, the data-model mismatch in “Surface DIC” in the entry 
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Ocean - BGC enters the total skill with a weight of 1/64 (½ (two data sets: Surface and 3-D field) x ¼ (4 groups: DIC, ALK, PO4, 
13C) x ½ (two major subgroups: Physics, BGC) x ¼ (4 major groups: Land, Ocean, CO2, Heat)). 

 430 

Figure A2: Same as in Figure 7 but for SSP1-2.6. 
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Figure A3: Same as in Figure 8 but for SSP1-2.6. 
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Figure A4: Same as in Figure 7 but for SSP5-3.4-OS. 435 
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Figure A5: Same as in Figure 8 but for SSP5-3.4-OS. 

Code availability 

The mocsy 2.0 code is publicly available via https://github.com/jamesorr/mocsy (Orr and Epitalon, 2015). 
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Data availability 440 

CMIP6 outputs are publicly available from the Earth System Grid Federation (ESGF) portals (e.g. https://esgf-data.dkrz.de/). 

The World Ocean Atlas 2013 (Locarnini et al., 2013; Zweng et al., 2013; https://www.nodc.noaa.gov/OC5/woa13/) and the 

GLODAPv2 (Lauvset et al., 2016; https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2019/) data products are available 

from the National Oceanographic Data Center portal of the National Oceanic and Atmospheric Administration. 
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