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Abstract 

Groundwater is a crucial resource for society and the environment, e.g. for drinking water supply and dry-weather stream 

flows. The recent severe drought in Europe (2018-2020) has demonstrated that these services could be jeopardized by ongoing 10 

global warming and the associated increase in the frequency and duration of hydroclimatic extremes such as droughts. To 

assess the effects of meteorological variability on groundwater heads throughout Germany, we systematically analyzed the 

response of groundwater heads at 6,626 wells over a period of 30 years. We characterized and clustered groundwater head 

responses, quantified response time scales, and linked the identified patterns to spatial controls such as land cover and 

topography using machine learning. We identified eight distinct clusters of groundwater responses with emerging regional 15 

patterns. Meteorological variations explained about 50% of the groundwater head variations, with response time scales ranging 

from a few months to several years between clusters. The differences in groundwater head responses between the regions could 

be attributed to regional meteorological variations, while the differences within the regions depended on local landscape 

controls. Here, the depth to groundwater best explained the time scale of the observed head response, with shorter response 

times in shallower groundwater. Two of the clusters showed consistent long-term trends that exceeded meteorological controls 20 

and could be attributed to anthropogenic impacts. Our study contributes to a better understanding of the regional controls of 

groundwater head dynamics and to the classification of groundwater vulnerability to hydroclimatic extremes. 

 1. Introduction 

Groundwater is the largest available freshwater resource worldwide serving numerous water demands such as for drinking, 

irrigation and industrial water as well as for groundwater-dependent ecosystems, minimum discharges in streams, and dilution 25 

of pollutants (Taylor et al., 2013). Droughts can threaten the availability and usability of groundwater to meet these demands 

and cause severe socioeconomic and ecological impacts (Stahl et al., 2016). The recent multi-year drought in Europe (2018-

2020) has set a new benchmark with extreme socioeconomic damage, resulting in increased public and stakeholder awareness 
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of the vulnerability of water resources to droughts (Rakovec et al., 2022; Blauhut et al., 2022; Hari et al., 2020). With ongoing 

climate warming, climatic extremes are intensifying (IPCC, 2023). This includes both increasing frequency, intensity and 30 

duration of droughts (Rakovec et al., 2022; Hari et al., 2020; Rodell and Li, 2023) as well as frequency and intensity of extreme 

precipitation events (IPCC, 2023). This raises the need to develop a thorough understanding of the effects of hydroclimatic 

variability (including droughts) on groundwater resources and their vulnerabilities to enable an improved knowledge-based 

water management. 

Droughts are periods with persistent below normal water availability often differentiated by the affected compartments, which 35 

the drought signal may propagate through, i.e. meteorological, agricultural (soils), and hydrological droughts (groundwater 

and surface water) (Van Loon, 2015; Entekhabi, 2023). Generally, when drought signals propagate from the meteorological 

driving force to groundwater, the landscape acts as a low-pass filter so that the drought response gets attenuated, elongated 

and delayed from a more erratic forcing variable to a dynamic with higher memory (Van Loon, 2015; Bloomfield and 

Marchant, 2013; Kumar et al., 2016). However, this propagation is highly variable across the landscape, with the result that 40 

groundwater heads can respond very differently to the driving meteorological forces (Bloomfield and Marchant, 2013; Kumar 

et al., 2016). Previous studies have investigated the controls of groundwater dynamics at different spatial scales (local to 

integral catchment scales) and temporal representations (daily heads to monthly anomalies). They have highlighted the 

importance of hydrogeological conditions and the well location, more specifically, the aquifer type (Bloomfield et al., 2015; 

Hellwig and Stahl, 2018), confinement status (Haaf et al., 2020; Bloomfield and Marchant, 2013), the hydrological 45 

conductivity (Hellwig et al., 2020), the unsaturated zone thickness or depth to groundwater (Bloomfield et al., 2015; Haaf et 

al., 2020; Lischeid et al., 2021; Wossenyeleh et al., 2020; Kumar et al., 2016), the distance to stream (Haaf et al., 2020), and 

the location along the topographic gradient (Haaf et al., 2020; Schuler et al., 2022; Rinderer et al., 2017). Haaf et al. (2023) 

and Peters et al. (2006) also highlighted the non-linearity of processes, which can cause different controls of groundwater 

dynamics to dominate during wet and dry conditions or groundwater recharge and discharge. Nevertheless, uncertainties in 50 

future groundwater resource availability (Marx et al., 2021; Wunsch et al., 2022; Kumar et al., 2024; Reinecke et al., 2021; 

Berghuijs et al., 2024) are not only related to uncertainties in climate projections (e.g., Naumann et al., 2021) and model 

implementation (e.g., Kumar et al., 2024; Reinecke et al., 2021), but also to the challenge to fully understand spatial variability 

of groundwater head responses across locations (e.g., Lischeid et al., 2021). Consequently, we argue that it is still insufficiently 

known how the different meteorological and landscape controls play out together to create spatial and temporal variability in 55 

groundwater heads and to what extent the controls can be generalized. 

Large-sample data-driven analyses of groundwater responses to climatic drivers and underlying controls of spatial variability 

can be a promising way to further elucidate this interplay in controls. Standardized indicators create comparability across 

stations, regions and compartments of the hydrological cycle. Often meteorological drought indicators are used to assess 

hydrological droughts as the data is comprehensive and easily accessible (Van Loon, 2015; Bachmair et al., 2016), although 60 
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they are not directly transferable into groundwater droughts observed locally at groundwater wells (Kumar et al., 2016). In 

contrast, large-sample analyses of groundwater droughts are challenged by the limited availability of consistent groundwater 

head data sets, as the indicators are sensitive to the covered time periods (Van Loon, 2015; Bloomfield and Marchant, 2013; 

Bachmair et al., 2016). Groundwater data sets often have systematic gaps, cover different periods and sampling frequencies, 

and/or are not fully accessible (Bikše et al., 2023; Barthel et al., 2021). This limited data availability and consistency often 65 

hampers large-scale and comparative groundwater analysis (Barthel et al., 2021; Haaf et al., 2020), the understanding of the 

spatial variability in groundwater responses and drought propagation, and the inference of drought vulnerability. 

The vulnerability of a system can be interpreted as its disability to maintain or return to its state in the face of particular stresses. 

For groundwater heads, the most obvious example of stress is a meteorological anomaly, such as an extreme meteorological 

drought. However, hydroclimatic extremes can have different manifestations, e.g. short duration with a high intensity or long 70 

duration with a lower intensity (Hari et al., 2020; Hosseinzadehtalaei et al., 2020; Westra et al., 2014; e.g., Christian et al., 

2023). Moreover, as indicated above, groundwater responses and associated response time scales are highly variable in space 

(e.g., Lischeid et al., 2021). The different manifestations of groundwater head responses suggest different vulnerabilities of 

their corresponding groundwater systems with implications, for example, for surface-groundwater interactions, ecosystems or 

groundwater management, and with distinct sensitivities regarding expected changes in climate. Therefore, a better 75 

understanding of types of vulnerability and their controls is required. 

In this study, we perform a large-sample data-driven analysis of groundwater head responses to meteorological anomalies to 

understand their spatial variability and controlling factors. We use a consistent large-sample dataset of 6,626 monthly 

groundwater head time series of 30 years across Germany to identify similarities and differences in groundwater responses 

and quantify time scales of propagation from meteorological anomalies to groundwater. Finally, we link the response patterns 80 

to spatial controls including climatic and landscape properties. On this basis, we can classify different vulnerabilities of 

groundwater to meteorological droughts and discuss implications for water management and ecology. 

 2. Methods 

 2.1. Data 

The groundwater head data used in this study are monthly mean groundwater head time series (from originally daily to monthly 85 

observations), aggregated and provided by journalists of the CORRECTIV.Lokal network across Germany for the period from 

1990 to 2021 (Donheiser, 2022; Joeres et al., 2022). For an initial selection of stations, we used the 6,677 stations identified 

by CORRECTIV based on the criteria: having data for at least 95% of the months, showing no shifts in the head time series, 

and having station coordinates (Donheiser, 2022). 
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We filled gaps in monthly heads with linear interpolation without extrapolation using the function na.interp (R package 90 

forecast, Version 8.21; Hyndman and Khandakar, 2008; Hyndman et al., 2023). For 4,197 of the wells, at least one missing 

value had been filled, out of which 69.1% of the wells (2,899) had a maximum gap length filled less than 3 months and overall 

the maximum gap length was 19. We finally selected 6,626 stations covering the complete period from January 1991 to 

December 2020. 

The wells of the data set (Fig. 1) tend to be located in highly productive porous aquifers (60.3% of wells; aquifer types from 95 

IHME1500; BGR and (eds.), 2014), coarse sediments (i.e. gravels and sands, lithology from IHME1500; BGR and (eds.), 

2014) and medium to high hydraulic conductivities (62.5%; BGR and SGD, 2016). Moreover, wells are predominantly in 

shallow aquifers, i.e. 50.7% of wells have a mean groundwater depth <5m and 74.5% <10m (based on mean_gwdepth, see 

Table 2). Such a sampling bias is typical for groundwater wells, as these locations are more relevant for water management 

(e.g., Barthel et al., 2021). The majority of wells (50.2%) are located in agricultural areas, 27.0% in urban and 21.7% in forested 100 

areas (EEA, 2019b). About one-third of the wells are located in areas classified as riparian zones (EEA, 2021). Regionally, 

particularly high densities of wells are found in the city of Berlin (388 wells, i.e. 0.44 wells/km2) and in the southwestern 

Upper Rhine Plain (Ger.: Oberrheinische Tiefebene), whereas low densities (<0.01 wells/km2) are found in the federal states 

of Mecklenburg-Vorpommern, North Rhine-Westphalia and Bavaria (Fig. 1). No data is available for the federal states of 

Saarland, Bremen and Hamburg. 105 

For time series of meteorological drivers at each well location, we extracted daily time series of climate variables (i.e., 

precipitation, maximum, minimum and average air temperature) from the gridded (approx. 1km resolution) products derived 

based on measurements from the German weather service (DWD; Boeing et al., 2022; Zink et al., 2017) from 1971 until 2020. 

Potential evapotranspiration was calculated by the approach from Hargreaves and Samani (1985). Daily time series were then 

aggregated to monthly mean values. 110 
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Figure 1: Study area with groundwater wells (Donheiser, 2022), hydrogeological classes of aquifer types (HY1000 v1 

© BGR 2019; BGR (2019)), and major rivers (from Strahler order 6; EEA, 2020) (a) and time series of monthly 

precipitation and accumulated precipitation of preceding 12 months (P 12, green line), monthly P-PET and 12 months 

accumulated P12-PET12 (pink line), SPI1, SPI12 and SGI as spatial average across wells (b). The thin gray lines in 115 
panel b indicate the 25th and 75th percentile across wells. P - precipitation; PET - potential evapotranspiration; SGI 

- Standardized Groundwater Index, SPI - Standardized Precipitation Index; 

 2.2. Characterizing anomalies 

To characterize the groundwater responses with a focus on droughts and to ensure comparability across locations (Van Loon, 

2015), we standardize the groundwater and meteorological time series representing anomalies. 120 

2.2.1. Groundwater 

Groundwater head anomalies were characterized using the non-parametric Standardized Groundwater Index (SGI; Bloomfield 

and Marchant, 2013). We used normal scores transform by assigning equally spaced probabilities to the ranked groundwater 

heads of each month of a given time series and applying the inverse normal cumulative distribution function to get standard 

normal distributed values (mean of zero, standard deviation of one, Bloomfield and Marchant, 2013). This non-parametric 125 

standardization is particularly suitable for irregular and different distributions, typical for groundwater heads, as it does not 
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require fitting different distribution functions that hamper comparability of resulting SGI time series (Bloomfield and 

Marchant, 2013). 

To characterize groundwater droughts, we calculated different intrinsic properties of the SGI time series (Table 2). Firstly, we 

determined the autocorrelation length, which we defined as the maximum lag, where both the lag itself and all smaller lags 130 

exhibit correlation coefficients greater than 0.11 referring to approx. 5% significance level (Bloomfield and Marchant, 2013). 

Secondly, we identified groundwater drought events defined as consecutive months with SGI < -1 (i.e. a probability of <15.9% 

according to the standard normal distribution). We then calculated the number, average duration and severity of drought events 

for fully covered events within the 30-year time period. The event severity is defined as the integral event anomaly determined 

by cumulative SGI values during the event. Thirdly, we quantified monotonic trends in the SGI time series applying Mann-135 

Kendall trend and Sen’s slope analysis. We used functions mk.test (p-value<0.01) and sens.slope from R package trend 

(version 1.1.5; Pohlert, 2023). 

2.2.2. Meteorology 

Hydrometeorological anomalies generally represent deviations from average conditions at a specified location and time, 

e.g. precipitation deficits or surplus. To characterize them, we computed the Standardized Precipitation Index (SPI, McKee et 140 

al., 1993) from monthly mean precipitation and the Standardized Precipitation Evapotranspiration Index (SPEI, Vicente-

Serrano et al., 2010) from monthly mean differences between precipitation and potential evapotranspiration. The SPI and SPEI 

were estimated based on the monthly mean values, using the same non-parametric standardization as for the SGI (Sect. 2.2.1). 

To represent meteorological anomalies across longer antecedent time periods and thereby account for the different 

relationships that SGI and meteorological variables may have (Kumar et al., 2016; e.g., Bloomfield and Marchant, 2013), we 145 

calculated the SPI and SPEI for different accumulation periods of precipitation and precipitation-potential evapotranspiration 

preceding the corresponding month by up to 132 months. For example, the SPI3 is calculated based on precipitation sums of 

three months and thus characterizes the precipitation anomaly of the past three months. 

The advantage of the SPEI over the SPI is that it is sensitive to temperature effects on drought severity and thus global warming 

(Vicente-Serrano et al., 2010; Van Loon, 2015). However, we acknowledge that the period of 30 years covered in this study 150 

is short to robustly represent climate change effects as generally trend analysis of groundwater heads and drought indicators 

have been shown to be sensitive to the covered periods (Bloomfield and Marchant, 2013; Hellwig and Stahl, 2018; Lischeid 

et al., 2021). 
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 2.3. Clustering of groundwater anomalies 

To find regional similarities and differences in the responses of the groundwater wells, we clustered the SGI time series using 155 

k-means as an unsupervised machine learning algorithm. We applied the kmeans function implemented in R’s stats package 

(R Core Team, 2023) using Euclidean distance to quantify (dis-)similarities. 

We selected the optimal number of clusters (k) based on the average silhouette distance, which measures the compactness of 

the clusters and the separation from other clusters based on dissimilarity of the members within one cluster and to the members 

of the nearest neighboring cluster. The silhouette coefficient ranges from [-1, 1] with one being the optimal value, zero indicates 160 

that the member is placed exactly in between two clusters, while a negative value indicates the identity would rather belong to 

a neighboring cluster. To compute the distances, we used the silhouette function from R package cluster (version 2.1.4; 

Maechler et al., 2022) with 25 iterations for starting points of cluster centers (nstart=25). Across different k up to 20, the 

silhouette distance showed local maxima at k=2, 5 and 8 with average distances around 0.11 (in decreasing order). 

To take a confident decision, we additionally consulted the total within-cluster sum of square as a measure of cluster 165 

compactness in a scree plot. This method is known as “elbow method”, where the inflection point indicates the optimal number 

of clusters. Finally, we decided for eight clusters as an optimum between differentiating and generalizing the individual 

identities. 

 2.4. Response times of groundwater to meteorological drivers 

To investigate propagation of meteorological drought to groundwater drought, we calculated cross-correlation between SGI 170 

time series and meteorological drivers (SPI, SPEI) in positive direction (i.e. meteorological forcing preceding the groundwater 

response). The cross-correlation is calculated for the different accumulation periods up to lag times of 5 years (60 months) 

using ccf function in R. The maximum cross-correlation coefficient (cc) result yielded the optimal accumulation time (acc) 

and corresponding lag time (lag; Table 2). 

To quantify trends in meteorological drivers in comparison to the SGI, we calculated Mann-Kendall trend and Sen’s slope on 175 

standardized meteorological variables (SPI, SPEI) and on the residuals from a linear regression between SGI and SPIacc (and 

SPEIacc) applying the cross-correlation results of each well. Assuming a simple linear relationship between SGI and SPIacc and 

SPEIacc respectively, this provides an estimate of trends not reflected in the meteorological driving forces which could hint 

towards other relevant drivers, such as anthropogenic impacts. 
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Table 1: Groundwater response characteristics, including intrinsic properties and linkages between meteorological 

drivers and groundwater responses. For each parameter, the corresponding method used to  calculate it, the unit 

and the minimum, median and maximum values across all groundwater wells are provided (although the latter 

constitute results). Note: the minimum (Min), median, maximum (Max) values in brackets refer to the 185 
characteristics regarding the SPEI, instead of the SPI. Number of wells n=6,626.  

Category Parameter Method Unit Min Median Max 

Intrinsic acf_lag Autocorrelation length year 0.08 1.75 11.42 

 event_n Number of events fully covered within the 

30-year time series, for details see text 

 0 13 44 

 event_length Average event duration month 0.08 0.5 14 

 event_cumm Average drought severity defined as 

cumulative SGI values (integral of the 

anomaly time series) during an event 

 -88.61 -5.12 -1.04 

 sgi.sen_slope Trend in SGI time series as Sen’s slope, 

for details see text 

month-1 -8.9 E-3 -8.8 E-4 8.9 E-3 

Meteo-

groundwater 

linkages 

acc accumulation period in SPI (SPEI) with 

highest cross-correlation result (cc) to the 

SGI times series 

month 1  

(1) 

13  

(13) 

132  

(132) 

 cc maximum correlation coefficient between 

SGI and SPI (SPEI) corresponding to acc 

and lag time 

 0.041  

(-0.075) 

0.70 

(0.71) 

0.93 

(0.95) 

 lag lag time between SGI and SPIacc (SPEIacc) 

to reach maximum cross-correlation 

month 0  

(0) 

0  

(0) 

60  

(60) 

 respt response time of groundwater anomalies 

to meteorological anomalies (SPI and 

SPEI), defined as the center of 

meteorological anomalies, i.e.respt = 0.5 * 

acc + lag 

month 0.5  

(0.5) 

7  

(6.5) 

126  

(126) 

 resid_sen Trend in SGI-SPIacc (SGI-SPEIacc) 

residuals as Sen’s slope on residuals from 

linear regression between SGI and SPIacc 

time series (considering acc and lag) 

month-1 -8.7 E-3  

(-7.2 E-3) 

-1.9 E-4 

(9.0 E-4) 

1.1 E-2 

(1.0 E-2) 

 2.5. Spatial controls of groundwater responses 

2.5.1. Spatial properties 

To investigate controls of groundwater drought response patterns, we determined several spatial properties including 

topographical, climatic, land cover and hydrogeological characteristics as well as the relative location of the well in the 190 

landscape. The total set includes 26 parameters. Details on the calculated properties is provided in Table 2. 
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Table 2: Spatial properties calculated for each groundwater well. For each parameter, the corresponding method 

used to calculate it (including the data source if applicable), the unit and the minimum, median and maximum 

values within the data set are provided.  

Category Parameter Method Unit Min Median Max 

Topography dem elevation extracted from EU DEM with 

100m resolution (Ebeling et al., 2022; 

EEA, 2013) 

m -4.5 95.1 920.3 

 slo topographic slope based on DEM (Ebeling 

et al., 2022; EEA, 2013) 

° 0 0.8 21.9 

 twi topographic wetness index based on DEM 

(Ebeling et al., 2022; EEA, 2013; Beven 

and Kirkby, 1979) 

 10.5 14.2 28.2 

Climate P_mm Mean annual precipitation (1971-2020) mm 466 698 2062 

 PET_mm Mean annual potential evapotranspiration 

(1971-2020) 

mm 543 773 882 

 AI Mean annual aridity index AI = PET_mm 

/ P_mm 

 0.34 1.19 1.77 

 P_SI Precipitation seasonality index as the sum 

of absolute differences between the mean 

monthly and one twelfth of the annual 

precipitation (P_mm/12) normalized by 

P_mm 

 0.07 0.17 0.39 

 PET_SI Potential evapotranspiration seasonality 

index as the sum of absolute differences 

between the mean monthly and one 

twelfth of the annual PET (PET_mm/12) 

normalized by PET_mm 

 0.60 0.67 0.72 

Relative 

location 

mean_gwdepth difference between elevation (dem) and 

the mean groundwater level based on the 

filled head time series analyzed in this 

study 

m -11.3 4.9 141.6 

 river_dist_m Horizontal distance to the closest stream 

from EU-Hydro (EEA, 2020) 

m 0.14 518.16 10952.35 

 lake_dist_m Horizontal distance to the closest lake 

from EU-Hydro (EEA, 2020) 

m 0 1816 20324 

 dsdorder distance to stream and catchment divide 

from the data set Multiorder Hydrological 

Position (MOHP, Nölscher et al., 2022a, 

b). “Order” refers to the stream order 

considered for assessing the point location 

relative to the stream network. To reduce 

redundancies only orders 2, 4, and 6 were 

used, note: values from order 6 

m 930 48526 133638 

 lporder lateral position from the MOHP (Nölscher 

et al., 2022a, b), see also dsdorder. The 

lateral position indicates proximity to 

stream relative to the watershed divide, 

with 0 - at stream, 1 - at boundary 

 0.0003 0.4 1 
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Category Parameter Method Unit Min Median Max 

 sdorder stream distance from the MOHP 

(Nölscher et al., 2022a, b), see also dsdorder 

m 30 14072 91454 

Hydrogeo-

logy 

kf_rank Hydrologic conductivity rank order based 

on L_KF class from HÜK200 (BGR and 

SGD, 2016) for upper aquifer at well 

location. Ranks sort the hydraulic 

conductivities from high (L_KF class 2) to 

extremely low (L_KF class 7). Mixed 

classes were assigned mean numeric 

values of the corresponding classes, 

e.g. L_KF class 9 represents a mix of class 

3 and 4 and thus got the value 3.5 

 2 3 7 

Land cover y18_artificial_ 

10km 

fraction of artificial within a 10km buffer 

around the well (CODE 1 from level 1 

classes) from CORINE Land cover map 

2018 (EEA, 2019b) 

 0.000 0.098 0.977 

 y18_agriculture_ 

10km 

fraction of agriculture (CODE 2), see 

y18_artificial_10km (EEA, 2019b) 

 0.000 0.5585 0.957 

 y18_forest_10km fraction of forest (CODE 3), see 

y18_artificial_10km (EEA, 2019b) 

 0.000 0.237 0.945 

 y90_mining_frac_

10km 

fraction of mining within a 10km buffer 

around the well (Code 13 from level 2 

classes) from CORINE Land cover map 

1990 (EEA, 2019a) within a 10km buffer 

around the well 

 0 0 0.215 

 hy_3km_intersect Intersection with mining areas indicated in 

HY1000 map (BGR, 2019) and 3km 

buffer around 

boolean 0 0 1 

2.5.2. Machine learning 195 

To identify spatial controls on the observed groundwater responses, we first trained different random forest (RF) classification 

and regression models to predict the identified clusters (Sect. 2.3) and groundwater response times (Sect. 2.4) of the 6,626 

wells from the 26 spatial controls (Sect. 2.5.1). Second, we use interpretable machine learning tools to reveal insights into the 

relationships learned by the machine learning models. More specifically, we apply the global model-agnostic methods 

permutation feature importance and partial dependence plots (PDP), allowing us to investigate average model behavior and 200 

thus discuss prevalent relationships. 

In detail, to predict the clusters of groundwater responses and groundwater response times, we train (1) two RF classification 

models for (i) all clusters, (ii) clusters with regional prevalence, and (2) RF regression models for the characteristics acf_lag, 

acc, respt, and resid_sen for SPI and SPEI each (Table 1). We used 5-fold cross-validation to evaluate the models, i.e. five 

iterations for each model. Model performance was evaluated on the five sets of test data using the mean accuracy (percentage 205 

of correct classifications) for classification and the mean coefficient of determination R2 for regression models. 
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Feature importance was evaluated by the relative increase in model error with permutation using the classification error 

(percentage of incorrect classifications) and root mean square error for regression as loss functions. Each feature was permuted 

ten times for each of the five test data sets of the cross-validation to acquire robust results. Subsequently, the importance results 

were aggregated across the five resamplings providing an average and range of importance for each feature. For selected 210 

features and models, we created partial dependence plots (PDP) to analyze the effect of features on the model output by using 

the RF models trained on the full dataset. For model training and evaluation we used the mlr3 package in R (version 0.17.0, 

Lang et al. 2019) and for model agnostics we used the iml package (version 0.11.1, Molnar 2018). 

 2.6. Classifying vulnerability to droughts 

Vulnerability of groundwater systems to droughts is here defined based on the response times to meteorological anomalies, 215 

with different possible implications for management and ecology. We understand response times as the time delay in the 

propagation of the anomaly signal from the driving force to the responding variable. The accumulation time includes this 

temporal delay as it accounts for meteorological anomalies preceding the corresponding time (Sect. 2.4). The center of these 

anomalies can be considered as half of the accumulation time. We thus calculated the response times from the SPEI (resptSPEI) 

by taking half of the optimal accumulation time (accSPEI) and adding the corresponding identified cross-correlation time lag 220 

(lagSPEI) (Table 1). The resptSPEI can thus be interpreted as a response time from center to center (or in other words, peak to 

peak). Finally, we classified the wells into fast, medium and slow responding groundwater systems based on three quantiles 

of the distribution of resptSPEI (i.e. the 33rd and the 67th percentiles). These classes can serve as an important element in 

vulnerability assessments of groundwater to meteorological droughts with different characteristics. 

 3. Results 225 

 3.1. Variability in groundwater responses 

Overall, groundwater head responses were diverse both in terms of temporal and across-site variability. Regional patterns 

emerged with distinct groundwater drought responses grouped into eight clusters based on the similarities in the SGI time 

series (Fig. 2). Two clusters spread across the entire country (clusters lt_inc and lt_dec), while two clusters each predominated 

in three distinct regions, i.e. in northeastern (ne_lf, ne_hf), northwestern (nw_hf, nw_lf) and southern (sw_lf, sw_hf) Germany, 230 

respectively. More closely, the cluster lt_inc, although scattered across Germany, was still more prevalent around Berlin and 

in the Upper Rhine Plain. The number of wells within each cluster ranged from 570 (8.6%, cluster lt_dec) to 1179 (17.8%, 

cluster sw_hf). 

Across all wells, about 36% of the wells have their minimum mean annual SGI in the last two years of the covered period, 

i.e. 2019 and 2020. Significant negative trends across the 30 years of monthly SGI were observed in 48.2% of the wells and 235 
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positive trends in 26.2%. Across clusters, the number of positive and negative trends in SGI varied, with cluster lt_inc being 

dominated by positive (98.4%) and cluster lt_dec being dominated by negative (100%) trends, respectively. All other clusters 

were more balanced, with a maximum of 76.8% of cluster wells (cluster nw_lf with negative trends) in one trend class (Fig. 

S4). In contrast, in monthly SPI1 only 11.4% of well locations showed negative trends and the majority had no significant 

trends (88.5%) and <0.1% showing positive trends. The SPEI1 time series have 60.2% negative trends, 39.8% non-significant, 240 

and <0.1% positive trends. For longer accumulation periods, the meteorological trends shift towards more negative trends, 

e.g. 56.9% for SPI24 and 92.5% for SPEI24. The SPI and SPEI show systematic differences, with SPEI showing more 

pronounced negative trends, linking to higher SPEI values during the 1990s and lower values in the last decade of the time 

series (Fig. S1). 

Intrinsic time series properties also varied across sites and clusters. Autocorrelation length across the SGI time series ranged 245 

from 1 month to 11.4 years, with a median of 1.75 years (Table 1, Fig. S4). The distribution of mean drought durations across 

stations was right-skewed with a median of 3.6 months and average severity of -5.12, while the median number of events 

during the 30 years is 13. The hf clusters (nw_hf, ne_hf and sw_hf) had considerably lower autocorrelation lengths on average 

(median acf_lag between 0.5 and 1.5 years) than other clusters (nw_lf, ne_lf, sw_lf) dominating within the same region (acf_lag 

between 1.5 and 2.1 years; see Fig. S4). Similarly, the clusters with shorter autocorrelation lengths (nw_hf, ne_hf and sw_hf) 250 

had more drought events (median of 14–22 events compared to 8–9) with shorter mean drought duration (median event_length 

between 2.7 and 3.5 compared to 5.0 and 5.9) and lower mean drought severity (median event_cumm above -5 compared to 

below -7) than the clusters nw_lf, ne_lf, sw_lf. Cluster lt_inc and lt_dec on the other hand had the highest autocorrelation 

lengths on average (median of 4.67 and 5.00 years respectively) although generally also covering a broad range of values. 

According to these observed characteristics, clusters were named in terms of regional prevalence (nw - northwest, ne - 255 

northeast, sw - southwest), their intrinsic frequency in change of the SGI (lf - low frequency, hf - high frequency) or the 

dominant trend in SGI time series (lt_inc - increasing trend, lt_dec - decreasing trend). 
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Figure 2: Cluster locations and major rivers (from Strahler order 6; EEA, 2020) (a) and SGI, SPIacc and SPEIacc time 

series of cluster centers (i.e.  mean time series across cluster) (b). Orange shading in (b) refers to negative SGI values 260 
(i.e. relatively dry conditions), and blue shading to positive SGI values (relatively wet conditions). The orange line at 

SGI=-1 indicates the threshold used for drought events, while orange segments below indicate occurrences of drought 

events for cluster centers. The time series in gray (purple) denote the SPI acc (SPEIacc) of the highest cross-correlation 

derived for the cluster centers (i.e. the mean across cluster members). Cluster names according to their prevalent 

region (nw - northwest, ne - northeast, sw - southwest) and intrinsic SGI pattern (hf - high frequency, lf - low 265 
frequency, lt_dec - long-term decrease, lt_inc - long-term increase; for details refer to the text).  

 3.2. Response times of groundwater to meteorological drivers 

Relationships between individual SGI time series and the meteorological variables varied strongly with cross-correlation 

coefficients from around 0 up to 0.95 (Fig. 3, Fig. S4), with a median around 0.70 for both SPI and SPEI. This corresponds to 

50% of the variance explained by meteorological time series on average. The optimal accumulation periods yielding maximum 270 

cross-correlation had a median of 13 months. The lag at maximum cross-correlation was mostly zero, nevertheless it is 

important to note that there is a delay from the driver to the groundwater response implicitly included in the corresponding 

accumulation period considering the antecedent climatic variables. 
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The cross-correlation results indicate that hf clusters (nw_hf, ne_hf and sw_hf) with shorter autocorrelation lengths (Sect. 3.1) 

were characterized by shorter optimal accumulation periods (Fig. 3, Fig. S4), i.e. representing systems with shorter system 275 

memories. This is also reflected in cluster centers, with accSPI and accSPEI of clusters nw_hf, ne_hf and sw_hf being 

considerably lower (between 0.3 and 1.1 years) than their regional counterparts nw_lf, ne_lf, sw_lf (2-2.5 y, Fig. 2b). The 

cross-correlations were weakest for the cluster lt_inc, particularly for the SPEI with a median coefficient of 0.41 across cluster 

members, while the median was 0.60 for the SPI (Fig. S3 and S4). Cluster lt_dec, in contrast, had higher median cross-

correlations for the SPEI (0.70) compared to the SPI (0.61, Fig. 10). 280 

This weaker link of cluster lt_inc and lt_dec with the meteorological driver is also reflected in predominant trends in the 

residuals between the SGI and corresponding meteorological SPEI time series (see Fig. 5 a). Cluster lt_inc has 98.4% positive 

trends in the SGI-SPEIacc residuals and 88.2% in the SGI-SPIacc residuals, whereas cluster lt_dec has 94.6% negative trends in 

the SGI-SPIacc residuals and 84.7% in the SGI-SPEIacc residuals. 
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 285 
Figure 3: Groundwater memory time scales to meteorological drivers: (a) Relationship between cross -correlation 

between SGI and SPEI with different accumulation periods for cluster centers (lines) and maximum cross -

correlations of cluster centers and of individual wells (points) and (b) distribution of optimal SPEI accumulation 

times of wells within the clusters as violin plots with additional boxplots visualizing summary statistics (median, the 

25th and 75th percentiles). n - number of cluster members.  290 

 3.3. Spatial controls of groundwater responses 

Random forest (RF) models were trained and evaluated to identify controls of groundwater response patterns and time scales 

to meteorological drivers. Results of selected models including the three most important features are presented in Table 3 (all 

models in Table S1 of the supporting material). The full feature importance results of the selected models are provided in Fig. 

S6. 295 
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Table 3: Random forest (RF) results including the three most important features from permutation. Performance is 

given as mean accuracy for classification and coefficient of variation (R 2) for regression models across the cross-

validation iterations. Note: For RF regression only results with R 2>0.4 are shown, all RF models are provided in the 

supporting material Table S1. Feature importance is given as the mean (across cross -validation iterations) of 

median importances of the permutation repetitions.  300 

RF model Variable 

Number of 

samples 

Performance 

(accuracy/R2) Feature 

Importance  

(mean of medians) 

classification cluster (all) 6620 0.68 PET_SI 

mean_gwdepth 

dem 

1.43 

1.13 

1.08 

 cluster 

(regional) 

5120 0.79 PET_SI 

mean_gwdepth 

dem 

1.81 

1.25 

1.20 

regression resptSPEI 5120 0.42 mean_gwdepth 

PET_SI 

dem 

1.26 

1.12 

1.05 

 accSPEI 5120 0.41 mean_gwdepth 

PET_SI 

dem 

1.23 

1.12 

1.06 

 resid_senSPEI 6620 0.42 PET_mm 

y18_artificial_10km 

PET_SI 

1.11 

1.09 

1.06 

 resid_senSPI 6620 0.41 PET_mmy 

18_artificial_10km 

PET_SI 

1.09 

1.08 

1.07 

The RF classification model of all eight clusters reached an accuracy of 0.68, with accuracies ranging from 0.22 and 0.51 for 

the lt_dec and lt_inc clusters up to 0.85 for the sw_hf cluster. The performance improved to an accuracy of 0.79 when predicting 

only the six regional clusters and excluding clusters lt_inc and lt_dec. In both models, the most important features were the 

seasonality in potential evapotranspiration (PET_SI) and the mean depth to groundwater (mean_gwdepth) with higher feature 

importance values for the 6-cluster model. 305 

In the case of RF regressions, the highest R2 in the models including all wells was 0.42 for the trend in SGI-SPEIacc residuals 

(resid_senSPEI), followed by SGI-SPIacc residuals (resid_senSPI) with R2=0.41. Both models showed PET_mm and 

y18_artificial_10km as the most important features. Similar performances were reached for the models predicting the response 

(resptSPEI) and accumulation (accSPEI) time of the 6-cluster data subset, with mean_gwdepth and PET_SI resulting as the most 

important features. All other regression models had lower performances (R2<0.4) and thus feature importance is not discussed 310 

further, although there is high overlap in rankings (Table S1). 

The most important feature distinguishing the clusters in the RF models from each other is the seasonality in evapotranspiration 

(PET_SI). This meteorological spatial feature differs for the different regions, particularly, cluster sw_lf and sw_hf prevalent 

in Southern Germany have lower PET_SI values, whereas the northeast (esp. ne_lf) has the highest PET_SI values (Fig. 4panel 

a, Fig. S5). RF predictions reflect these differences as shown in the PDP plots for the 6-cluster model (Fig. 4panel a). 315 
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Figure 4: Meteorological and landscape controls of observed groundwater response patterns: (a) 2D partial 

dependence plot (PDP) of the effects of mean_gwdepth and PET_SI on the predicted probabilities of the 6 -cluster RF 

classification model, (b) time series of the mean SGI and SPEI24 of all (gray) and of the regional “lf” clusters (colored 

lines) and the 5 th-95th percentile range as shaded areas, (c) response time to SPEI respt SPEI versus mean depth to 320 
groundwater for cluster members of the six regional clusters with 2D kernel density estimates for probabilities 0.05 

and 0.1. Note that mean_gwdepth can be negative in some cases due to data uncertainty from the approximation 

method using a DEM or in case of artesian conditions.  

Apart from the control-response relationships learned by the RF models, comparing the SGI and meteorological time series 

reveals that groundwater anomalies vary more across locations than those in the meteorological driver. This is shown by the 325 

different bandwidths representing the spatial variability of the SGI versus the SPEI12 across all wells (Fig. S2) and the SPEI24 

across wells of the lf clusters only (Fig. 4 panel b). The latter also shows that main differences between the SGI time series of 

the slower responding clusters (nw_lf, ne_lf, sw_lf) are also apparent in the mean regional meteorological anomalies (Fig. 4 
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b). Examples are the drought in 1997 which was more pronounced in the northwest, the dry period in 2003 in the northeast, 

while the southwest was rather wet, and the wetter period in the northeast in 2012. This shows that regional differences in the 330 

anomalies of the meteorological drivers transfer into the groundwater, thus resulting in distinct groundwater response clusters 

for different regions. 

The second most important feature to distinguish the clusters in the RF models and the most important for groundwater 

response times was the mean_gwdepth. Here, clusters with higher frequency in their internal SGI change rate (cluster nw_hf, 

ne_hf, sw_hf) compared to their regional counterparts overall linked to smaller mean groundwater depth below surface 335 

(i.e. shallower groundwater). This is apparent in higher sample density of the “hf” clusters at lower mean_gwdepth values and 

is also reflected in higher predicted probabilities by RF models as shown in the PDPs of the 6-cluster RF model (Fig. 4 panel 

a). Similarly, the tendency of higher depth to groundwater linking to higher response times (resptSPEI) within regions is apparent 

in the data (Fig. 4c) and also reflected in the relationships learned by the RF regression model (Fig. S7). 

The elevation (dem) was identified as the third most important predictor in the RF classification and regression models of 340 

resptSPEI and accSPEI. For the elevation, the differences between lf and hf clusters varied between regions: in the northwest the 

hf cluster was located at lower elevations on average, whereas in the northeast and southwest the hf clusters were located in 

higher elevations compared to the respective lf cluster (Fig. S5). Additionally, we found that the “hf” clusters tend to be closer 

to the streams compared to their regional lf counterparts (Fig. S5). The distance to streams of fourth order (sd_order_4) was 

ranked as the sixth most important and significant feature (whole range of importances >1; see Fig. S6 panel a and b), followed 345 

by the second order stream distance (sd_order_2) in the resptSPEI and accSPEI RF models. Similarly, the hf clusters more often 

intersected riparian zones outlined in EEA (2021) with at least 19.6% (nw_hf) and a maximum of 59.8% (sw_hf), while the lf 

clusters varied between 4.5% (nw_lf) and 31.8% (sw_lf) only. 

The RF regression models for predicting the trends in the residuals between SGI and the meteorological anomalies (resid_sen) 

for all wells include land cover characteristics as a dominant feature, namely the fraction of artificial surfaces within a 10km 350 

radius. Here, a higher urbanization links to more positive trends in the residuals, predominant in cluster lt_inc (Fig. 5 panel a, 

and b). Cluster sw_lt also shows a tendency towards higher resid_senSPEI and fraction of artificial surfaces. Cluster lt_inc was 

additionally more often located in proximity to mining areas as compared to other clusters (Fig. 5 panel c). Thus, cluster lt_inc 

was found to be overall linked to higher urbanization levels and mining areas. 
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 355 
Figure 5: Trends beyond meteorological drivers link to anthropogenic controls, particularly the cluster lt_inc has 

higher fraction of artificial land cover and proxi mity to mining areas than other clusters: (a) cluster-wise 

distributions of the trend in the residuals of the SGI with the identified SPEI acc (resid_senSPEI), (b) cluster-wise 

distributions of the fraction of artificial land cover class within a 10km dista nce based on the CLC map from 2018 

(EEA, 2019b), (c) the number of wells in mining-proximity (3km) per cluster and heatmap color according to the 360 
fraction of cluster within proximity (yes or no).  

 3.4. Vulnerability of groundwater to meteorological droughts 

The vulnerability of groundwater systems was classified into vulnerability to short, medium and long-term meteorological 

anomalies based on percentiles of the resptSPEI characteristic of the six regional clusters (Fig. 6). The class of short-term 

vulnerability has response times up to 3.5 months (containing 35.2% of wells), whereas the class of long-term vulnerability 365 

responds only after more than 9 months (31.8%). Note that the clusters with long-term trends overlaying the meteorological 

controls (lt_inc, lt_dec) were excluded from this assessment, as the response time metrics cannot be considered representative 

of the climatic-groundwater system response for these two clusters. 

The spatial pattern of vulnerabilities shows a high variability within regions, reflecting the individual response time scales and 

the concurrent occurrence of both hf and lf clusters within regions. Nevertheless, the represented northeastern groundwater 370 

wells have a slight tendency towards medium or long-term vulnerabilities, as particularly the faster responding cluster (ne_hf) 

tends to have higher response times with a median of 6 months, compared to 2.5 (sw_hf) and 3.5 (nw_hf) months for the other 

hf clusters. This reflects the slightly higher accSPEI values within ne_hf (Fig. 3). 
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Figure 6: Vulnerability of groundwater systems to short, medium and long -term meteorological anomalies based on 375 
resptSPEI percentiles for the six regional clusters.  

 4. Discussion 

 4.1. Spatial variability in groundwater responses 

Out of the eight identified clusters, six, in three pairs of two, were predominant in three distinct regions, while two clusters 

were distributed across Germany (Fig. 2). Overall, the spatial variability in groundwater head anomalies was found to be larger 380 

than that in the meteorological driving forces (Fig. 4 b, Fig. S2). This is not surprising, as a relatively high similarity in 

meteorology arises from spatial coherence in the occurrence of meteorological extremes like precipitation deficits and 

temperature anomalies resulting from stable atmospheric conditions across large scales (Hari et al., 2020; e.g., Christian et al., 

2023). This contrasts with a high variability in hydrological processes in the subsurface and resulting site-specific groundwater 
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dynamics (e.g., Heudorfer et al., 2019; Lischeid et al., 2021; Kumar et al., 2016). This applies even though the spatial extent, 385 

duration and severity of meteorological droughts strongly vary across drought events (Oikonomou et al., 2020; Rakovec et al., 

2022). Similar observations have been described, for example, by Bloomfield and Marchant (2013) and Kumar et al. (2016). 

We found a majority of negative trends in the SGI time series and a high number of minimum SGI values in the last years, 

which is in line with prevalent negative monotonic trends and minimum heads described by CORRECTIV (Donheiser, 2022). 

Negative trends in the regional clusters were more predominant in northwest Germany, followed by the northeast with still 390 

mostly negative trends and the southwest with a balanced distribution of trends (Fig. S4, sen slope SGI). These mostly reflected 

trends in meteorological drivers, in contrast to the trends of the clusters with dominant long-term trends (lt_inc, lt_dec) 

deviating from those of the drivers (Fig. 5). The SPEI shows higher negative trends than SPI (Fig. S1) in response to the 

increase in temperature and thus potential evapotranspiration with global warming during the study period including the 

exceptionally hot summers in 2018 and 2019 (Vicente-Serrano et al., 2010; Hari et al., 2020), in line e.g. with differences in 395 

SPI and SPEI trends in Europe found by Ionita and Nagavciuc (2021). This explains the higher correlations between cluster 

lt_dec with SPEI time series compared to lt_inc and vice versa for the SPI. 

The groundwater response characteristics differed across clusters with three clusters showing a prevalence of fast response and 

shorter system memories (nw_hf, ne_hf, sw_hf) and three clusters with slower response and longer system memories (nw_lf, 

ne_lf, sw_lf; Fig. 3). The median accumulation time (as a measure of memory time scale) across the 6,626 wells of 13 months 400 

was similar to previous studies (Bloomfield and Marchant, 2013; Kumar et al., 2016). The differences in system memories 

were closely linked to the groundwater drought characteristics of the clusters, with systems with shorter memories experiencing 

shorter and less severe groundwater droughts (in terms of accumulated SGI), but facing drought events more often (Fig. S4), 

in line with previous studies (Bloomfield and Marchant, 2013; e.g., Bloomfield et al., 2015). The overall high variability in 

optimal accumulation times underlines the finding by Kumar et al. (2016) that groundwater droughts cannot be described by 405 

a uniform meteorological drought index (in the form of SPI with one accumulation time) and corroborated this finding also in 

terms of the SPEI and for Germany as a whole. 

Both the autocorrelation length and the optimal accumulation time identified with cross-correlations can be considered metrics 

of system memory. Accordingly, we found both to be lower on average in the identified hf cluster and higher in the lf clusters. 

Bloomfield and Marchant (2013) found the two metrics autocorrelation length and SPI accumulation period to align with a 410 

correlation coefficient of 0.79 across 14 groundwater wells in the UK. However, across the large sample (6,626 wells) in our 

study, this relationship could not be confirmed with the same strength, rspearman=0.64 for accSPI and rspearman=0.60 for accSPEI. 

This questions the transferability of one metric to the other and the generality of this link at the level of individual wells. 

Although both metrics represent memory time scales and are related, they ultimately describe different properties: the optimal 

accumulation time represents the system’s memory for past meteorological drivers, while autocorrelation lengths represents 415 
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the overall persistence in the time series resulting from the sum of effects on groundwater dynamics. Nonetheless, both metrics 

can be affected by interacting confounding effects. For example, some deviations might be caused by the superposition of 

long-term trends that interfere with the identification of these intrinsic system response properties. Bloomfield et al. (2015) 

e.g. described weaker cross-correlations between SPI and SGI time series with trends. Interestingly, the SPEI accumulation 

times and autocorrelation lengths deviate most for the clusters with dominating long-term trends and, although less, for the hf 420 

clusters and the ne_lf cluster (Fig. S3). This could indicate that those systems are less strongly linked to meteorological drivers. 

Although, relatively high correlation coefficients (except for lt_inc) do not generally support this interpretation. Another factor 

could be the method of identifying accumulation times based on the absolute maximum in correlation coefficients, while 

similar values could be reached for several different accumulation times in the case of stagnating accumulation, as observed, 

for example, for cluster lt_dec regarding the SPEI accumulation times (Fig. 3a). 425 

 4.2. Controls of groundwater response dynamics 

The interplay between the meteorological drivers and the landscape filtering in combination with anthropogenic impacts have 

shown to control groundwater response patterns and distinguish them into clusters as discussed based on the RF model results 

in the following. This means that different controls jointly operate to cause distinct groundwater head responses at the 

individual locations. This is also supported by the fact that similar features ranked high in the different RF models e.g. the 8-430 

cluster and 6-cluster classification model, although with varying performances and feature importance (Table 3). The model 

performances of a mean accuracy of 0.79 for predicting the six regional clusters and 0.42 for the groundwater response times 

regarding the SPEIacc of the best performing RF models are comparable to that of Schuler et al. (2022). They reached a model 

performance (R2=0.49) in the out-of-bag evaluation of RF models for predicting autocorrelation lengths at 114 wells in Ireland. 

4.2.1. Different responses across regions link to meteorological drivers 435 

Meteorological drivers were identified as the major control for distinguishing groundwater head anomalies across regions 

based on the RF results and the regionally temporal coherence in SPEI24 and SGI time series (Fig. 4). Three main regions with 

predominant clusters were identified, i.e. Northwest, Northeast, and Southern Germany. 

On average, the meteorological drivers (SPEI, SPI) could explain 50% of the temporal variability in groundwater heads 

(corresponding to the median of cross-correlation coefficients of r=0.7). This is in the same range as in previous SGI 440 

investigations (Kumar et al., 2016; Bloomfield et al., 2015). This high predictive power was predominant in the six regional 

clusters, whereas clusters lt_inc and lt_dec were less strongly cross-correlated with the SPEI and SPI respectively (Fig. 3, Fig. 

S4). 
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We argue that meteorological anomalies control interregional differences in groundwater head anomalies. As shown for 

clusters with longer response times (Fig. 4 panel b), major temporal differences in the regional meteorological anomalies are 445 

reflected in the average groundwater anomalies of the same regions. For example, drier periods in the northwest occurred 

around the years 1997 and 2004, as well as wetter periods in the northeast around 2012 and in the southwest around 2001. In 

recent years (around 2018-2020), Germany as a whole faced a severe meteorological multi-annual drought (e.g., Rakovec et 

al., 2022) with similar average meteorological anomalies (based on SPEI24), translating into wide-spread severe groundwater 

droughts across Germany. Regarding the lf groundwater clusters, the two northern clusters faced more severe groundwater 450 

droughts (lower SGI values) on average in these recent years. 

The feature importance results from the RF classification models for predicting the clusters underline this observation. In both 

classification models, the seasonality in evapotranspiration PET_SI turned out to be the most important predictor. Nevertheless, 

in the 6-cluster model, the model performance (accuracy=0.79) and feature importance of PET_SI (1.81, i.e. prediction error 

reduced by more than 80%) were higher than in the 8-cluster RF model. This indicates that the predictive power of PET_SI 455 

relates to the regional differentiation of the clusters rather than the two long-term trend clusters. PET_SI varies dominantly 

across regions with a general gradient from southwest to northeast due to the variations in temperature and solar radiation 

depending on latitude and proximity to the sea (i.e. continentality of the climate), leading to the highest seasonal variations in 

northeastern and northern and lowest values in southern Germany. Accordingly, it has a well-defined regional gradient, which 

proved to be able to distinguish major regional differences in the driver and resulting response patterns. 460 

4.2.2. Different responses within regions link to landscape filtering 

Even though a region is subject to similar meteorological forcing (in terms of anomalies), we found a large variety of 

groundwater responses within regions. These different responses were characterized by different response time scales, i.e. the 

frequency in change of the SGI or in other words the system memories, and closely linked to the number, duration and severity 

of droughts. Within the three identified regions, landscape filtering (i.e. modulations of the driver signal by the landscape) was 465 

identified as the main control of the response time scale. 

The mean depth to groundwater (mean_gwdepth) was found to be the second most important feature in the RF classifications 

and the highest-ranked feature in the RF regressions for resptSPEI and accSPEI (Table 3). The depth to groundwater can be 

referred to as the thickness of the unsaturated zone in the case of an unconfined aquifer and the depth of the water pressure 

head below the surface in the case of a confined aquifer. The unsaturated zone or depth to groundwater has been discussed as 470 

a major control of memory effects and groundwater dynamics in previous studies (Bloomfield and Marchant, 2013; Haaf et 

al., 2020; Haaf et al., 2023; Kumar et al., 2016; Lischeid et al., 2021; Wossenyeleh et al., 2020). Mechanistically, this can be 

explained by the delay of water transport from precipitation to groundwater recharge with long flow paths and water travel 

times through the vadose zone and by the attenuation as the infiltration front widens due to different flow paths and flow 
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velocities through the unsaturated pore space. Wossenyeleh et al. (2020), for example, showed that the groundwater recharge 475 

delay is closely linked to the depth of groundwater and can be longer than four years in Belgium by modelling the flow through 

the unsaturated zone. Although mean_gwdepth clearly turned out as the most important landscape predictor in the RF models 

and showed a clear tendency of shallower groundwater linking to shorter response times (Fig. Fig. 4), there is scatter around 

this relationship (Fig. Fig. 4 panel c) resulting from interactions with other spatial controls. 

Additionally, response time scales are linked to the topography. The different linkages between elevation and lf and hf clusters 480 

in the regions suggest different effects of elevation on response times. On the one hand, higher elevations are usually linked 

to deeper unsaturated zones (i.e. mean_gwdepth, Haitjema and Mitchell-Bruker, 2005) and thus higher response times, while 

groundwater heads at lower elevations close to streams fluctuate at a shorter time scales (Peters et al., 2006; e.g., Haaf et al., 

2023). This could be a dominant process in the northwest of Germany. On the other hand, high elevations can be linked to 

small depths to bedrock and aquifer thickness and thus shorter response times and memories, as e.g. described for Ireland with 485 

depths to bedrock below 10m by Schuler et al. (2022). The regional cluster-pairs in the northeast and southwest have smaller 

overlap in their locations, e.g. in the south the hf cluster includes more wells in the Upper Rhine Plain and southeastern regions 

compared to the respective lf cluster. In the northeast the hf cluster extends more towards the south into more mountainous 

areas, e.g. the Ore mountains, while the lf cluster is centered more in Brandenburg. Note the positive (although not strong) 

correlation between the mean_gwdepth and topographic variables: for the elevation r=0.20, for the slope r=0.43 or the twi 490 

r=0.38 (Spearman correlation). High mean_gwdepth was linked to higher topographic slopes and lower wetness indices, while 

it was less clear for elevation, potentially because of its higher relevance in terms of relative height in the hydrologic system 

between water divide and stream (Schuler et al., 2022; Haaf et al., 2020; Rinderer et al., 2017; Haitjema and Mitchell-Bruker, 

2005). This could explain the importance of elevation in the RF models, which can represent nonlinear relationships, while the 

underlying processes cannot be uniquely interpreted across regions. 495 

Closely linked to the topography, the models further indicated a link between clusters and response times to the distance to 

stream. The hf clusters with shorter memories (i.e. SGI changes at a higher frequency) tended to be located closer to streams 

than their regional counterparts with longer memories (Fig. S5). This is in line with Peters et al. (2006), who found higher 

attenuation in groundwater droughts closer to the water divide than closer to the stream. Similarly, Haaf et al. (2023) showed 

that overall locations closer to streams tend to show higher flashiness in daily groundwater heads and pointed out the 500 

nonlinearity in the controls with higher control of stream distance during wet conditions. In proximity to streams, groundwater 

dynamics are typically directly linked to interactions between groundwater and surface waters (Haaf et al., 2023; Nogueira et 

al., 2021). For example, near-stream groundwater heads often respond quickly to stream water level fluctuations via a pressure 

response and show very similar variability due to the confined or semi-confined conditions commonly found in alluvial 

aquifers (Bartsch et al., 2014; Gianni et al., 2016). The distance to 4th order streams in our study also varied systematically 505 

between southwestern and northern regions, which likely results from the proximity to the Rhine (order 7) of the sw clusters. 
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For larger stream orders, Belitz et al. (2019) also pointed out that the distances are more descriptive of overall location than 

process, in contrast to smaller stream orders. For these Belitz et al. (2019) showed a generally positive relationship between 

the well locations relative to stream and water divide and the water table depths based on random forest models. In our study, 

this link was however weak across wells, i.e. the highest correlation with mean_gwdepth was the stream distance of first order 510 

(river_dist_m r=0.2 and sd_order_1 r=0.16, Spearman correlation; note: sd_order_1 was not used in RF to reduce redundancies, 

Table 1). 

The hydrogeological setting, as a landscape property controlling the water flow in the subsurface, has been identified as a 

dominant control on groundwater dynamics in several studies. Hellwig and Stahl (2018) found hydrogeological conditions to 

control response times of baseflow from headwater catchments, which were shorter in the fractured medium compared to in 515 

porous medium. Several other studies discuss a dominant effect of aquifer transmissivity, effective porosity, storativity or 

aquifer thickness on groundwater dynamics (Bloomfield and Marchant, 2013; Haaf et al., 2023; Schuler et al., 2022). In our 

study, we used only hydraulic conductivity, which we extracted from a hydrogeological map representing the upper aquifers 

(BGR and SGD, 2016), because of a lack of data on subsurface characteristics in the groundwater data set, including 

information on the aquifer that the wells tap into. For the kf_rank control, we could not identify a clear relationship between 520 

response times and cluster, in line with Kumar et al. (2016). The different dominance of hydrogeological controls could have 

several reasons, e.g. overdominance of a certain hydrogeologic condition, mismatches between local hydrogeological 

conditions at a well location and coarse hydrogeological maps (esp. when local borehole data are missing), differences in 

investigated variables (e.g. groundwater heads with strong seasonal variations (e.g., Haaf et al., 2020), anomalies (e.g., 

Bloomfield et al., 2015), or groundwater discharge as baseflow (e.g., Hellwig and Stahl, 2018) and in their spatial and temporal 525 

resolutions or indeed distinct dominant controls in represented hydrogeological settings across study regions. For example, 

Haaf et al. (2020) found different controls of groundwater head dynamics for confined and unconfined aquifers for Southern 

Germany. Also, differences between controls on local and integral representations are likely, as they represent different system 

characteristics and have been shown to not be directly transferable (Kumar et al., 2016; Hellwig et al., 2020; Van Loon et al., 

2017). Studies representing area-based signals (e.g., raster or catchment integrated indicators) seem to find a higher relevance 530 

of hydrogeological conditions (Hellwig and Stahl, 2018; Hellwig et al., 2020). 

In summary, the identified and discussed landscape controls above suggest that the spatial variability of local groundwater 

drought response time scales (i.e. system memories) within meteorologically distinct regions is dominantly controlled by 

vertical low-pass filtering through the unsaturated zone and secondarily by controls affecting the lateral flow conditions linking 

to subsurface hydraulic and storage conditions. At integral landscape (or catchment) scale, the hydrogeological control on 535 

storage discharge seems to be a more dominant control on drought propagation time scales. In this study, we did not find a 

dominant and clear influence of the hydrogeological controls, however, information on the aquifer tapped by the well like 

confinement status and screening depth is not available for the used data set. 
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Although differences in response times within regions were found to be larger than between regions in Germany and 

dominantly controlled by landscape filtering, systematic regional differences in groundwater response times may also be linked 540 

to general climatic conditions (humid vs. drier) and related groundwater recharge rates (Berghuijs et al., 2024). The feature 

importance results from RF models for resptSPEI and accSPEI also ranked climatic variables high, i.e. PET_SI as 2nd, 

precipitation and aridity (AI) as 4th and 5th ranked feature. Cuthbert et al. (2019) showed that globally arid areas with small 

recharge have much longer groundwater response times (i.e. hydraulic memories), which they defined as the time to re-

equilibrate when recharge conditions change. This could be one reason for the overall slightly higher response times of the 545 

groundwater systems (memories) in the less humid northeast of Germany than in the northwest and southern parts. Especially 

for the hf clusters, ne_hf has longer response times compared to nw_hf and sw_hf (Fig. 3b). 

4.2.3. Anthropogenic impacts cause superimposing trends 

Across Germany, two clusters were clearly characterized by long-term trends in SGI and also in the residuals between the SGI 

and the SPI or SPEI respectively. More specifically, they showed dominant increasing (cluster lt_inc) and decreasing (cluster  550 

lt_dec) trends that clearly deviated from trends present in the meteorological drivers (Fig. 5 panel a). Those trends are 

presumably caused by anthropogenic activities, as indicated by the linkage of resptSPEI to artificial areas and mining data and 

as discussed in the following. 

Upward trends in groundwater heads (cluster lt_inc) were more prevalent in regions with mining activities, such as the open 

lignite mining areas in Western and central East Germany, and urban areas including the metropolitan area of Berlin. This 555 

suggests dominant controls of changes in water management. Mining is commonly linked to extensive water management 

activities with groundwater level drops up to several hundred meters. Observations of increasing groundwater levels can thus 

be linked to decreased groundwater pumping due to the relocation or closure of opencast lignite mines and occur in the 

proximity of falling groundwater levels. For example, cluster lt_inc and lt_dec both occurred in the Rhenish lignite area (Ger.: 

Rheinisches Braunkohlegebiet) in central western Germany (west of Cologne). Many of the lignite mines in the Central 560 

German lignite area (Ger.: Mitteldeutsches Braunkohlerevier) were closed in the early 90s after the German reunification, 

where positive trends in groundwater heads (lt_inc) prevail in our study. These effects can be expected to continue, as lignite 

mining is decreasing because of the Coal Exit Act to reduce CO2 emissions in Germany. 

In urban areas, changing groundwater heads can be linked to changes in water use. Potential causes include changes in the 

water demand due to demographic or industrial developments or in the used water sources. Overall, water use in Germany has 565 

drastically decreased by more than 50% since the 90s for several reasons including technological improvements 

(Umweltbundesamt, 2022b). Water demand for energy (mostly cooling water) as the greatest user has strongly decreased, but 

also the public water use has decreased from 144l/day/capita in 1991 to 128l/day/capita in 2019 (Umweltbundesamt, 2022a, 

b). Particularly in Berlin, we found a prevalence of the lt_inc cluster, while the water demand in this densely populated area 
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has decreased by about 42% since the 90s (Umweltatlas Berlin, 2018). Another reason for changing groundwater levels could 570 

be the relocation of resources and supply wells, e.g. due to decaying water quality such as high nitrate or sulfate concentrations, 

e.g. in Berlin (Marx et al., 2023). It should be noted here that 25% of the wells of cluster lt_inc are located in Berlin with a 

very high station density in the data set, esp. in western Berlin, which could bias the identified controls. Nevertheless, the 

identified effects of changing water demands can be considered transferable to other urban areas, depending on local 

demographic and industrial settings. Additionally, active groundwater resources management such as managed aquifer 575 

recharge can lead to rising groundwater levels. The region Hessian Ried (Ger.: Hessisches Ried) in the Upper Rhine Plain is a 

prominent example, where treated Rhine water is infiltrated since 1989 to increase groundwater resources to supply water 

demand for agriculture and the population of the metropolitan region including the city of Frankfurt (Main) (Staude, 2023; 

Weber and Mikat, 2011). In line with the subsequent groundwater level increases, our study showed a strong prevalence of 

cluster lt_inc. Overall, several reasons could be identified for increasing groundwater heads, all related to decreased 580 

anthropogenic abstractions or managed increase in the respective groundwater resources. 

Downward trends in SGI not explainable be the meteorological signal alone (cluster lt_dec) could similarly be linked to 

changes in anthropogenic water use, though no clear spatial controls could be identified. Increased water abstractions can result 

from various factors, including demographic change, changes in mining activities or agricultural needs, which can temporarily 

be higher during droughts and heat waves, representing a positive feedback loop on water resources. The spatial controls 585 

associated with such potential increase in water abstractions are either non-unique or missing in our analysis. This is also 

reflected in a generally low predictability of cluster lt_dec (22% correct classifications). National data on groundwater 

abstractions are thus crucial to clearly identify and assess controls and to differentiate between meteorological and human 

influences on observed changes in groundwater heads. 

Overall, the anthropogenic controls identified in the random forest regression for the trends in residuals proved to be more 590 

indicative for the positive trend deviations gathered in cluster lt_inc than for the less predictable cluster lt_dec. 

 4.3. Implications 

This study indicated that there is a large spatial variability in groundwater response time scales to meteorological forcing, even 

within the same region. This implies different vulnerability to the different types of driving meteorological drought events, 

i.e. meteorological extremes with respect to different time scales represented by different accumulation times. 595 

Systems with short response times, i.e. wells with high frequency of head changes, are more prone to respond heavily to short 

meteorological anomalies, but also can recover faster when the climatic drivers return to “normal” or wetter conditions. 

Extreme short-term anomalies can be particularly critical for stream ecosystems, as members of the high-frequency clusters 

are more closely connected to streams. In our study, 61.5% of the short-term vulnerable class are located within 500m distance 
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of the nearest stream and 49% within riparian zones. The highest share of short response times (resptSPEI<3.5 months) was 600 

allocated to the southern clusters (49.9% of wells). However, the southern wells are generally more strongly represented in 

proximity to streams (Fig. Fig. 2), so that regional differences in processes cannot be fully disentangled due to this data bias. 

Stream ecosystems and groundwater-dependent ecosystems, such as riparian wetlands, may be severely impacted by short-

term droughts if groundwater levels drop, stream discharge falls below the ecological minimum flows, and streams become 

losing or even fall dry. Moreover, baseflow has been shown to have short response times too, in a range of a few months only 605 

(Hellwig et al., 2020). Thus, the groundwater systems with short response times seem to imply a high ecological drought 

vulnerability. In addition, small, fast-responding aquifers, like local riparian aquifers, may be highly susceptible to short-term 

droughts (Schuler et al., 2022) and thus require backup water supply resources. 

Systems with long response times, i.e. wells with a low frequency of changes, show a response when anomalies accumulate 

over longer periods, such as more than a year. At the same time, these systems recover only slowly and retain a long memory, 610 

potentially leading to legacy effects from past management or climate conditions even after (driving) conditions normalize. 

While they can buffer short-term climatic fluctuations and thus serve to bridge short droughts of a few months regarding water 

demands, they are more vulnerable to extended droughts or overuse due to their long recovery times. Consequently, they may 

be particularly at risk from consecutive droughts, increasing with climate change (e.g., Rakovec et al., 2022), if the intervals 

between extreme events are too brief for recovery. Across regions in Germany, we found the highest share of long memories 615 

(resptSPEI>9 months) in the northeastern clusters, with 45.4% of the wells. Identifying and understanding these systems might 

be particularly crucial for water management, and thus be classified in terms of management-sensitivity. 

Different implications for the different response patterns can be derived from expected changes in the climatic variability. 

• Firstly, hydroclimatic seasonality is expected to increase, i.e. longer periods of heat waves and precipitation deficits 

in summer as well as more heavy rainfalls in the wet winter periods (IPCC 2023). Different trends in seasonal 620 

meteorological drought indices with more negative trends in summer SPEI3 reflect that (Ionita et al. 2020). In this 

context, Hellwig and Stahl (2018) discussed that catchments with short response times could be more prone to 

decreasing low flows, as precipitation deficits in summer could not be buffered across seasons. Wunsch et al. (2024) 

also found that summer mainly controls low groundwater levels in fall in shallow unconfined aquifers, which cannot 

be prevented by a preceding wet winter. However, there has been little reflection on the dependence on response 625 

times, which we found to be spatially highly variable. Indeed, we also found groundwater wells with subseasonal 

response times (about one third resptSPEI≤3.5 mon). These locations with short-term memories could potentially be 

more strongly affected by increasing hydroclimatic seasonality. As these systems are often located in proximity to 

streams, this could moreover result in more losing or intermittent streams, as mentioned above. 
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• Secondly, multi-year or consecutive meteorological droughts are expected to increase in frequency and intensity with 630 

climate warming (e.g., Rakovec et al., 2022; Intergovernmental Panel on Climate Change (IPCC), 2023). They will 

likely affect the groundwater systems with long memory more heavily as time for recovery in between is too short, 

e.g. in the recent multi-year drought 45.9% of the lf wells experienced their minimum mean annual SGI since 1991. 

Droughts of this severity or more challenge water management, particularly, considering the positive climate-human 

feedback as water demand increases during heatwaves and droughts. 635 

• Lastly, increasing temperatures impact water balance components in multiple ways, such as by increasing potential 

evaporation and decreasing snow-fall depths and glacier melt (e.g., Fontrodona Bach et al., 2018). The latter 

contribute to groundwater recharge with changes likely affecting future groundwater resources, however, this is out 

of scope in this study. 

As the derived response times of the cluster members with a dominant long-term trend are likely not representative for the 640 

climatic-groundwater system response, the vulnerability map only refers to the other 6 cluster members. Nevertheless, the 

clusters with long-term decreasing trend might be specifically vulnerable, not only to variability in the climatic driver but also 

to superimposed changes in boundary conditions, such as from anthropogenic activities or long-term changes in the climate. 

Inspired by the discussion in Bloomfield et al. (2015), the identified SGI clusters could also be used to identify representative 

wells for larger regions or aquifers (i.e. the specific clusters) and for short term forecasting using seasonal hydroclimatic 645 

forecasts. Both aims could be combined into representative (for cluster) and meteorologically “well-behaved” (high anomaly 

cross-correlation) wells representing characteristic systems. This would however need further evaluation. 

Further, spatially comprehensive predictions of response time scales would be desirable to inform water management which 

relies on spatially representative information on the groundwater status. However, the fact that the main identified control of 

response time scales within regions, i.e. mean depth to groundwater, is not known in space and, in addition, can change in the 650 

long term challenges this goal. Potentially, for areas where mean groundwater depth can be associated with other controls, 

such as the topography, spatial predictions could be tested (Schuler et al., 2022). Further research is needed to establish a 

spatially seamless mapping of groundwater drought vulnerabilities in Germany. 

 5. Conclusions 

This large-sample analysis of groundwater head anomalies across 6,626 wells in Germany overall revealed a high spatial 655 

variability in groundwater head responses to meteorological anomalies. Within this variability, wells were grouped by 

similarity in groundwater head anomalies into six regional clusters, distinguished by three meteorologically distinct regions 

and two response time scales, and two countrywide clusters. The identified regions with similar response patterns were the 
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northwest, northeast and the south of Germany. The median response time scales in terms of meteorological accumulation 

times ranged from a few months for systems with shorter memory to several years for systems with longer memory (or 660 

persistence). The characteristic response time scales were closely linked to the frequency, duration, and severity of groundwater 

droughts. 

The main cause for distinct groundwater responses (represented by the SGI) across regions was found to be differences in the 

meteorological driving forces (SPI, SPEI). These drivers could on average yield cross-correlation results of r=0.7 considering 

the individual optimal response time scales. Variables defining landscape filtering, in particular, the depth to groundwater, 665 

were the main controls of response time scales distinguishing the high and low frequency clusters within the same regions. 

Apart from that, long-term trends in the SGI superimposing the meteorological drivers defined the two countrywide clusters 

and were attributed to changes in anthropogenic impacts. In particular, the long-term increasing trend cluster was linked to 

urban and mining areas potentially associated with decreased abstractions due to ceased mining (e.g. in the Central German 

lignite mining area), and declining water use (e.g. in the city of Berlin), or to actively recharged groundwater (e.g. in Hessian 670 

Ried). 

The vulnerability of groundwater systems to different meteorological droughts was classified into short-, medium- and long-

term response times with different implications for ecosystems and water management. Fast responding systems, prevailing in 

the proximity of streams, might be at higher risk with increasing seasonality in meteorological drivers under climate change. 

Slow-responding systems could be more affected by consecutive and multi-year droughts, as experienced recently and 675 

projected to increase in frequency and severity under climate change. 

Overall, this study increased the understanding of dynamic groundwater responses to droughts and their different regional and 

local controls and derived vulnerability classes within Germany. The distinct responses to meteorological drivers reveal 

different implications to be expected under climate change. These insights can inform policymakers, water resource managers, 

and stakeholders for developing effective strategies for mitigating the impacts of droughts on groundwater systems and 680 

ensuring sustainable water management practices. 
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