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Abstract. Stand mass scales as the -1/3 exponent of plant density for large compilations of plant communities on a continental 

or global scale, being the slope of the regression line in a log–log plot, where the intercept is a normalization constant reflecting 

the assumption of a constant rate of energy use by the species and environments involved. Here the normalization constant is 

replaced by a light absorption function, enabling to investigate how the interspecific mass–density relationship varies along 

spatial, largely latitudinal gradients of leaf area and the sum of global radiation over the growing season for relatively 10 

undisturbed forests. The test of the model for globally distributed forest communities shows the highest explained variance 

when both gradients are included in the light absorption function, meaning that the exponent is determined not only by the rate 

but also the sum of energy use over the growing season. The exponent of tree density converges to 1/2 instead of the expected 

1/3 value based on the -1/3 exponent value in the bivariate biomass–density relationship. The 1/2 value corresponds with the 

so-called self-thinning rule that applies to the self-thinning line constructed as the upper boundary of mass–density points for 15 

monospecific even-aged plant stands, where gradients in energy use can be neglected. The results demonstrate the 

appropriateness of introducing a light absorption function in the bivariate mass–density relationship, suggesting a 

thermodynamic interpretation that may be of interest to other plants and even animals when gradients in energy use similarly 

affect the intercept and slope of the interspecific mass–density relationship. 

1 Introduction 20 

For large compilations of plant communities on the continental or global scale, the allometric relationship between average 

living aboveground biomass per plant in an area 𝑀̅ (g) and the plant number in that area N (m-2) is generally well fit by the 

equation: 

𝑁𝑐𝑟𝑖𝑡 = 𝑘𝑀̅−3/4            (1) 

where 𝑁𝑐𝑟𝑖𝑡  is the critical density of maximally packed individuals where all resources are used, with average mass 𝑀̅ (Enquist 25 

et al., 1998; Niklas et al., 2003; Deng et al., 2012; Dillon et al., 2019). The -3/4 exponent of 𝑀̅ is the scaling exponent and k 

is the scaling coefficient or normalization constant that adjusts the general relationship across environments and species. Earlier 

studies traditionally treated N as the independent variable and 𝑀̅ as the dependent variable, such that the exponent would be -

4/3 rather than -3/4 (Weller, 1989; Lonsdale, 1990). This results in the general mass–density equation: 

𝑀̅ = 𝑘𝑁−’            (2) 30 
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where the expected value of the scaling exponent -’ is -4/3 for large compilations of plant communities. For statistical reasons, 

Eq. 2 is preferred for forests because the number of trees in an area can be determined much more accurately as the independent 

variable in a linear regression model where the equation is plotted on logarithmic axes: 

log𝑀̅ = log𝑘 − ’log𝑁           (3) 

where -’ is the slope of the line and log𝑘 the y-intercept.   35 

Mechanistic self-thinning theories explain the -β’ = -4/3 value of the scaling exponent in interspecific scaling of large 

compilations of plant communities from the underlying processes, using geometric, allometric and dynamic growth arguments 

(e.g., Weller, 1987b; Lonsdale, 1990; Adler, 1996; Enquist et al., 1998; Li et al., 2000; Deng et al., 2012), but important 

variation in the value of the scaling exponent and scaling coefficient remains when particular species or habitats are considered 

(Deng et al., 2012).  40 

In intraspecific scaling the thinning slope -’ (Eq. 3) converges to -3/2 when the thinning line is determined as the upper 

boundary of data points in a log𝑀̅– log𝑁 plot of crowded even-aged monospecific plant populations (Yoda et al., 1963; 

Westoby, 1984). This so-called ‘self-thinning rule’ (Yoda et al., 1963; Westoby, 1984) was for some time thought also to apply 

to the self-thinning line obtained by tracking a community through time or by the juxtaposition of datapoints of separate stands 

with a corresponding species composition (e.g., Westoby, 1984; White, 1985), until scrutiny showed a large variation in the 45 

thinning slopes and intercepts (Weller, 1987a). 

So, the -4/3 exponent in interspecific scaling has predictive power on the continental or global scale, whereas the -3/2 self-

thinning rule applies only to the upper boundary of datapoints in the intraspecific mass-density relationship for well-defined 

local conditions. Here, the explanation for this discrepancy is sought in the scaling coefficient k, assumed to represent a 

constant high rate of energy use in the self-thinning trajectory, both for an exponent value of -4/3 in interspecific scaling and 50 

an exponent value of -3/2 according to the self-thinning rule. 

The variation in the value of the scaling coefficient among thinning lines has received relatively little attention (Dillon et al., 

2019), although the estimate of the variation in the intercept (i.e., log𝑘) is correlated with the estimate of the slope in the log–

log relationship of Eq. 3 (Westoby, 1984). The value of the scaling coefficient is described as a measure of a constant whole 

stand energy use (e.g., Westoby, 1984; White et al., 2007; Deng et al., 2012), with variations due to differences in resource 55 

use through time that are much stronger than variations in the exponent (Deng et al., 2006; Dai et al., 2009).  

Light experiments on monospecific even-aged plant populations, comparing self-thinning trajectories for different but constant 

levels of illumination, show that the intercept of thinning lines is lowered with increasing shade, while the scaling exponent at 

each level of shade is maintained at a value of approximately -3/2, except for populations grown under deep shade (Hiroi and 

Monsi, 1966; Lonsdale and Watkinson, 1982, 1983; Hutchings and Budd, 1981; Westoby and Howell, 1981; Westoby, 1984). 60 

This suggests that reduced light absorption due to a lower leaf area, rather than increased shade, also results in a lower intercept 

of the thinning line, but only a different slope if light absorption is not constant throughout the trajectory of self-thinning. The 
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effect of gradients in leaf area, and thus light absorption, on the exponent of N in the interspecific mass–density relationship is 

investigated by developing a light absorption function that includes leaf area to replace the normalization constant k. 

The introduction of a light absorption function also builds on the approach of Deng et al. (2012), describing the scaling 65 

coefficient k in interspecific scaling as an empirically determined measure of a constant rate of total energy use, equal to 

𝑁𝑐𝑟𝑖𝑡𝑀̅3/4 or 𝑀̅𝑁𝑐𝑟𝑖𝑡
4/3

, where the last expression considers N as the independent variable, conform the ‘classical’ self-thinning 

theory (e.g., Westoby, 1984). However, this approach does not include the finding that at northern latitudes, tree density 

increases with decreasing latitude to approximately 25o, while the total aboveground biomass is supposed to be constant 

(Enquist and Niklas, 2001) or increases, apart from the spatially restricted temperate rainforests (Pan et al., 2013). Therefore, 70 

𝑀̅𝑁𝑐𝑟𝑖𝑡
4/3  increases with decreasing latitude, together with an increase in the sum of available solar energy use over the growing 

season, here investigated by including this gradient in a light absorption function, in addition to leaf area.  

The leaf area and the available solar radiation over the growing season are introduced stepwise in the light absorption function 

that replaces the scaling coefficient k, to correct for gradients in the total energy use of forests, which implies that not only 

forests with 𝑁𝑐𝑟𝑖𝑡 , but more forests with tree density N can be included in the test of the equations (see Methods). This results 75 

in three energy–biomass–density relationships or EBDs that enable to examine how the interspecific mass–density relationship 

varies along gradients of leaf area and available solar energy separately and together.  

In this introduction has been referred to the allometric mass–density relationship using 𝑀̅, conform most cited studies, but the 

model development in this paper will be based on the equations written in terms of the total living aboveground biomass M (g 

m-2), because the calculation of 𝑀̅ as M/N from the available field data introduces artificially inflated correlations (Weller, 80 

1987a). The use of M leads to an exponent -β = -β’ + 1, while k stays the same (see Methods). In addition to the three EBDs, 

the bivariate mass–density relationship and the relationship between leaf area and stand density are calculated, giving insight 

into how the slope of the mass–density line relates to the gradient in leaf area. The analysis focuses on the development of the 

exponent of N because this is a central issue in the debate on the mathematical form of the self-thinning equation applied to 

forests. In addition, we examine the extent to which the regression coefficients support the conclusions with respect to the 85 

development of the exponent in the EBDs. 

The EBDs assume a constant regime of light absorption over the years that is long enough to establish a dynamic equilibrium 

with the aboveground living biomass and tree density. Human, biotic and abiotic disturbances like thinning (not self-thinning), 

insect diseases and drought stress can lead to deviations in leaf area from this dynamic equilibrium, due to functional responses 

of forests to disturbances (Jump et al., 2017). Therefore, only relatively undisturbed stands are included in the test of the model 90 

equations. The model equations are applied to the field data of forest biomass and density in the compendium of Cannell (1982) 

that comprises standardized tabulations of field and experimental data of forests of approximately 600 reports worldwide.  
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2 Methods 

2.1 Introduction of a light absorption function in the self-thinning equation 

The development of a light absorption function begins with the formulation of a balance equation underlying the self-thinning 95 

equation. The balance equation for an even-aged monospecific tree stand at the ceiling (or maximum) leaf area can be 

formulated by describing the scaling exponent -β’ as the balance between the relative growth rate (RGR) and the relative 

mortality rate (RMR) of a plant stand (Hozumi, 1977):  

𝑅𝐺𝑅

𝑅𝑀𝑅
=

𝑑𝑀̅̅̅

𝑀̅̅̅dt
𝑑𝑁

𝑵𝑑𝑡

=
𝑑𝑙𝑜𝑔𝑀̅

dlog𝑁
= −’           (4) 

This is an equation that can also be written as the next balance equation:  100 

𝑑𝑀

𝑀
+

𝛽𝑑𝑁

𝑁
= dlog𝑀 +  𝛽dlog𝑁 = 0          (5) 

where M is used instead of 𝑀̅ in this equation because the use of the average aboveground body mass, calculated as 𝑀̅ = 𝑀/𝑁, 

introduces artificially inflated correlations between 𝑀̅ and N (Weller, 1987a; Li et al., 2006), which impedes an adequate 

comparison with the other model equations. The introduction of M in the equation results in an 1/2 value of the exponent  of 

the tree density, when we consider the self-thinning rule, because: 105 

𝑀 =  𝑀̅𝑁 ∝  𝑁−
3

2
+1

           (6) 

The integration of the balance equation (Eq. 5) results in the empirical self-thinning equation (Eq. 3A), with log𝑘 as the 

integration constant: 

log𝑀 = log𝑘 −  𝛽log𝑁            (3A) 

or more concise:  110 

𝑀 =  𝑀̅𝑁 = 𝑘𝑁−𝛽′+1 = 𝑘𝑁−𝛽          (2A) 

At the ceiling leaf area, the light absorption of a tree stand is maximal, and the yearly solar energy absorption regime is assumed 

to be in a steady state, which means that the change in yearly solar energy absorption is zero, a value that corresponds to the 

zero value of the right-hand term in the balance equation. Following integration of the balance equation, the light-dependent 

intercept log𝑘 reflects a constant level of solar energy absorption at the ceiling leaf area, which will be adjusted by the 115 

introduction of gradients in leaf area and the available solar radiation in the right-hand zero term of the balance equation (Eq. 

5).  

The introduction of only a gradient in leaf area into the balance equation results in, what I call here, a leaf energy–biomass–

density relationship or LEBD. Similarly, the introduction of a gradient in available solar radiation into the balance equation 

results in an available energy–biomass–density relationship or AEBD. The introduction of both gradients into the balance 120 

equation results in the global energy–biomass–density equation or GEBD that applies to equilibrium forest stands worldwide.  
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2.2 Development of the LEBD 

The LEBD is developed by introducing light capture in the balance equation, using the leaf area index or LAI (leaf area per 

unit of ground area in m2 m-2, one-sided for broadleaved trees and the projected leaf area for coniferous trees) and the light 

extinction coefficient  (dimensionless) in the adoption of Beer’s Law (Monsi and Saeki, 1953):  125 

d𝑀

𝑀
+

𝛼d𝑁

𝑁
=  −d𝐸𝐿𝐴𝐼/𝐸𝐿𝐴𝐼            (7)  

Here  denotes the scaling exponent that specifically applies to this equation and −d𝐸𝐿𝐴𝐼  is the change in the absorbed fraction 

of the incident radiation 𝐸𝐿𝐴𝐼  (the incident radiation summed over the growing season, GJ m-2 yr-1), which is caused by a small 

change in LAI. 𝐸𝐿𝐴𝐼  is reduced when it passes through a leaf, and d𝐸𝐿𝐴𝐼  is therefore negative. The negative sign is introduced 

so that the absorbed radiation is positive in the balance equation.  130 

The mathematical relationship between and −d𝐸𝐿𝐴𝐼/𝐸𝐿𝐴𝐼  and d𝐿𝐴𝐼 is described by the light extinction coefficient, , in the 

adoption of Beer’s Law (Monsi and Saeki, 1953):  

−
d𝐸𝐿𝐴𝐼

𝐸𝐿𝐴𝐼
=  εd𝐿𝐴𝐼            (8) 

In this equation, −d𝐸𝐿𝐴𝐼  is the fraction  of the incident radiation 𝐸𝐿𝐴𝐼  that is absorbed for a small change in the value of LAI. 

Integration over a homogeneous layered canopy results in the well-known equation:  135 

𝐸𝑏 =  𝐸𝑜𝑒−ε𝐿𝐴𝐼             (9) 

where 𝐸𝑏  is the below-canopy radiation and 𝐸𝑜 is the above-canopy radiation. The consequences of relating  to the sum of 

the above-canopy radiation over a growing season instead of radiation intensity values are explained in the Results section of 

this article. Expressed as a 𝑙𝑜𝑔10 value, the equation can be written as:  

d𝑙𝑜𝑔 (
𝐸𝑜

𝐸𝑏
) = 0.4343εd𝐿𝐴𝐼          (10) 140 

and the balance equation becomes:  

d𝑙𝑜𝑔𝑀 +  𝛼d𝑙𝑜𝑔𝑁 = 0.4343εd𝐿𝐴𝐼         (11) 

Integration results in the next leaf energy–biomass–density relationship or LEBD: 

log(𝑀𝑁𝛼) = 0.4343ε𝐿𝐴𝐼 +  µ          (12) 

where µ is an integration constant, which is expected to be variable in relation to the global radiation summed over the growing 145 

season. Notice that the LEBD is intended to apply to datasets with forests at and below the ceiling area, within the limits of 

validity set by the application of Beer’s Law. The validation of the LEBD against field data of forests results in values of the 

light extinction coefficient that are tested against literature values (see Results). 

2.3 Development of the AEBD 

The AEBD is developed by the introduction of the available solar energy in the balance equation, using data of the global 150 

radiation summed over the growing season 𝐸𝑠𝑔𝑙𝑜𝑏 (GJ m-2 yr-1). The introduction of 𝐸𝑠𝑔𝑙𝑜𝑏  in the self-thinning equation starts 

with the next extension of the balance equation:  
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d𝑙𝑜𝑔𝑀 +  𝛼′d𝑙𝑜𝑔𝑁 = 𝑓d𝐸𝑠𝑔𝑙𝑜𝑏            (13) 

which, after integration, results in the following equation:  

log(𝑀𝑁𝛼′
) = 𝑓𝐸𝑠𝑔𝑙𝑜𝑏 + 𝑔          (14) 155 

The scaling exponent 𝛼′ applies specifically to this available energy–biomass–density relationship or AEBD; 𝑓 is a regression 

coefficient, and the intercept 𝑔 is an integration constant that should be variable in response to changes in the ability of the 

canopy to capture the available solar energy. This equation applies to a gradient in seasonal global radiation, for instance, due 

to latitude, under the condition that the capacity of stands to capture energy (dependent on 𝜀𝐿𝐴𝐼) does not change.  

2.4 Development of the GEBD 160 

When studying global datasets of tree stands, gradients of both 𝐿𝐴𝐼 and 𝐸𝑠𝑔𝑙𝑜𝑏 are combined in a global energy–biomass–

density relationship or GEBD: 

log(𝑀𝑁𝛾) = 0.4343𝜀′𝐿𝐴𝐼 + ℎ𝐸𝑠𝑔𝑙𝑜𝑏 + 𝑖         (15) 

where γ, ε′, ℎ and 𝑖 are the exponent, the extinction coefficient and regression coefficients, respectively, that apply specifically 

to this equation. In fact, the light absorption function of Eq. 15 describes the solar energy absorbed during the growing season 165 

𝐸𝑠𝑠𝑜𝑙  (GJ m-2 yr-1), which follows from equating 𝐸𝑠𝑠𝑜𝑙  to 𝐸𝑜 − 𝐸𝑏 and 𝐸𝑠𝑔𝑙𝑜𝑏 to 𝐸𝑜 in Eq. 9: 

𝐸𝑠𝑔𝑙𝑜𝑏 =
𝐸𝑠𝑠𝑜𝑙

(1−𝑒−𝜀′𝐿𝐴𝐼)
           (16) 

The GEBD is developed to determine the exponent γ of 𝑁 correctly, taking into account the gradients in 𝐸𝑠𝑠𝑜𝑙  (see ‘Test of the 

EBDs’), but the regression coefficients ε′, h and i in the multiple regression equation are attenuated, due to measurement errors 

in 𝐿𝐴𝐼 and 𝐸𝑠𝑔𝑙𝑜𝑏  (Aiken and West, 1991). The regression coefficients ε (Eq. 12) and 𝑓 (Eq. 14) are expected to be more 170 

realistic, of which ε can be compared with literature values. 

2.5 Test of the model equations 

Five model equations are tested against the data from the compendium of Cannell (Cannell, 1982), including four equations 

already presented: the mass-density relationship of Eq. 3A, the LEBD of Eq. 12, the AEBD of Eq. 14, the GEBD of Eq. 15 

and one new equation I introduce here, the leaf-tree density relationship of Eq. 17: 175 

𝐿𝐴𝐼 = 𝑎log𝑁 + 𝑏           (17) 

This equation aims to show how leaf area varies with tree density for the interspecific mass-density relationship and is 

calculated using Ordinary Least Squares regression (OLS) with N as the independent variable, because the estimate of N is 

much more reliable than the difficult to determine value of 𝐿𝐴𝐼 (Bréda, 2003).  

Together, the five equations aim to give insight into how the scaling exponents and the strength of the linear associations 180 

between the variables on the left-hand and the right-hand sides of the EBDs develop by the stepwise introduction of solar 

energy absorption into the interspecific mass-density relationship of Eq. 3A. The interspecific mass–density relationship of 
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Eq. 3A is calculated using OLS, with 𝑁 as the independent variable because 𝑁 can be counted much more accurately than 𝑀 

in a given area (Sokal and Rohlf, 1981; Niklas et al., 2003). The exponents of the LEBD and the AEBD are determined as the 

values that maximize the linear association (r2) between the variables on the left-hand and the right-hand sides of the regression 185 

equations. The AEBD is calculated using Reduced Major Axis regression (RMA), but the LEBD is calculated using OLS with 

𝐿𝐴𝐼 as the dependent variable, because the measurement error in 𝐿𝐴𝐼 is expected to be much larger than the error in log(𝑀𝑁α). 

Next, the regression coefficients of the LEBD are determined by recalculating the regression equation to obtain Eq. 12. The 

exponent of 𝑁 in the GEBD is calculated as the value that maximizes the linear association (R2) between the variables on the 

left-hand and the right-hand side of the multiple regression equation. The regression coefficients of the explanatory variables 190 

𝐿𝐴𝐼  and 𝐸𝑠𝑔𝑙𝑜𝑏  are attenuated due to measurement errors in 𝐿𝐴𝐼  and 𝐸𝑠𝑔𝑙𝑜𝑏  (Aiken and West, 1991), but the regression 

coefficients of 𝐿𝐴𝐼 and 𝐸𝑠𝑔𝑙𝑜𝑏, calculated with the LEBD and AEBD, are more realistic. The statistical significance of all 

model equations is based on r2 (two-tailed, Pr<0.05). Statistical calculations were performed using XLSTAT and the Analysis 

ToolPak in Excel. 

The values of 𝐸𝑠𝑔𝑙𝑜𝑏 are mostly determined from the monthly means of daily irradiation and the length of the growing season 195 

(monthly mean daily minimum air temperature Tmin ≥0 oC, https://www.soda-pro.com/web-services/meteo-data/monthly-

means-solar-irradiance-temperature-relative-humidity). For forests in a sea climate (e.g. Belgium, Netherlands, U.K., Japan), 

where (almost) no Tmin values are <0 oC, 𝐸𝑠𝑔𝑙𝑜𝑏 is determined for the months with the monthly mean air temperature Tmean ≥5 

oC. See Supplementary Material for these and additional data used for mountainous areas and the influence of leaf phenology 

(deciduous species).  200 

2.6 Selection procedure applied to the forest field and experimental data 

To test the model equations, initially all stands are selected from the forest field and experimental data in Cannell’s 

compendium (Cannell, 1982) with the necessary data on aboveground stand biomass, stand density and leaf area. Next, forests 

are selected where the biomass and tree density are in a dynamic equilibrium with the absorption of radiant energy, which 

means that stands subject to notable drought stress and other abiotic disturbances as well as notable animal or human 205 

disturbances (e.g. spacing experiments or pruned, severely or recently thinned or coppiced stands) are not included. Also, 

plantations aged up to 20 years frequently have not reached the dynamic equilibrium established with the EBDs for older 

stands in the density series. Stands with both broadleaved and coniferous tree species are not selected due to their different 

light extinction coefficients. Stands with an 𝐿𝐴𝐼 less than 1.5 were removed to stay within the validity limits set by the 

application of Beer’s Law. In addition, all coniferous tree stands with an 𝐿𝐴𝐼 > 10 were removed because the relationship with 210 

log(𝑀𝑁α) is unclear. A dataset of 18 stands of Picea abies (p. 360-364) was omitted because the 13 stands with the highest 

log(𝑀𝑁α) values did not show a statistically significant relationship with 𝐿𝐴𝐼.  

Stands without accurate LAI data, different values for the dry and wet seasons, or unclear data due to a lack of distinction 

between trees and other plants such as shrubs and undergrowth were omitted. Stand data only obtained from published 
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regressions elsewhere were also a reason for omission, especially as reliable estimates of LAI are difficult to obtain (Bréda, 215 

2003). The stand selection procedure was also used to achieve normality of the residuals (Shapiro–Wilk and Anderson–Darling 

tests) of the regression equations 12, 14 and 15. The selection procedure results in 132 broadleaved tree stands (Supplementary 

Table 1) and 67 coniferous tree stands (Supplementary Table 2), which were used to test the five model equations. 

3 Results 

The results of the five model equations applied to the datasets of broadleaved and coniferous tree species separately and 220 

together are presented in Table 1, showing how the scaling exponent and the results for the regression coefficients develop, 

when gradients in LAI and 𝐸𝑠𝑔𝑙𝑜𝑏  are introduced stepwise into the interspecific mass–density relationship of Eq. 3A. 

 

Table 1. The five model equations applied to globally distributed broadleaved and coniferous tree stands (see Supplementary 

Material). Pr values are all < 0.0001, except for the Eq. 17 values; 95 % CI values are depicted. The results for the broadleaved and 225 
coniferous forests separately and together are depicted in the Fig. 1, 2 and 3 respectively. The adjusted R2 values of Eq. 15 in the 

columns left to right are respectively 0.6559, 0.6428 and 0.6130. 

Model Broadleaved stands (n = 132) Coniferous stands (n = 67) All stands (n = 199) 

Equation 3A:  

 log𝑀 = log𝑘 −

 𝛽log𝑁 

r2 = 0.2702 F = 48.12 

 = 0.22 CI = 0.16 to 0.29 

log𝑘 = 4.09 CI = 4.03 to 4.15  

r2 = 0.6182 F = 105.249  

 = 0.55 CI = 0.44 to 0.66  

log𝑘 = 3.82 CI = 3.74 to 3.91 

r2 = 0.3048 F = 86.37  

 = 0.26 CI = 0.20 to 0.31  

log𝑘 = 4.05 CI = 4.00 to 4.10 

Equation 17: 

𝐿𝐴𝐼 = 𝑎log𝑁 + 𝑏 

r2 = 0.0403 F = 5.45 Pr = 0.0211 

a = 0.48 CI = 0.07 to 0.89 

b = 5.57 CI = 5.17 to 5.96 

r2 = 0.0035 F = 0.23 Pr = 0.6334 

a = -0.29 CI = -1.52 to 0.93 

b = 4.76 CI = 3.82 to 5.70 

r2 = 0.0217 F = 4.37 Pr = 0.0378 

a = 0.42 95 % CI = 0.02 to 0.81 

b = 5.42 95 % CI = 5.06 to 5.78 

Equation 12: 

 log(𝑀𝑁𝛼) =

0.4343ε𝐿𝐴𝐼 +  µ 

r2 = 0.4202 F = 94.20 α = 0.34 

 = 0.57 CI = 0.47 to 0.71 

µ = 2.72 CI = 2.38 to 2.94 

r2 = 0.5482 F = 78.86 α = 0.52 

 = 0.27 CI = 0.22 to 0.35 

µ = 3.26 CI = 3.09 to 3.37 

r2 = 0.4259 F = 146.16 α = 0.35 

 = 0.50 CI 0.43 to 0.60 

µ = 2.88 CI 2.66 to 3.04 

Equation 14:  

 log(𝑀𝑁𝛼′
) =

𝑓𝐸𝑠𝑔𝑙𝑜𝑏 + 𝑔 

r2 = 0.5492 F = 158.35 α’ = 0.56 

f = 0.30 CI = 0.26 to 0.33 

g = 2.67 CI = 2.52 to 2.82 

r2 = 0.2507 F = 21.75 α’ = 0.47 

f = 0.14 CI = 0.11 to 0.17 

g = 3.29 CI = 3.16 to 3.42 

r2 = 0.4473 F = 159.42 α’ = 0.52 

f = 0.25 CI = 0.22 to 0.27 

g = 2.86 CI = 2.74 to 2.97 

Equation 15: 

 log(𝑀𝑁𝛾) =

0.4343𝜀′𝐿𝐴𝐼 +

ℎ𝐸𝑠𝑔𝑙𝑜𝑏 + 𝑖 

R2 = 0.6611 F = 125.85  = 0.47 

’ = 0.16 CI 0.12 to 0.21  

h = 0.15 CI 0.12 to 0.18 

i = 2.95 CI 2.82 to 3.08 

R2 = 0.6536 F = 60.38  = 0.50 

’ = 0.13 CI 0.10 to 0.16 

h = 0.05 CI 0.03 to 0.07 

i = 3.37 CI 3.27 to 3.47  

R2 = 0.6169 F = 157.81  = 0.43 

’ = 0.16 CI 0.13 to 0.19 

h = 0.11 CI 0.09 to 0.13 

i = 3.13 CI 3.04 to 3.23 
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3.1 Model results for the broadleaved dataset 

The interspecific mass–density relationship of Eq. 3A applied to the broadleaved dataset (Table 1, Fig. 1) results in a scaling 

exponent of  = 0.22, which is lower than the prevailing 0.34 exponent value from the literature (Lonsdale, 1990; Deng et al., 230 

2012). This can be explained by a reduction in leaf area with decreasing tree density N, as shown in the leaf area–tree density 

relationship of Eq. 17. The introduction of a light absorption function into the LEBD of Eq. 12, to meet the condition of a 

constant rate of energy use (Deng et al., 2012), results in an increase of the exponent from 0.22 to the prevailing 0.34 value 

from literature and an increase in r2 from 0.2702 to 0.4202. Note that all the regression coefficients of Eq. 12 in Table 1 are 

calculated from the regression results presented in Fig 1(c), Fig 2(c) and Fig 3(c), where LAI is the dependent variable. 235 

It has not been investigated previously that a gradient in available energy summed over the growing season, represented by 

𝐸𝑠𝑔𝑙𝑜𝑏 , can also influence the slope of the interspecific mass–density relationship. The introduction of a gradient in 𝐸𝑠𝑔𝑙𝑜𝑏 in 

the interspecific mass–density relationship of Eq. 3A results in the AEBD of Eq. 14, with an exponent of α’ = 0.56 and r2 = 

0.5492 for the broadleaved dataset, which considerably exceeds the r2 values of the Eq. 3A and 12. The large r2 value as well 

as the regression coefficient f = 0.30 of 𝐸𝑠𝑔𝑙𝑜𝑏  support the introduction of the AEBD. The exponent of N, α’ = 0.56, is 240 

considerably higher than the prevailing 0.34 scaling exponent in interspecific scaling and also higher than the 0.50 value of 

the self-thinning rule, with consequences for the exponent value in the GEBD.  

The value of the scaling exponent in the GEBD (Eq. 15), obtained by introducing both gradients, i.e., 𝐿𝐴𝐼 and 𝐸𝑠𝑔𝑙𝑜𝑏, into the 

balance equation (Eq. 5), is expected to lie somewhere between the exponent values of the LEBD and the AEBD. The 

introduction of both gradients into the GEBD results in a scaling exponent of 0.47 and a further increase in the strength of the 245 

linear association to R2 = 0.6611 (Table 1, Fig. 1(e)). The regression coefficients of the explanatory variables 𝐿𝐴𝐼 and 𝐸𝑠𝑔𝑙𝑜𝑏 

in the multiple regression equation are attenuated, due to measurement errors in the 𝐿𝐴𝐼 and 𝐸𝑠𝑔𝑙𝑜𝑏 (Aiken and West, 1991), 

but the regression coefficients of 𝐿𝐴𝐼 and 𝐸𝑠𝑔𝑙𝑜𝑏 in the Eq. 12 and 14 are more realistic, as shown by Eq. 12 where the value 

of 0.56 for the extinction coefficient ε can be compared with literature values. The values of  are usually related to radiation 

intensity values (Jm-2s-1), instead of the sum of global radiation over a growing season, and vary between 0.40 and 0.66 (White 250 

et al., 2000). These values are independent of the solar elevation angle for broadleaved tree stands (Chen et al., 1997), so the 

value of 0.57 is in line with literature values and confirms the applicability of the LEBD to correct for changes in the rate of 

energy use in the trajectory of decreasing stand density. 
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Figure 1. The five model equations (Table 1) applied to 132 undisturbed broadleaved tree stands distributed globally. Figures 1(a), 

1(b) and 1(c): the exponent of N converges from -0.22 to 0.34, when a gradient in LAI is introduced in the mass–density relationship 265 
of Fig. 1(a). Figure 1(d): the introduction of a gradient in 𝑬𝒔𝒈𝒍𝒐𝒃 in the mass–density relationship results in an exponent of 0.56. 

Figure 1(e): the introduction of both gradients in the mass–density relationship results in an exponent value of 0.47 in the multiple 

regression equation and the highest strength of the linear association R2 = 0.6611 (Adjusted R2 = 0.6559).   
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3.2 Model results for the coniferous dataset 

The interspecific mass–density relationship of Eq. 3A applied to the coniferous dataset results in a 0.55 exponent value and an 270 

r2 value of 0.6182. The slight exceedance of the 0.50 exponent value is associated with a small (and statistically non-significant) 

increase in 𝐿𝐴𝐼 with a decreasing stand density, calculated using Eq. 17. The introduction of leaf area into the LEBD of Eq. 

12 results in a small reduction of the exponent value to 0.52, which is closer to 0.50, and an r2 value of 0.5482. The reduction 

of the r2 value compared to Eq. 3A can be attributed to measurement errors in the determination of the 𝐿𝐴𝐼 (Bréda, 2003). 

The introduction of a gradient in 𝐸𝑠𝑔𝑙𝑜𝑏 in the interspecific mass–density relationship of Eq. 3A results in the AEBD of Eq. 275 

14, with an exponent of α’ = 0.47 and r2 = 0.2507 for the coniferous dataset. The coefficient of 𝐸𝑠𝑔𝑙𝑜𝑏 in the AEBD of Eq. 14 

is f = 0.14 for the coniferous dataset. The low 0.14 value, compared to broadleaved tree species, may be related to a lower 

competitive ability of many coniferous tree species at higher values of 𝐸𝑠𝑔𝑙𝑜𝑏 . 

The introduction of both gradients, i.e., 𝐿𝐴𝐼 and 𝐸𝑠𝑔𝑙𝑜𝑏, in the GEBD (Eq. 15), results in a scaling exponent of 0.50 and an 

increase in the strength of the linear association between the left- and right-hand side of Eq. 15 to R2 = 0.6536 (Table 1, Fig. 280 

2(e)), close to the R2 value of the broadleaved dataset. The regression coefficients of the explanatory variables 𝐿𝐴𝐼 and 𝐸𝑠𝑔𝑙𝑜𝑏  

in the multiple regression equation are attenuated, due to measurement errors in the 𝐿𝐴𝐼 and 𝐸𝑠𝑔𝑙𝑜𝑏 (Aiken and West, 1991), 

but calculated separately with the Eq. 12 and 14, of which the value obtained for the extinction coefficient ε in Eq. 12 can be 

compared with literature values for coniferous tree species. The extinction coefficients of coniferous tree species, calculated 

to nadir values, are similar to those of broadleaved tree species (between 0.40 and 0.66; White et al., 2000). The low 0.27  285 

value for the coniferous forests in Table 1 may be partly due to a greater decrease of the  value with increasing solar zenith 

angle (0 directly overhead) due to the generally planophile leaf canopies, compared to broadleaved forests with more random 

foliage orientation (Chen et al., 1997). The more northerly location of many coniferous forests compared to broadleaved 

forests, and thus a larger solar zenith angle, also contributes to this effect. The ε value calculated for the coniferous forests is 

also lower because light absorption in coniferous forests is more affected by shoot clumping, i.e. leaves are more clumped on 290 

shoots compared to broadleaved forests, which reduces the light absorption capacity of the canopy (Kim et al., 2011).  

3.3 Model results for all 199 forest stands 

The model test against all 199 forest stands (Fig. 3) doesn’t take into account the required distinction between broadleaved 

and coniferous tree species regarding the value of the extinction coefficient. This results in a value of  = 0.50 in Eq. 12, which 

is unrealistic for the coniferous forests in the dataset. Also, the R2 value of the multiple regression equation applied to all 199 295 

stands (R2 = 0.6169), falls below the R2 values of the broadleaved and coniferous datasets separately, making the application 

of the model equations to all stands less relevant.  
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Figure 2. The five model equations (Table 1) applied to 67 undisturbed coniferous tree stands distributed globally. Figures 2(a), 2(b) 

and 2(c): the exponent of N converges from -0.55 to 0.52, with the introduction of a gradient in LAI in the mass–density relationship 

of Fig. 2(a). Figure 2(d): the introduction of a gradient in 𝑬𝒔𝒈𝒍𝒐𝒃 in the mass–density relationship results in an exponent of 0.47. 

Figure (2e): the introduction of both gradients in the mass–density relationship results in an exponent value that converges to 0.5 in 315 
the multiple regression equation and the highest strength of the linear association R2 = 0.6536 (Adjusted R2 = 0.6428).   
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 320 
Figure 3. The five model equations (Table 1) applied to all 199 undisturbed broadleaved and coniferous tree stands distributed 

globally. Figures 3(a), 3(b) and 3(c): the exponent of N converges from -0.26 to 0.35, when a gradient in LAI is introduced in the 

mass–density relationship of Fig. 3(a). Figure 3(d): the introduction of a gradient in 𝑬𝒔𝒈𝒍𝒐𝒃 in the mass–density relationship results 

in an exponent of 0.52. Figure 3(e): the introduction of both gradients in the mass–density relationship results in an exponent value 

that converges to 0.43 in the multiple regression equation and the highest strength of the linear association R2 = 0.6169 (Adjusted R2 325 
= 0.6130).  
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4 Discussion 

In this article the long-standing debate on the value of the scaling exponent in interspecific mass–density scaling of plants is 

addressed by replacing the scaling coefficient with a light absorption function, distinguishing between two premises. The first 

common premise in self-thinning theories is that the scaling coefficient represents a limiting use of resources supplied to an 330 

area at a fixed rate, here assumed to be solar radiation (Deng et al., 2012), which is examined by introducing 𝐿𝐴𝐼 into the light 

absorption function. The second alternative premise examines the possibility that the scaling coefficient depends not only on 

the rate of solar energy use, but also on the sum of solar radiation over the growing season, which is investigated by including 

both 𝐿𝐴𝐼 and 𝐸𝑠𝑔𝑙𝑜𝑏 in the light absorption function. 

The investigation of the first premise begins with a comparison of the results of the three equations 3A, 17 and 12 applied to 335 

the broadleaved and coniferous dataset separately and together. The exponent values β = 0.22 and β = 0.55 obtained with the 

mass–density equation (Eq. 3A) for the broadleaved and coniferous dataset respectively differ considerably from one another 

and from the prevailing 0.34 exponent value of N obtained for large datasets of plants (Deng et al., 2012). This deviation is 

not uncommon as shows in the exponent values of the much larger dataset of 1350 natural forests pictured in Fig. 4. The 

predominantly coniferous boreal/alpine forests show a much higher exponent value β than the predominantly broadleaved 340 

(sub)tropical and temperate forests (see also Li et al., 2005, 2006), which corresponds with the β values in Table 1.  

The deviation of the broadleaved dataset from the common 0.34 exponent value (Deng et al., 2012) can be explained by the 

density-dependent gradient in 𝐿𝐴𝐼 (Eq. 17), resulting in a 0.34 exponent value of N obtained with the LEBD (Eq. 12). However, 

a density dependent gradient in 𝐿𝐴𝐼 is hardly recognizable in the coniferous dataset, which results in a small decrease of the 

exponent from 0.55 to 0.52 in the LEBD. The results obtained with the LEBD are statistically significant and credible because 345 

the values of the extinction coefficient  for the broadleaved and coniferous forests separately correspond with literature values. 

The value of the exponent for all stands together is 0.35, but the distinction between the broadleaved and coniferous dataset 

has to be preferred. 

The investigation of the second alternative premise is based on the observation that stand density increases with decreasing 

latitude, while the total aboveground biomass remains constant (Enquist and Niklas, 2001) or increases (Pan et al., 2013), so 350 

log(𝑀𝑁𝛼′
) in Eq. 14 should increase with decreasing latitude and an increase in 𝐸𝑠𝑔𝑙𝑜𝑏. This expectation is confirmed by Eq. 

14 applied to the broadleaved and coniferous forests separately and together (Table 1) and is also visible in the intercepts of 

the mass–density relationships in Fig. 4, where the log𝑘  values increase in the order of boreal/alpine, temperate and 

(sub)tropical forests. 

Note that the log𝑘 values of the boreal/alpine, the temperate and (sub)tropical and all forests combined in Fig.4 are lower than 355 

those for the coniferous, the broadleaved and all forests combined in Table 1, respectively, due to the large proportion of forests 

with a potential evapotranspiration considerably higher than the annual rainfall in dataset S1 of Deng et al. (2012), indicating 

substantial drought stress. Drought stress limits the ability of forests to maximize the dynamic equilibrium of biomass and tree 

density, given the available solar energy summed over the growing season. 
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 360 

Figure 4. Relationships between total aboveground living tree biomass, 𝑴, and tree density, 𝑵𝒄𝒓𝒊𝒕, on logarithmic axes (Eq. 3A), for 

1350 natural forests (Deng et al. 2012, dataset S1, data Luo and Cannell): 477 (sub)tropical forests, 608 temperate forests and 265 

boreal/alpine forests. A single OLS regression line fitted to all the 1350 forests has a slope of - = -0.21 and an intercept of 3.80, r2 = 

0.09. The use of 𝑴̅ values (Eq. 3) results in r2 values of 0.78, 0.85, 0.78 and 0.86 for respectively all, the (sub)tropical, the temperate 

and the boreal/alpine forests, the slopes -’ are equal to - - 1, but the intercepts remain the same. 365 

The inclusion of both 𝐿𝐴𝐼 and 𝐸𝑠𝑔𝑙𝑜𝑏 in the light absorption function of the GEBD, applied separately to the broadleaved and 

coniferous tree species, generates the most important results of this investigation. The GEBD shows the strongest linear 

associations of all five model equations and an exponent of N that converges to 0.47 for the broadleaved and 0.50 for the 

coniferous forests. This means that the 𝐿𝐴𝐼 and 𝐸𝑠𝑔𝑙𝑜𝑏 together, i.e., the absorption of solar energy 𝐸𝑠𝑠𝑜𝑙 , correct the exponent 

in the interspecific mass-density relationship for gradients in the energy use over the growing season, resulting in an exponent 370 

that is almost the same for broadleaved en coniferous forests, respectively close and equal to 0.50. 

This throws new light on the difference between the 0.34 exponent in interspecific mass–density scaling of large compilations 

of plant communities and the 0.50 exponent in intraspecific scaling as the upper boundary of datapoints of monospecific even-

aged plant stands. The results for forests suggest that the exponent in the interspecific mass–density relationship depends not 
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only on the premise of a fixed rate of solar energy absorption, but also on the sum of solar energy absorbed over the growing 375 

season. The light absorption function in the GEBD corrects for the gradient in 𝐸𝑠𝑠𝑜𝑙  in the interspecific data, resulting in an 

exponent of N that converges to 0.50, equal to the self-thinning rule in intraspecific scaling, where the datapoints are often 

obtained from stands in the same region, resulting in negligible gradients in 𝐸𝑠𝑔𝑙𝑜𝑏 at the upper boundary of datapoints. The 

energetic explanation for the difference in the scaling exponent between interspecific and intraspecific scaling may be of 

interest for the interpretation of scaling studies on other plants and even animals, if gradients in the sum of energy use, in 380 

addition to the rate of energy use (e.g., West et al., 1997; Enquist et al., 1998), also determine the slope and intercept of the 

mass-density relationship. The GEBD calculates the scaling exponent correctly, but the regression coefficients in the GEBD 

are attenuated, due to measurement errors in the 𝐿𝐴𝐼 and 𝐸𝑠𝑔𝑙𝑜𝑏. This will be addressed in a forthcoming paper by analyzing 

the structure of the underlying data, using time series and intraspecific density series of forests with little or no biotic, abiotic 

and human disturbances. 385 

The GEBD developed in this article describes the mathematical relationship between observations, without a further 

description of the underlying processes, which is very different from the previously cited mechanistic model approaches, based 

on mechanisms such as xylem transport, biophysical packing or ecological field theory. These models treat self-thinning as a 

competition process driven by rates of resource supply, whereas here the focus is on the gradient in available energy summed 

over the growing season, which also determines the position of self-thinning lines. The model approach developed in this 390 

article aims to bridge the gap between empirical self-thinning models, which achieve high precision within their domain of 

development and parameterization, and process-based competition models, which offer a generalized framework but suffer 

from a lack of precision in long-term predictions for scenario analysis due to compounding of errors (Franklin et al., 2009). 

Here the dynamic equilibrium between forest biomass and tree density on the one hand and the absorption of solar energy 

𝐸𝑠𝑠𝑜𝑙  on the other has been assessed for interspecific density series of relatively undisturbed forests. A method that will also 395 

be applied to intraspecific density series of forests in a forthcoming article, thus contributing to better predictions of forest 

structure, which is of importance for the inclusion of vegetation demographics in Earth System Models (ESMs; Fisher and 

Serbin, 2017).  

For now, it’s unclear to what extent the GEBD can be used to predict the impact on forest structure of an increase in 𝐸𝑠𝑔𝑙𝑜𝑏 

due to climate-induced longer growing seasons, as the gradients in 𝐸𝑠𝑔𝑙𝑜𝑏 go together with shifts in the species composition 400 

between the forest communities of interest. Self-thinning lines of long-term trial plots of Norway spruce, European beech 

(Pretzsch et al., 2014) and Pinus sylvestris (Toraño Caicoya et al., 2024) do not show trends in time due to climate change-

induced longer growing seasons, only the growth rate increases. However, the intercepts of the self-thinning lines of long-term 

trial plots of Pinus sylvestris in Europe increase with decreasing latitude (Toraño Caicoya et al., 2024) and with increasing 

𝐸𝑠𝑔𝑙𝑜𝑏 , which is associated not only with a longer growing season but also with an increase in the intensity of solar radiation. 405 

This may lead to an increase in the intercept that is consistent with the results of light experiments (see Introduction). 
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In natural stands, where individuals of all age classes are present simultaneously, a steady state may ultimately be reached 

where the net production is equal to the losses, and changes in M tend to be zero. This means that the energy budget, as the 

sum of the ingoing and outgoing energy fluxes, is also zero, and it is not appropriate to specify the energy term log𝑘 in the 

mass-density relationship. However, from a thermodynamic point of view, the entropy production is as important as energy. 410 

Following a further determination of the regression coefficients in the GEBD, the entropy production can be introduced into 

the GEBD, using the strong linear association with 𝐸𝑠𝑠𝑜𝑙  (e.g., Aoki, 1987, 1989; Brunsell et al., 2011), which allows the 

development of a physically correct thermodynamic equation. 

The empirical pattern of forest mass–density relationships fits into a thermodynamic framework, because thermodynamics can 

deal with the mathematical relationship between observations, without (sub)models of the underlying processes. Although the 415 

model approach in this article and mechanistic models represent different scales of inquiry and different scientific approaches, 

they can inform one another to obtain more insight into the common processes underlying these theories (Price et al., 2010). 
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