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 17 

Abstract: The past changes in East Antarctic Ice Sheet (EAIS) are crucial for understanding the ice sheet dynamics and its 18 

response to the Earth’s climate system. Field-based geological data and various model simulations, such as ice sheet and glacial 19 

isostatic adjustment (GIA) modellings, provide significant insights into the behaviour of EAIS during the interglacial–glacial 20 

cycle. Recent in-situ cosmogenic nuclide surface exposure studies have revealed a large-scale thinning occurred in the 21 

Dronning Maud Land and Enderby Land of East Antarctica during 9–6 ka. However, the timing of this EAIS thinning event 22 

necessitates a revision of the ICE-6G model, which is a widely used GIA-based ice sheet history. To account for this temporal 23 

discrepancy, it is necessary to compare the sea levels calculated by GIA modelling with sea-level reconstructions to evaluate 24 

the validity of this refinement. The computed sea levels by GIA modelling are consistent with the relative sea-level 25 

reconstructions and indicate the spatial difference in the Holocene sea-level peaks, which is primarily due to the differences in 26 

the timings of ice-mass losses in the east and west of the Indian Ocean sector of East Antarctica. This finding challenges the 27 

prevailing assumption of synchronized ice-sheet growth and decay across this region, suggesting that the ice mass changes in 28 

the EAIS exhibit significant spatial differences. 29 
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1 Introduction 31 

The Antarctic Ice Sheet (AIS) stores the largest volume of water on the Earth’s surface, and its mass changes in the AIS have 32 

significantly influenced the global climate through ocean circulation and sea level changes. The East Antarctic Ice Sheet 33 

(EAIS) has an ice volume equivalent to the sea level of approximately 53 m (Fretwell et al., 2013), revealing its potential 34 

impact. Recent studies indicate that a part of the EAIS was lost compared with the present situation during the Last Interglacial 35 

under a climate about +1℃ warmer than the present (Crotti et al., 2022; Dutton et al., 2015; Iizuka et al., 2023; Wilson et al., 36 

2018), highlighting the crucial importance of its stability in a warm future. However, despite the growing importance, 37 

investigating the spatiotemporal distribution of reconstructions is insufficient for quantifying ice mass changes and elucidating 38 

the mechanism of these changes (Jones et al., 2022). Notably, a comprehensive interpretation based on various modelling 39 

studies is essential for addressing these spatiotemporal gaps of reconstruction. 40 

The glacial isostatic adjustment (GIA) modelling study plays an important role in reconstructing AIS changes (Argus 41 

et al., 2014; Briggs et al., 2014; Gomez et al., 2020; Ivins and James, 2005; Nakada and Lambeck, 1988; Whitehouse et al., 42 

2012a). The GIA modelling utilizes the fact that the sea level approximates an equipotential surface of gravity to compute the 43 

response of the solid Earth to surface loading, considering the changes in seawater resulting from ice mass changes (Farrell 44 

and Clark, 1976). The ice loading history, which is one of the input values for the GIA model, can be constrained by comparing 45 

relative sea-level (RSL) reconstructions with the GIA model's computational results. For example, comparison with glacial 46 

RSL reconstructions can lead to the reconstruction of EAIS dynamics prior to the Last Glacial Maximum (Ishiwa et al., 2021a; 47 

Nakada et al., 2000), while comparison with Holocene RSL reconstructions can provide constraints on the timing of the 48 

deglaciation (Braddock et al., 2022).  49 

Studies based on the RSL reconstructions of the Lützow–Holm Bay (LHB) in East Antarctica (Fig. 1) present 50 

extensive sea-level data on Antarctica (Miura et al., 1998a, b). These reconstructions provide significant insights into the 51 

history of the fluctuations in the EAIS during glacial periods (Ishiwa et al., 2021a; Nakada et al., 2000) to the Holocene 52 

(Verleyen et al., 2017). Detailed RSL reconstructions have been reported at important outcrops in Prydz Bay (PB), e.g. those 53 

of the Vestfold and Larsemann hills and Rauer Group (Berg et al., 2010a; Hodgson et al., 2009), which were used to reconstruct 54 

the EAIS history during the Holocene (Hodgson et al., 2016). 55 
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 57 
Figure 1: Map of study sites. Ice velocity data are obtained from Rignot et al. (2017). Topography data are obtained from 58 
GEBCO2020 (GEBCO Bathymetric Compilation Group, 2019), and the contour interval is 1000 m. Thick blue lines indicate the 59 
Zwally Antarctic Drainage System 5–7. Figures in this study were developed using Generic Mapping Tool (Wessel et al., 2019). 60 

 61 

Surface exposure dating using cosmogenic nuclides is a method that estimates the duration for which the rocks have 62 

been exposed to cosmic rays by measuring the concentration of these nuclides (e.g., Gosse and Phillips, 2001; Nishiizumi et 63 

al., 1991). By dating the rocks that have been exposed due to ice retreat, we can determine the timing of the ice retreat. The 64 

cosmogenic nuclide dating of erratic and bedrock collected at various altitudes has been utilized to reconstruct the changes in 65 

heights of the EAIS since the Last Glacial Maximum(Andersen et al., 2023; Balco et al., 2023; Kawamata et al., 2020; 66 

Suganuma et al., 2014; Johnson et al., 2020; Suganuma et al., 2022; White et al., 2011; White and Fink, 2014; Yamane et al., 67 

2011). Recent studies in Dronning Maud Land revealed early to mid Holocene ice-sheet thinning, indicating a discrepancy 68 

(delay) in the timing of deglaciation in previous studies that employed the ICE-6G model (Argus et al., 2014; Peltier et al., 69 

2018). Suganuma et al. (2022) refined the ICE-6G model to fit the reconstruction of the field-based ice-sheet thinning that 70 

occurred from 9 ka to 5 ka, constrained by cosmogenic nuclide dates. However, the validity of this refinement was not assessed 71 

by comparing GIA-derived predictions with RSL reconstructions. This validation of the refined ice-loading history will 72 

improve the constraints on the ice-sheet changes in East Antarctica during the Holocene, thus, supporting highly accurate 73 

estimates of the GIA components, which is crucial for reducing the uncertainty in the present mass balance of the AIS. 74 

Therefore, in this study, we established a sea-level dataset for the LHB and PB regions, including the newly obtained data for 75 

the LHB, and assessed the validity of the refined ice-loading history using the established dataset and GIA modelling. 76 
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2 Methods 78 

2.1 Glacial isostatic adjustment (GIA) model 79 

The GIA model can be used to calculate the sea level changes while accounting for the solid Earth’s deformation caused by 80 

surface loading changes (Farrell and Clark, 1976). In this study, we used a GIA model (Ishiwa et al., 2019, 2021b; Okuno and 81 

Nakada, 1999; Okuno et al., 2014; Suganuma et al., 2022) to predict the sea level for the study sites, while incorporating 82 

shoreline migration (Johnston, 1993), the gravitational attraction between the ice sheets and ocean (Nakada and Lambeck, 83 

1989), and the Earth’s rotational feedback (Milne and Mitrovica, 1998). There are spatial differences in rheology between East 84 

and West Antarctica, and studies on GIA using 3D models are advancing to understand their impact on the AIS dynamics (Pan 85 

et al., 2021). To address this issue, we set two kinds of rheology, “weak model” and “strong model”, for our 1D GIA model. 86 

For the “weak model”, we set the rheology for an elastic lithosphere thickness of 100 km, upper mantle viscosity of 5 × 1020 87 

Pa s, and lower mantle viscosity of 3 × 1021 Pa s, as the VM5a parameter values (Argus et al., 2014; Peltier et al., 2015). For 88 

the “strong model”, we set the rheology for an elastic lithosphere thickness of 100 km, upper mantle viscosity of 1 × 1021 Pa s, 89 

and lower mantle viscosity of 3 × 1021 Pa s (Whitehouse et al., 2012b).  90 

The input topography for our GIA model was the ETOPO bedrock global relief model (Amante and Eakins, 2009; 91 

north of 60° S) and the BEDMAP2 bed elevation model (Fretwell et al., 2013; south of 60° S). The data were resampled to a 92 

resolution of 5 minutes, using The Generic Mapping Tools (Wessel et al., 2019). Combining the parameter of ice thickness in 93 

the ice-loading history in the GIA model with bedrock topography can produce more accurate results because this scheme can 94 

be used to reproduce ice shelves in the GIA calculation (Peltier et al., 2018; Purcell et al., 2016). In the ICE6G model used in 95 

this study  (Argus et al., 2014; Peltier et al., 2015), the topography around Antarctica is based on BEDMAP2  (Fretwell et al., 96 

2013). Consequently, the topography of the GIA model in this research adopts BEDMAP2. We think incorporating the latest 97 

topographic data, such as BEDMACHINE version 3 (Morlighem et al., 2020), would not affect the results of this study 98 

significantly due to the spatial resolution of our GIA model; the topography: 5 minutes, and the ice loading history is 15 99 

minutes. 100 

The ICE-6G_C (Argus et al., 2014; Peltier et al., 2015) and Nice6gSi6g_09-05_PART (Suganuma et al., 2022) models 101 

were introduced into our GIA model to reconstruct the ice-loading history over the past 122,000 years (Fig. 2). The 102 

Nice6gSi6g_09-05_PART model is a refined ICE-6G_C model based on the surface exposure dating results of Gjelsvikfjella 103 

and the Soya Coast in the Dronning Maud Land region (see Fig. 1) (Kawamata et al., 2020; Suganuma et al., 2022). In the 104 

Nice6gSi6g_09-05_PART model, the ice thicknesses in the Antarctic Drainage Systems 5–7 (covering the Dronning Maud 105 

Land and Enderby Land; Rignot et al., 2011) from 15 ka to 9 ka and from 6 ka to 0 ka are the same as those set at 15 ka and 0 106 

ka, respectively. Fig. 2 portrays the spatial distribution of ice loading in the region at 9 ka, as estimated by the ICE-6G_C and 107 

Nice6gSi6g_09-05_PART model. The region of delayed deglaciation covers the RSL sites in the study area and the areas of 108 

Gjelsvikfjella, Skarvsnes, Skallen, Rayner Glacier that experienced ice-thinning during the mid-Holocene (Kawamata et al., 109 

2020; Suganuma et al., 2022; White and Fink, 2014). 110 
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 112 
Figure 2: (a–c) Circles indicate the relative sea-level (RSL) sites considered in this study. Difference in the present ice thickness and 113 
that at 9 ka using the (a) Nice6gSi6g_09–05_PART model and (b) ICE-6G_C model. (c) portrays the offset between (a) and (b). (d) 114 
Up: The red line denotes the volume change in the Antarctic Ice Sheet estimated using the ICE-6G_C model, and the blue line 115 
denotes the volume change estimated using the Nice6gSi6g_09–05_PART model. Bottom: The difference between the 116 
Nice6gSi6g_09–05_PART and ICE-6G_C models. 117 

 118 

2.2 Sea-level reconstructions 119 

The RSLs are valuable indicator for constraining changes in AIS changes, and the interpretations of RSLs vary as 120 

marine or terrestrial limiting depending on the samples analysed (Briggs and Tarasov, 2013; Lecavalier et al., 2023; Shennan 121 

et al., 2015). The RSL records derived from shell fossils in raised beach sediments are indicative of marine limiting (Hayashi 122 

and Yoshida, 1994; Igarashi et al., 1995a, b; Maemoku et al., 1997; Miura et al., 1998a), while penguin remains suggest 123 

terrestrial limiting (Huang et al., 2009a, b, 2011). Furthermore, reconstruction of marine or lacustrine environments using 124 

isolation basin sediments provide evidence for marine and terrestrial limiting of RSLs respectively  (Berg et al., 2010a, b; 125 

Hodgson et al., 2009, 2016; Takano et al., 2012; Verleyen et al., 2004, 2005, 2017). Our dataset was based on the compilations 126 

of previous RSL reconstructions of the LHB (Miura et al., 1998b) and PB (Hodgson et al., 2016) regions. In this study, we 127 

added the fossil shells (Laternula elliptica and Adamusium colbecki) collected during the geomorphological survey of the 61st 128 

Japanese Antarctic Research Expedition (e.g., Ishiwa et al., 2021a, 2022; Tamura et al., 2022) to the sea-level dataset of the 129 

LHB region. These shells maintain their living position and can be identified as in situ. Table 1 reveals the elevations of the 130 

samples corresponding to the sea-level values derived from the ellipsoid heights of the Reference Antarctic Elevation Model 131 
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(Howat et al., 2019), and geoid heights of EGM2008 (Pavlis et al., 2012), and mean dynamic ocean topography 132 

(https://ftp.space.dtu.dk/pub/DTU10/; Andersen and Knudsen, 2009), determined using The Generic Mapping Tools (Wessel 133 

et al., 2019). For trench samples (J61L-TrenchA-20-25, J61L-TrenchC-10-20, and J61L-TrenchC-28-34), the RSL values were 134 

calculated from the samples' elevations and depth. The RSL values of other samples, which are surface sediments, correspond 135 

to the elevations. 136 

When discussing the dataset developed in this study, we excluded any data labelled as reworked in the previous work. 137 

Additionally, the RSL reconstructions described as fragment were clearly marked on the figures and database due to the 138 

possibility of redeposition. Where previous studies noted a range in elevation, this range was treated as a vertical uncertainty. 139 

Otherwise, an uncertainty of ±1 m was assumed as in Lecavalier et al. (2023). The vertical error due to tide were set to ±0.8 m 140 

(Aoyama et al., 2016; https://www.jodc.go.jp/vpage/tide.html) in LHB and ±0.9 m (Hodgson et al., 2016; Zwartz et al., 1998) 141 

in PB, respectively. Furthermore, an additional error of ±1 m is added to consider paleo tides as in Briggs and Tarasov (2013). 142 

The part of reported RSL reconstructions includes the radiocarbon ages that have not been adjusted for δ13C and 143 

background corrections (e.g., Igarashi et al., 1995a, b; Miura et al., 1998b). Therefore, we used δ13C and background-corrected 144 

radiocarbon ages for the LHB and PB sea-level compilation datasets. The radiocarbon ages in datasets were recalibrated using 145 

the Oxcal software (Ramsey and Lee, 2013) with the Marine20 (Heaton et al., 2020) and SHCal20 (Hogg et al., 2020) curves. 146 

For the LHB region, the local-reservoir age applied to the marine samples was set to 620±100 years (Verleyen et al., 2017; 147 

Yoshida and Moriwaki, 1979); for the PB region, the age was set to 400±100 years (Hodgson et al., 2016), which was consistent 148 

with the values compiled for the Southern Ocean (Berkman and Forman, 1996). We also recalibrated the age-depth models of 149 

isolation basin sediment cores using the Bchron software (Haslett and Parnell, 2008). The sediments deposited in marine and 150 

lacustrine environments were calibrated using the Marine 20 and SHCal20 curves. 151 

  152 

https://doi.org/10.5194/egusphere-2024-275
Preprint. Discussion started: 22 May 2024
c© Author(s) 2024. CC BY 4.0 License.



7 
 

Table 1: Summary of the RSL reconstructions from the samples collected during the 61st Japanese Antarctic Research 153 

Expedition. The vertical error was set to ±0.8 m, which was identified by the tidal range in LHB (Aoyama et al., 2016; 154 

https://www.jodc.go.jp/vpage/tide.html). The calendar ages of radiocarbon dates were obtained using the Oxcal 155 

software (Ramsey and Lee, 2013) with the Marine20 (Heaton et al., 2020). The local reservoir was set to 620±100 years 156 

(Verleyen et al., 2017; Yoshida and Moriwaki, 1979). 157 

Sample 

name 
Region 

Longitude 

(dd:mm:ss) 

Latitude 

(dd:mm:ss) 

Eleva

tion 

(m) 

Vertical 

error (±, 

m) 

Materials 
Lab. 

Code 

14C 

age 

(BP) 

δ13C (‰) 

Calendar age 

(cal BP) 2 

sigma 

Reference 

J61L-

0108-001 
Langhovde -69:13.5205 39:39.7128 15.0 0.8 

Laternula 

elliptica 

TKA-

24127 

6084

±26 
-0.4±0.4 5385–5910 This study 

J61L-

0110-001 
Langhovde -69:13.509 39:39.743 4.3 0.8 

Laternula 

elliptica 

TKA-

24128 

5812

±25 
-0.5±0.2 5035–5600 This study 

J61L-

0110-002 
Langhovde -69:13.511 39:39.747 4.6 0.8 

Laternula 

elliptica 

TKA-

24129 

5802

±25 
-0.9±0.4 5029–5593 This study 

J61L-

0110-003 
Langhovde -69:13.51 39:39.749 4.4 0.8 

Laternula 

elliptica 

TKA-

24130 

5844

±26 
-1.7±0.3 5077–5645 This study 

J61L-

0117-002 
Langhovde -69:13.395 39:39.71 1.1 0.8 

Laternula 

elliptica 

TKA-

24134 

2929

±21 
0.8±0.3 1470–2039 This study 

J61L-

0118-005-

Ra 

Langhovde -69:12.824 39:38.642 9.4 0.8 
Laternula 

elliptica 

TKA-

24135 

6187

±25 
2±0.3 5480–6010 This study 

J61L-

0118-006 
Langhovde -69:12.7794 39:38.835 1.0 0.8 

Laternula 

elliptica 

TKA-

24136 

4513

±23 
0.1±0.2 3393–3984 This study 

J61L-

0118-008 
Langhovde -69:12.779 39:39.765 1.1 0.8 

Laternula 

elliptica 

TKA-

24137 

6700

±26 
0.5±0.3 6029–6580 This study 

J61L-

TrenchA-

20-25 

Langhovde -69:13.508 39:39.746 4.3 0.8 
Laternula 

elliptica 

TKA-

24131 

6518

±27 
0.3±0.3 5864–6378 

Tamura et 

al., 2022 

J61L-

TrenchC-

10-20 

Langhovde -69:13.509 39:39.816 7.7 0.9 
Laternula 

elliptica 

TKA-

24132 

6633

±26 
-0.1±0.3 5956–6492 

Tamura et 

al., 2022 

J61L-

TrenchC-

28-34 

Langhovde -69:13.509 39:39.816 7.7 0.9 
Laternula 

elliptica 

TKA-

24133 

6793

±28 
-1.2±0.4 6159–6683 

Tamura et 

al., 2022 

J61WO-

0127-031 

Ongul 

Islands 
-69:1.132 39:31.085 8.2 0.8 

Adamusiu

m 

colbecki 

TKA-

24138 

4163

±23 
1.2±0.3 2960–3541 This study 

J61WO-

TrenchB-

Surface 

Ongul 

Islands 
-69:1.132 39:31.085 8.2 0.8 

Adamusiu

m 

colbecki 

TKA-

24139 

4133

±22 
3.9±0.3 2918–3495 This study 

 158 
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3 Results 159 

3.1 Relative sea-level (RSL) reconstructions in the Lützow–Holm Bay (LHB) and Prydz Bay (PB) regions 160 

In the study area, terrestrial limiting data were indicated by penguin remains, and the lacustrine environment, defined 161 

with respect to the sea level not being higher than the sample’s elevation or as the lowest sill around the isolation basin (Zwartz 162 

et al., 1998). Over the Holocene period, the sea levels of the Ongul Islands, Vestfold Hills, Rauer Group, and Larsemann Hills 163 

did not exceed 23, 8.8, 11.5, and 8 m, respectively; the sea level was constrained by the sediments from the isolation basin 164 

(Figs. 3 and 4). Note that RSL reconstructions at the Larsemann Hills show that the RSL exceeded 8 m in a short period based 165 

on Kirisjes Pond sediments (Hodgson et al., 2006; Verleyen et al., 2004, 2005). 166 
 167 

 168 
Figure 3: Relative sea-level (RSL) reconstructions and the glacial isostatic adjustment (GIA)-predicted RSL of the Lützow–Holm 169 
Bay (LHB) over the past 12,000 years for (a) Ongul Islands, (b) Langhovde, (c) Skarvsnes, and (d) Skallen. Blue lines are the GIA-170 
predicted RSLs using the ICE-6G_C model, and red lines denote the predictions carried out using the Nice6gSi6g_09-05_PART 171 
model. The solid lines denote the weak model (elastic lithosphere thickness of 100 km, upper mantle viscosity of 5 × 1020 Pa s, and 172 
lower mantle viscosity of 3 × 1021 Pa s). The dashed lines denote the strong model (elastic lithosphere thickness of 90 km, upper 173 
mantle viscosity of 1 × 1021 Pa s, and lower mantle viscosity of 3 × 1021 Pa s). The black upward pointed triangles denote the marine 174 
limiting of RSL reconstructions in this study. The white upward pointed triangles denote the previously reported marine limiting of 175 
RSL reconstructions. Crosses denote the data from the shell fragments. The blue upward pointed triangles and green downward 176 
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pointed triangles indicate age points of the marine and lacustrine environments reconstructed by the isolation basin sediments, and 177 
the blue and green thick lines represent durations of the marine and lacustrine environments, reconstructed by Bchron (Haslett and 178 
Parnell, 2008). During lacustrine environments, sea level is below the sill height of the isolation basin, and during marine 179 
environments, sea level is above the sill height of the isolation basin. Age uncertainty is two sigma. 180 

 181 

 182 
Figure 4: Relative sea-level (RSL) reconstructions and the glacial isostatic adjustment (GIA)-predicted RSL of the Prydz Bay (PB) 183 
over the past 12,000 years for (a) Vestfold Hills, (b) Rauer Group, and (c) Larsemann Hills. Blue lines are GIA-predicted RSLs using 184 
the ICE-6G_C, and red lines denote the predictions carried out using the Nice6gSi6g_09-05_PART model. The solid lines denote the 185 
weak model (elastic lithosphere thickness of 100 km, upper mantle viscosity of 5 × 1020 Pa s, and lower mantle viscosity of 3 × 1021 186 
Pa s). The dashed lines denote the strong model (elastic lithosphere thickness of 90 km, upper mantle viscosity of 1 × 1021 Pa s, and 187 
lower mantle viscosity of 3 × 1021 Pa s). The white upward pointed triangles and downward pointed triangles denote the previously 188 
reported marine and terrestrial limiting of RSL reconstructions. The blue upward pointed triangles and green downward pointed 189 
triangles indicate age points of the marine and lacustrine environments reconstructed by the isolation basin sediments, and the blue 190 
and green thick lines represent durations of the marine and lacustrine environments, reconstructed by Bchron (Haslett and Parnell, 191 
2008). During lacustrine environments, sea level is below the sill height of the isolation basin, and during marine environments, sea 192 
level is above the sill height of the isolation basin. Age uncertainty is two sigma. 193 

 194 

The marine limiting data (indicated by shell fossils and marine environments) corroborated that the sea level was 195 

higher than the elevation of the sampling site or that of the lowest sill around the isolation basin (Zwartz et al., 1998). Marine 196 

limiting data were observed at all the LHB and PB sites, consistent with the RSL reconstructions that were based on terrestrial 197 
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limiting. If a marine limiting datum was available simultaneously with other marine limiting data, an RSL of the higher value 198 

was adopted. The highest marine limiting values at Ongul Islands, Langhovde, Skarvsnes, and Skallen were 13 (at 6.9 cal kyr 199 

BP), 17 (at 6.3 cal kyr BP), 33 (at 4.7 cal kyr BP), and 12 m (at 3.8 cal kyr BP) (Fig. 3). At Skarvsnes, the highest marine 200 

limiting RSL, indicated by the shell fossils and the marine environments of Kobachi Ike (Verleyen et al., 2017), was delayed, 201 

compared to other sites in the LHB region. The marine limiting data of the Ongul Islands, Langhovde, and Skarvsnes revealed 202 

a trend of decreasing sea level; the data of the raised beach deposits in the region reflected sea-level regression. In Skallen, the 203 

shell fragment shows the highest marine liming (Miura et al., 1998b), consistent with the marine limiting of 9.8 m by marine 204 

environment in Lake Skallen (Fig. 3d).  The highest marine limiting values at Vestfold Hills, Rauer Group, and Larsemann 205 

Hills were 5.8 (at 8.8 cal kyr BP), -2 (at 4.5 cal kyr BP), and 8 m (at 7.6 cal kyr BP). These data are from lakes and do not 206 

reveal a similar trend of decreasing sea level, as that defined through the RSLs reconstructions of the LHB region (Figs. 3 and 207 

4). 208 

3.2 Glacial isostatic adjustment (GIA) model output 209 

With respect to mid-Holocene peaks, the GIA-derived RSL predictions for the Nice6gSi6g_09-05_PART and ICE-6G_C 210 

outputs for the weak model were 29.6 m and 18.9 m for the Ongul Islands, 32.8 m and 21.3 m for Langhovde, 37.2 m and 24. 211 

8 m for Skarvsnes, 38.6 m and 24. 8 m for Skallen (Fig. 3), 6.4 m and 6.3 m for the Vestfold Hills, 7.6 m and 7.7 m for Rauer 212 

Group, and 11. 9 m and 12.0 m for the Larsemann Hills (Fig. 4), respectively. In addition, the Nice6gSi6g_09-05_PART and 213 

ICE-6G_C outputs for the strong model were 24.2 m and 16.7 m for the Ongul Islands, 26.8 m and 18.9 m for Langhovde, 214 

30.4 m and 21. 9 m for Skarvsnes, 31.5 m and 22. 8 m for Skallen (Fig. 3), 6.3 m and 5.9 m for the Vestfold Hills, 7.4 m and 215 

7.0 m for Rauer Group, and 11. 0 m and 10.6 m for the Larsemann Hills (Fig. 4), respectively. The general RSL trends for the 216 

weak and strong models were similar at all sites. Notably, for the LHB region, the mid-Holocene RSL peaks of Nice6gSi6g_09-217 

05_PART were sharper than those of ICE-6G_C. 218 

Fig. 5 shows the spatial distribution of the GIA-derived RSLs in the study area. A comparison of the Nice6gSi6g_09-219 

05_PART and ICE6G_C outputs revealed that the peak in the spatial distribution of the RSL in Nice6gSi6g_09-05_PART was 220 

sharper and higher than that in ICE6G_C, with a difference of over 20 m in the weak model (Fig. 5e). Also, the weak model 221 

portrayed sharper and higher RSL peaks for Nice6gSi6g_09-05_PART and ICE6G_C, compared to the strong model. 222 

 223 
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 224 
Figure 5: Spatial distribution of relative sea-level (RSL) at 8 ka, based on the different ice-loading histories and 225 
rheology models used in this study. Circles indicate the discussed RSL sites for (a) Nice6gSi6g_09-05_PART and (b) 226 
ICE-6G_C for the weak model (elastic lithosphere thickness to 100 km, upper mantle viscosity to 5 × 1020 Pa s, and 227 
lower mantle viscosity to 3 × 1021 Pa s). (c) Nice6gSi6g_09-05_PART and (d) ICE-6G_C outputs at 9 ka for strong model 228 
(elastic lithosphere thickness to 100 km, upper mantle viscosity to 1 × 1021 Pa s, and lower mantle viscosity to 3 × 1021 229 
Pa s). (e) portrays the offset between (a) and (b). (f) presents the offset between (c) and (d). 230 

4 Discussion 231 

A comparison of GIA model outputs with RSL reconstructions can reveal the changes in the EAIS; however, this requires an 232 

accurate assessment of sea-level uncertainty. The basic assumption is that the terrestrial and marine limiting obtained from 233 

geological archives indicate the upper and lower sea-level bounds, respectively. The marine limiting of RSL reconstructions 234 

in the LHB region can be dated to Laternula ellipticus and Adamusium colbecki (Miura et al., 1998). The reported habitat 235 

depth of L. ellipticus ranges from intertidal to approximately 700 m (Waller et al., 2017), and A. colbecki lives in shallow 236 

environments (Stockton, 1984). Because the reconstructions of the marine limiting from L. ellipticus and A. colbecki and the 237 
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terrestrial limiting (by lacustrine environments) were obtained from the strata of the age of ~2–4 cal kyr BP in the Ongul 238 

Islands (Fig. 3a), we could corroborate the sea-level uncertainties by cross-referencing the two sets of records and conclude 239 

that uncertainties of at least <5 m may be applicable for the Ongul Islands. The marine limiting for Skarvsnes were derived 240 

from the samples of L. ellipticus and A. colbecki and fossilized worm tubes. However, the marine limiting of Kobachi Ike 241 

portrayed uncertainties of >5 m, from ~3 cal kyr BP to 8 cal kyr BP (Fig. 3c). This indicates a regional difference in the sea-242 

level uncertainties between Skarvsnes and the Ongul Islands. 243 

Surface exposure dating indicated a clear difference in the timing of ice-sheet thinning in the LHB and PB regions 244 

(Kawamata et al., 2020; Suganuma et al., 2022; White et al., 2011; White and Fink, 2014). Skarvsnes and Skallen in the LHB 245 

region experienced more than 400 m of ice-sheet thinning from 9 ka to 5 ka (Kawamata et al., 2020). Similar ice-sheet thinning 246 

during the early–mid-Holocene was also observed in Gjelsvikfjella (Suganuma et al., 2022), Moreover, the surface-exposure 247 

dating results of Rayner Glacier (Enderby Land; Fig. 1) revealed more than 400 m of ice-sheet thinning and more than 10 km 248 

of ice retreat from 9 ka to 6 ka (White and Fink, 2014), suggesting that this event was a common phenomenon across the 249 

Dronning Maud Land and Enderby Land regions. 250 

In contrast, the surface exposure dating of the changes in the ice-sheet elevation in Macs. Robertson Land indicated 251 

that at ~18 ka, ice-sheet thinning occurred downstream of the Lambert Glacier-Amery Ice Shelf system (LGAISS), reaching 252 

the modern margin by ~12 ka. (White et al., 2011). In addition, the upstream area of the LGAISS experienced retreating ice 253 

from 14 ka to 8 ka, portraying a delay when compared with the retreat noted downstream of the LGAISS, which may be due 254 

to the time taken by the phenomenon to occur in the upstream area. By combining the surface-exposure dating results with the 255 

weathering conditions and marine sediment records, White et al., (2022) concluded that the Raur Group and Vestfold Hills 256 

became ice-free at ~15 ka, which could be associated with the grounding line retreat of the LGAISS. The ice sheets of Mac. 257 

Robertson Land and Princess Elizabeth Land, including the LGAISS, are thought to have retreated at ~15 ka earlier than those 258 

of Dronning Maud Land and Enderby Land. 259 

The records of the changes in the ice-sheet elevation reconstructed from surface exposure dating indicated that the 260 

timing of the reduction in the ice-sheet elevation varied at the boundary between Enderby Land and Mac. Robertson Land. We 261 

referred to these findings when determining the regions for refining the ice-loading history based on ICE-6G_C (Fig. 2). The 262 

influence of the refinement of ice-loading history on the reconstruction of global sea-level changes was not significant because 263 

its contribution was less than 0.6 m (Fig. 2d). The RSL reconstructions and the results of GIA modelling by Nice6gSi6g_09-264 

05_PART were more consistent that these of ICE-6G_C, indicating that the regions selected in this study for refining the ice-265 

loading history were reasonable from the perspective of comparable RSL records. 266 

Notably, the Nice6gSi6g_09-05_PART produced higher Holocene sea-level peaks than the ICE6G_C with the same 267 

rheology (Figs. 3 and 4). The timing of the ice retreat of the Nice6gSi6g_09-05_PART was subsequent to the end of the global 268 

sea-level rise mainly due to the ice-sheet retreat in the Northern Hemisphere (Lambeck et al., 2014). This temporal relationship 269 

indicates that the global sea-level rise, which cancelled the local uplift by glacial rebound, was terminated before the glacial 270 

uplift (with the beginning of the local ice retreat). Therefore, the uplift estimated in the Nice6gSi6g_09-05_PART model was 271 
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larger than that estimated in the ICE6G_C model with the same rheology, resulting in a higher sea-level highstand during the 272 

Holocene. 273 

The input of the rheology model properties into GIA modelling significantly influenced the GIA-derived RSLs. 274 

Sensitivity tests were conducted using the weak and strong models. The GIA results obtained using the Nice6gSi6g_09-275 

05_PART and ICE6G_C models indicated that the weak model produced higher sea-level peaks during the Holocene for both 276 

the LHB and PB regions (Figs. 3–5). This is because the weak model was more sensitive to the changes in loading than the 277 

strong model. However, the differences in the GIA-derived RSLs between the weak and strong models were smaller for the 278 

PB region than for the LHB region. This may be because local ice-sheet melting mostly terminated before the Holocene, 279 

thereby minimizing the glacial isostasy effect. 280 

The temporal distributions of the sea-level reconstructions for the LHB and PB regions also differed (Figs. 3 and 4). 281 

The RSLs of the marine limiting based on the beach deposits and marine sediments in basins in Langhovde, Skarvsnes, and 282 

Skallen (Fig. 3) were recorded only after 7 ka, indicating that these sites have been ice-free since at least 7 ka. This 283 

interpretation is consistent with the reported timing of the ice-sheet thinning at Skarvsnes and Skallen using the surface 284 

exposure ages (Kawamata et al., 2020). The marine limiting data covering the beginning of the Holocene in the Vestfold Hills 285 

and Rauer Group (Fig. 4) were consistent with the timing of the ice-sheet retreat that was initiated in the LGAISS before the 286 

Holocene (White et al., 2022). As this duration corresponds to global sea-level rise, mainly due to the ice-sheet retreat that 287 

occurred in the Northern Hemisphere (Lambeck et al., 2014), we could conclude that the glacial rebound was cancelled by 288 

local ice-sheet thinning (Hodgson et al., 2016), leading to a weak sea-level highstand in the PB region during the Holocene 289 

(Fig. 4). 290 

The inconsistency between the RSL reconstructions and the Nice6gSi6g_09-05_PART output for the Ongul Islands 291 

(Fig. 3a) suggests a different local ice-sheet history within the LHB region. Nishi Ike on the West Ongul Island maintained 292 

lacustrine conditions during the Late Holocene (Verleyen et al., 2017), indicating a terrestrial sea-level limiting of 23 m (Fig. 293 

3). Hirakawa and Sawagaki (1998) reported that the highest elevation of a raised beach in the Ongul Islands was 20 m, lower 294 

than the sea-level highstand of other exposed areas in the LHB region. The Nice6gSi6g_09-05_PART outputs for both the 295 

strong and weak models exceeded this level. This indicates that the ice-loading history needs to be modified from the 296 

perspective that a small amplitude of ice-loading or/and an earlier timing of ice retreat around the Ongul Islands may have 297 

resulted in a small glacial rebound and a weak sea-level highstand during the Holocene. For Langhovde, the marine limiting 298 

were more consistent with the Nice6gSi6g_09-05_PART outputs than the ICE-6G_C outputs. While the surface exposure ages 299 

for Langhovde are yet to be reported, a compilation of GIA outputs and RSL reconstructions indicates that the timing of the 300 

Holocene ice retreat synchronized with the retreats in Skarvsnes and Skallen, because the period estimated as “ice-free” by the 301 

sea-level records of Langhovde matches the reported timings of ice-retreat in Skarvsnes and Skallen (Kawamata et al., 2020). 302 

In Skarvsnes, the RSLs of the Nice6gSi6g_09-05_PART model are closer to the shell-fossil data and the marine 303 

limiting data deduced from the marine environments of Kobachi Ike, compared with the RSLs of the ICE-6G_C model, with 304 

the difference being significant (Fig. 3). To explain this discrepancy, further adjustments to the ice-loading history will be 305 
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needed, in addition to the corrections carried out in this study. Furthermore, a re-evaluation of the chronology or sedimentary 306 

environment of the geological record will be necessary, including the re-evaluation of the values of the local reservoir for the 307 

calibration of radiocarbon dating. 308 

 309 

Table 2: Summary of GIA-derived deformation vertical rates and the GNSS estimations by Hattori et al. (2021). 310 
 Deformation vertical rates (mm/yr)  

Site ICE6G with 
strong model 

ICE6G with 
weak model 

Nice6gSi6g_09-
05_PART with 
strong model 

Nice6gSi6g_09-
05_PART with 

weak model 

GNSS estimations with the 
elastic deformation correction 

(Hattori et al., 2021) 
Ongul Islands 1.21 1.06 1.73 1.71 2.36±0.74 

Langhovde 1.35 1.16 1.91 1.87 5.87±0.54 
Skarvsnes 1.54 1.29 2.13 2.06 2.30±0.78 

Skallen 1.59 1.33 2.20 2.11 - 
 311 

 In the LHB area, the GNSS observations have been conducted for about 30 years (Kazama et al., 2013; Ohzono et al., 312 

2006; Shibuya et al., 2003), and attempts were made to detect GIA signals from these observations (Hattori et al., 2021). 313 

Hattori et al. (2021) indicate a discrepancy between the GIA signals results obtained through GNSS and the results of GIA 314 

models, suggesting a need to discuss past ice sheet changes and the rheology. Table 2 shows the vertical deformation rates 315 

calculated from GIA models, and regardless of the rheology adopted, the uplift rates for Nice6gSi6g_090-05_PART are 316 

significantly higher compared to ICE-6G and more consistent with the estimations of GIA signals calculated from the GNSS 317 

observations. 318 

In the study area, we noted differences in the spatiotemporal distribution of ice loss and growth, suggesting that the 319 

response mechanisms to loss and growth signals may differ by region. The area has been studied extensively and has a good 320 

dataset of sea-level records for not only the Holocene period but also the MIS3. Using GIA modelling, (Ishiwa et al., 2021a) 321 

explained why the MIS3 RSL reconstructions are higher than the present level. It was suggested that the ice-sheet volume from 322 

Dronning Maud Land to Princess Elizabeth Land might have reached its maximum before the Last Glacial Maximum (~20,000 323 

years ago; Ishiwa et al., 2019). We used RSL reconstructions and surface exposure ages to demonstrate that the timing of ice-324 

loss onset differed at the boundary between Enderby Land and Mac. Robertson Land. Thus, while ice-sheet growth occurs 325 

synchronously across Dronning Maud Land and Princess Elizabeth Land (Ishiwa et al., 2021a), the timing of ice loss during 326 

the glacial period varies by region, which is indicated by this study. To understand the factors behind the spatial differences in 327 

ice sheet melting and growth, it is important to detect signals triggering ice sheet changes from the glacial to the Holocene in 328 

marine sediment samples from these regions. 329 

 330 
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5 Conclusion 331 

The obtained surface exposure dating by previous works indicates the occurrence of ice-sheet thinning in Dronning Maud 332 

Land and Enderby Land during the Holocene. The refined ICE-6G modelling carried out in this study (based on the surface 333 

exposure dating records) revealed higher sea-level peaks during the Holocene in the LHB, compared to the results of the 334 

original ICE-6G model. Notably, the GIA calculation results were consistent with the RSL reconstructions, indicating 335 

appropriate refinement. In contrast, Mac. Robertson Land and Princess Elizabeth Land experienced gradual ice retreats during 336 

the last deglaciation and Holocene. This earlier initiation of ice retreat did not result in the sea-level peaks in PB during the 337 

Holocene, which was consistent with the RSL reconstructions. The spatiotemporal differences in the sensitivity to the factors 338 

that drive the ice sheet changes contribute significantly to these spatial differences at the boundary between Enderby Land and 339 

Mac. Robertson Land. Thus, elucidating these differences can lead to detailed investigations pertaining to the response of ice-340 

sheet variability to future climate-change conditions. 341 
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