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Abstract. In this paper, we explore optimal disturbances of blockings in the equivalent barotropic atmosphere using the con-

ditional nonlinear optimal perturbation (CNOP) approach. Considering the initial blocking amplitude, the optimal disturbance

exhibits a solitary wave-like pattern. As the size increases incrementally, the spatial pattern becomes more concentrated, and

the nonlinear evolution becomes more pronounced. During the evolution, it only focuses on gradually intensifying the blocking

amplitude without any other influence. Additionally, based on the medium-range experiments, the time-delay optimal distur-5

bance appears to lead to larger errors, making it more challenging to predict. Considering the preexisting synoptic-scale eddies,

the optimal disturbance displays a sharply concentrated pattern, even more concentrated by increasing the size. However, it

is worth noting that the nonlinear evolution undergoes significant changes, compared to disturbances of the initial blocking

amplitude. Meanwhile, we find that the optimal disturbance not only strongly impacts the amplitude of blockings but also

their shape, making eddy straining and wave breaking more chaotic and predominant, further influencing the development of10

weather extremes. This suggests that blockings are more sensitive to perturbations of preexisting synoptic-scale eddies than ini-

tial blocking amplitudes. Furthermore, the perturbations of the synoptic-scale eddies are more likely to lead to the development

of weather extremes, making them less predictable. In medium-range experiments, it is also found that time-delay disturbances

result in larger errors, particularly during the decay period. Finally, we discuss how the variations of westerly wind influence

optimal disturbances in spatial patterns and nonlinear evolution as well as their relation to predictability.15

1 Introduction

Weather extremes have a significant impact on society as they can pose a threat to human life and safety, as well as cause

significant economic damage and disruption. For instance, heat waves and extreme droughts can lead to devastating forest

fires, damaging agriculture and causing air pollution that poses health risks (Witte et al., 2011). Similarly, cold spells with low

temperatures and heavy snowfall can greatly disrupt transportation systems and daily life (Davolio et al., 2015). Additionally,20

floods caused by heavy precipitation are another type of high-impact weather event that can result in severe consequences,

affecting infrastructure, displacing communities, and causing property damage (Lenggenhager et al., 2019). Despite the diverse

nature of extreme weather events, they do share a common factor — the prevailing large-scale flow pattern in the troposphere

over the North Pacific and North Atlantic Oceans, which is strongly influenced by atmospheric blocking (hereinafter referred
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to as blocking). Hence, understanding the mechanism behind blocking is crucially important for comprehending and predicting25

these high-impact weather events (Kautz et al., 2022).

Before delving into the mechanism study of blockings, it is important to understand their features. These blockings are

characterized as long-lasting, quasi-stationary, and self-preserving in the midlatitudes, as highlighted in (Liu, 1994; Nakamura

and Huang, 2018). In the unfiltered geopotential height field, blocking flow often manifests as a significant meandering of

westerly jet streams, as described in (Berggren et al., 1949). This meandering resembles the westerly winds flowing around30

and bypassing the obstacle created by the blocking pattern. According to the pioneering study (Rex, 1950), a key feature

of blocking is the abrupt transition from a zonal (east-west) to a meridional (north-south) flow pattern. This transition often

leads to the splitting of the jet stream into two branches around the blocking. Generally, these blockings can be classified into

three types, dipole blockings (Hoskins et al., 1985; Pelly and Hoskins, 2003; Weijenborg et al., 2012; Masato et al., 2013),

Omega blockings (Häkkinen et al., 2014; Steinfeld and Pfahl, 2019), and amplified ridges (Sousa et al., 2018), with more35

examples provided in (Woollings et al., 2018). Earlier studies, such as (Berggren et al., 1949; Charney and DeVore, 1979;

Tung and Lindzen, 1979; Shutts, 1983; Illari and Marshall, 1983; Holopainen and Fortelius, 1987; Mullen, 1987), suggested

that blockings were primarily caused by traveling synoptic-scale eddies and large-scale topography. However, Ji and Tibaldi

(1983) conducted numerical experiments, indicating that the topographic forcing plays a secondary role compared to traveling

synoptic-scale eddies. Furthermore, the observation that dipole blockings mainly occur downstream of the storm track in the40

Pacific or Atlantic basin supports the idea that synoptic-scale eddies likely contribute to the formation and maintenance of

dipole blocking downstream of the storm tracks (Illari and Marshall, 1983; Holopainen and Fortelius, 1987; Mullen, 1987;

Nakamura and Wallace, 1993).

There have been several classical and theoretical models put forward to explain the mechanisms behind the maintenance

of blocking patterns. Three well–known models in this regard are the global theory of multiple flow equilibria proposed45

in (Charney and DeVore, 1979), the local theories of modon proposed in (McWilliams, 1980), and the eddy straining proposed

in (Shutts, 1983). In the global theory of multiple flow equilibria, Charney and DeVore (1979) utilized a highly-truncated,

nonlinear, barotropic channel model to study the blocking phenomenon from a global perspective. However, observations have

indeed shown that most blocking events are primarily a local phenomenon (Dole and Gordon, 1983; Diao et al., 2006). This

suggests that a local approach appears to be more consistent with synoptic blocking observations. In the past, McWilliams50

(1980) utilized modon or vortex pair solutions of the equivalent barotropic vorticity equation as nonlinear free modes to

describe the observed blocking features over the Atlantic region. However, it was also noted in (McWilliams, 1980) that the

existing condition of the modon solution is not easily satisfied by the observed mean zonal wind. According to (Higgins and

Schubert, 1994), the composite field of observed blocking events does not align with the modon or vortex pair structure. Shutts

(1983) proposed an eddy straining mechanism that takes into account the time-mean eddy vorticity flux, which aligns with the55

observed maintenance of blocking and suggests that the eddy straining around the blocking region’s two sides plays a crucial

role. However, Shutts (1983) also mentioned that blocking is essentially an unsteady phenomenon, meaning that the dynamic

life cycle, including onset, growth, maintenance, and decay, is not fully explained by the eddy straining mechanism. Further

studies conducted in (Pierrehumbert and Malguzzi, 1984; Haines and Marshall, 1987; Holopainen and Fortelius, 1987) have
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expanded on the three well-known theoretical models of blockings. Additionally, Farrell and Ioannou (1996) and Mak and Cai60

(1989) proposed another viewpoint that suggests barotropic instability as a factor in the occurence of blocking events.

According to (Berggren et al., 1949), the concept of spatial scale separation has emerged, highlighting the interaction be-

tween different scales in blocking systems. This interaction involves the interply between fast-moving synoptic-scale eddies and

quasi-stationary planetary-scale blocking, which can result in the presence of a low-PV (potential vorticity) air mass. The idea

of the eddy straining mechanism, as described in (Shutts, 1983), further supports this concept by suggesting a “drip-feeding”65

of low-PV air that replaces the original air mass. Additionally, subsequent wave-breaking events, as described by (Hoskins

et al., 1985), serve as another means of replacing the original air mass in this exchange. In contrast to the previous steady-

state theorems that primarily focused on the time-mean eddy vorticity flux (Berggren et al., 1949; Shutts, 1983; Pierrehumbert

and Malguzzi, 1984; Hoskins et al., 1985; Haines and Marshall, 1987; Holopainen and Fortelius, 1987), recent works by Luo

(2000, 2005) have introduced a dynamic consideration of scale separation in the spatial structure. This approach takes into70

account the westard propagation of a Rossby wave packet and separates it into a planetary-scale blocking anomaly and preex-

isting synoptic-scale eddies, based on the background westerly wind. As discussed in (Luo, 2000, 2005), asymptotic analysis

has revealed that the slow-varying amplitude of the planetary-scale blocking anomaly behaves like a solitary wave, governed by

the forced nonlinear Schrödinger (NLS) equation. Additionally, the preexisting synoptic-scale eddies act as an external force

on the blocking anomaly. Furthermore, Luo et al. (2014) introduced the eddy-blocking matching (EBM) mechanism and the75

nonlinear multiscale interaction (NMI) model to provide insights into the dynamics of blocking flows. The EBM mechanism

helps explain how synoptic-scale eddies can either enhance or suppress a blocking flow. Surprisingly, the NMI model accu-

rately captures the entire life cycle of blockings, including their onset, growth, maintenance, and decay. Additionally, Luo et al.

(2019) proposed a theory that elucidates how the meridional gradient of potential vorticity (𝑃𝑉𝑦) influences the dispersive and

nonlinear behavior of blocking. This theory finds support in observations of the background westerly jet stream (Luo et al.,80

2019).

Despite the progress made in understanding blocking through various theories, accurately numerical predicting the blocking

event in weather forecasts remains a challenge (Zhang et al., 2019). The abrupt onset of block flow, as observed in midlatitudes

weather over the past century, contributes to the difficulty (Vautard, 1990). This is primarily attributed to the inherent instability

of fluid dynamics, regardless of whether it is in normal or nonnormal modes. In other words, the instability of fluid dynamics85

act as a barrier that hampers accurate predictions (Pierrehumbert, 1984; Pierrehumbert and Swanson, 1995; Swanson, 2001).

The conditional nonlinear optimal perturbation (CNOP) approach, introduced by Mu et al. (2003), is indeed a valuable method

for quantifying fluid instability using nonlinear optimization techniques. Unlike approaches that rely on linear approximation

assumptions, the CNOP approach takes into account the full nonlinear effects within the system. By maximizing the objective

value while adhering to reasonable physical constraints at a fixed time 𝑇 , the CNOP approach helps identifies the most unstable90

scenario, or says optimal disturbance. These optimal disturbances, also referred to as optimal precursors, often serve as impor-

tant signals that can lead to some unstable fluid phenomenon being studied. Therefore, the CNOP approach has been widely

applied in various fields such as fluid dynamics, atmospheric science, and oceanography. It has been used to study phenomena

like turbulence in shear flows (Pringle and Kerswell, 2010; Kerswell, 2018), disturbance energy in vortex-pairs (Navrose et al.,
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2018), detecting blocking onset (Mu and Jiang, 2008), typhoon observations (Mu et al., 2009; Qin and Mu, 2012), predictabil-95

ity of El Niño-Southern Oscillation (Duan et al., 2009; Duan and Hu, 2016) and variations in the Kuroshio path (Wang and Mu,

2015). Furthermore, recent advancements in statistical machine learning techniques have further improved and accelerated the

CNOP approach in practical applications (Shi and Sun, 2023; Shi and Ma, 2023).

In this paper, we investigate optimal disturbances of blockings using the NMI model, where the goal is to understand their

static and dynamic behaviors and their relation to predictability. In Section 2, the derivation of the NMI model and the basic100

CNOP settings are briefly described to obtain the optimal disturbances. Section 3 provides a theoretical analysis of the opti-

mal disturbance of the initial blocking amplitude, including spatial patterns, nonlinear evolution, the eastward propagation of

blockings, and the time-delay effect. Additionally, a one-by-one comparison is made in Section 3 with the optimal disturbance

of the preexisting synoptic-scale eddies in terms of spatial patterns, nonlinear evolution, the eastward propagation of blockings,

and the time-delay effect. Section 5 discusses how variations in westerly wind influence optimal disturbances in spatial patterns105

and nonlinear evolution, as well as their relation to predictability. Finally, in Section 6, this paper concludes with a summary

and discussion.

2 The NMI model and optimal disturbances

In this section, we provide a brief description of the barotropic NMI model, which has been derived and developed in (Luo,

2000, 2005; Luo et al., 2014, 2019). The barotropic NMI model serves as a mathematical framework used to study atmospheric110

phenomena, particularly those related to blockings. After introducing the barotropic NMI model, we proceed to formalize

the objective functions that need to be maximized. These objective functions play a crucial role in determining the optimal

disturbances of both the initial blocking amplitude and the preexisting synoptic-scale eddies. By maximizing these objective

functions, our aim is to find the optimal perturbations that contribute to the occurrence and development of blockings.

2.1 The NMI Model115

In the initial stage, we provide a list of various values for the object parameters in Table 1. Let 𝐹 = (𝐿/𝑅)2 be the Froude

number, where 𝑅 ≈ 𝐿 is the radius of Rossby deformation. The meridional gradient of the Coriolis parameter at the given

latitude 𝜑0 is denoted as 𝛽0, and the nondimensional parameter is set as 𝛽 = 𝛽0𝐿
2/𝑈. Typically, the background westerly wind

is observed to have a speed of approximately 7 𝑚/𝑠 (Luo, 2005). Considering that the dimension of wind speed is 10 𝑚/𝑠, we

set the nondimensional wind speed as 𝑈 = 0.7.120

In the given context, we consider the zonal westerly wind, denoted as 𝑈 =𝑈 (𝑦). Regarding a blocking event, its nondi-

mensional governing equation is expressed as the barotropic quasi-geostrophic equation with 𝑥-periodic and lateral boundary

4
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object parameter value

reference latitude 𝜑0 = 55◦𝑁

horizontal scale characteristic length 𝐿 ∼ 106𝑚

characteristic wind speed 𝑈 ∼ 10𝑚𝑠−1

𝛽-channel nondimensional width 𝐿𝑦 = 5

Total Rossby wave packet nondimensional zonal wavenumber 𝑘0 = 1/(6.371cos𝜑0)
nondimensional wind speed 𝑈 = 0.7

(uniform background westerly)

blocking dipole nondimensional zonal wavenumber 𝑘 = 2𝑘0

preexisting synoptic eddies nondimensional zonal wavenumber 𝑘1 = 9𝑘0

nondimensional zonal wavenumber 𝑘2 = 11𝑘0

zonal location 𝑥𝑇 = 1.435

amplitude 𝑎0 = 0.17

variance parameter 𝜇 = 1.2

variance parameter 𝜖 = 0.24
Table 1. The values of the object parameters in the NMI model.

conditions:

𝜕

𝜕𝑡

(
∇2𝜓𝑇 − 𝐹𝜓𝑇

)
+ 𝐽 (𝜓𝑇 ,∇2𝜓𝑇 ) + 𝛽

𝜕𝜓𝑇

𝜕𝑥
= 0, (1a)

𝑥 − periodic : 𝜓𝑇 (−𝐿𝑥 , 𝑦, 𝑡) = 𝜓𝑇 (𝐿𝑥 , 𝑦, 𝑡), (1b)125

𝑦 − lateral :
1

2𝐿𝑥

𝐿𝑥∫
−𝐿𝑥

𝜕𝜓𝑇

𝜕𝑦
𝑑𝑥

������
𝑦=0

= −𝑈 (0), 1
2𝐿𝑥

𝐿𝑥∫
−𝐿𝑥

𝜕𝜓𝑇

𝜕𝑦
𝑑𝑥

������
𝑦=𝐿𝑦

= −𝑈 (𝐿𝑦), (1c)

where 𝜓𝑇 is the instantaneous total streamfunction. Then, we can decompose the total streamfunction 𝜓𝑇 by scales into three

parts as

𝜓𝑇 = 𝜓 +𝜓 +𝜓′, (2)

where 𝜓 = 𝜓(𝑦) = −
∫ 𝑦

0 𝑈 (𝑦′)𝑑𝑦′ represents the basic westerly flow, which is only dependent on the meridional direction 𝑦,130

𝜓 = 𝜓(𝑥, 𝑦, 𝑡) represents the planetary-scale blocking anomaly, and 𝜓′ = 𝜓′ (𝑥, 𝑦, 𝑡) represents the preexisting synoptic-scale

eddies. Based on observations in the mid-latitudes of the northern hemisphere (Colucci et al., 1981), the planetary-scale block-

ing anomaly 𝜓 in the zonal direction exhibits a single wave with wavenumber 𝑘 = 2𝑘0 (Table 1), assuming a corresponding

frequency of 𝜔 as discussed in (Charney and DeVore, 1979; Luo, 2005). In the case of the synoptic-scale eddies in the zonal

direction, it is believed that they are a superposition of two single waves with wavenumbers, 𝑘1 = 9𝑘0 and 𝑘2 = 11𝑘0 (Ta-135
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ble 1). The corresponding frequencies for these waves are 𝜔1 and 𝜔2, respectively, as mentioned in (Luo, 2005; Luo et al.,

2007). Regarding the equivalent barotropic atmosphere, it is widely recognized that the potential vorticity (𝑃𝑉) is governed

by the equation 𝑃𝑉 = 𝑓0 + 𝛽𝑦 −𝑈𝑦 − 𝐹𝜓, as described in (Pedlosky, 1987). By substituting the instantaneous total stream-

function (2) into the nondimensional barotropic quasi-geostrophic equation, (1a), we can establish a relationship between the

three wavenumbers. This relationship leads to two equations for the planetary-scale blocking anomaly 𝜓 and the preexisting140

synoptic-scale eddies 𝜓′ as(
𝜕

𝜕𝑡
+𝑈 𝜕

𝜕𝑥

) (
∇2𝜓 − 𝐹𝜓

)
+ 𝐽 (𝜓,∇2𝜓) + 𝑃𝑉𝑦

𝜕𝜓

𝜕𝑥
= −𝐽 (𝜓′,∇2𝜓′)𝑃 , (3a)(

𝜕

𝜕𝑡
+𝑈 𝜕

𝜕𝑥

) (
∇2𝜓′ − 𝐹𝜓′

)
+ 𝑃𝑉𝑦

𝜕𝜓′

𝜕𝑥
= −𝐽 (𝜓′,∇𝜓) − 𝐽 (𝜓,∇2𝜓′), (3b)

where the meridional gradient of potential vorticity (𝑃𝑉𝑦) satisfies the equation 𝑃𝑉𝑦 = 𝛽+𝐹𝑈−𝑈𝑦𝑦 , which indicates the 𝑃𝑉𝑦 is

slow-varying and the subscript 𝑃 represents the force driven by the synoptic-scale eddies, which is denoted as −𝐽 (𝜓′,∇2𝜓′) and145

has the wavenumber 2𝑘0. Indeed, the relative vorticity, represented as 𝑞′, can be expressed as 𝑞′ = ∇2𝜓′−𝐹𝜓′. By considering

this equation, we can derive that the synoptic-scale eddies satisfy 𝐽 (𝜓′,∇2𝜓′)𝑃 = ∇ · (𝑣′𝑣′𝑣′𝑞′)𝑃 , which represents the planetary-

scale component of the divergence of the eddy vorticity flux induced by the preexisting synoptic-scale eddies. It is important

to note that the planetary-scale component of the divergence of the eddy vorticity flux ∇ · (𝑣′𝑞′)𝑃 is time-dependent. On the

contrary, the time-mean ∇ · (𝑣′𝑞′) in the eddy straining model is time-independent, as discussed in (Shutts, 1983; Haines and150

Marshall, 1987).

Recall the classical multiscale decomposition, we can decompose the spatial and temporal components using the parameters

{𝑋𝑘 = 𝜖 𝑘𝑥}∞
𝑘=0 and {𝑇𝑘 = 𝜖 𝑘 𝑡}∞

𝑘=0, respectively. Here, 𝜖 is a small parameter and 𝑘 represents the scale. This decomposition

allows us to analyze and understand the behavior of the blocking anomaly and the synoptic-scale eddies at different scales.

Using this decomposition, we can express the wavefunctions of the planetary-scale blocking anomaly and the synoptic-scale155

eddies as follows:

𝜓 = 𝜓(𝑥, 𝑦, 𝑡;𝑋1,𝑇1;𝑋2,𝑇2; · · · ), and 𝜓′ = 𝜓′ (𝑥, 𝑦, 𝑡;𝑋1,𝑇1;𝑋2,𝑇2; · · · ). (4)

Without loss of generality, let us consider the planetary-scale blocking anomaly 𝜓 as an example. By utilizing the multiscale

decomposition (4), we can express the temporal and spatial derivatives of the streamfunction 𝜓 as follows:

𝑑𝜓

𝑑𝑡
=
𝜕𝜓

𝜕𝑡
+ 𝜖 𝜕𝜓

𝜕𝑇1
+ 𝜖2 𝜕𝜓

𝜕𝑇2
+ · · · , and

𝑑𝜓

𝑑𝑥
=
𝜕𝜓

𝜕𝑥
+ 𝜖 𝜕𝜓

𝜕𝑋1
+ 𝜖2 𝜕𝜓

𝜕𝑋2
+ · · · . (5)160

Regarding the streamfunctions of the planetary-scale blocking anomaly and the synoptic-scale eddies (4), we can expand them

asymptotically as follows:

𝜓 = 𝜖𝜓1 (𝑥, 𝑦, 𝑡;𝑋1,𝑇1;𝑋2,𝑇2; · · · ) + 𝜖2𝜓2 (𝑦;𝑋1,𝑇1;𝑋2,𝑇2; · · · ) + · · · , (6a)

𝜓′ = 𝜖
3
2 𝜓′

1 (𝑥, 𝑦, 𝑡;𝑋1,𝑇1;𝑋2,𝑇2; · · · ) + 𝜖 5
2 𝜓′

2 (𝑥, 𝑦, 𝑡;𝑋1,𝑇1;𝑋2,𝑇2; · · · ) + · · · , (6b)

where the fast-varying variable of 𝜓2 is only meridional or only dependent on 𝑦, as it represents the blocking’s feedback to the165

zonal-mean westerly wind. Using the derivatives (5) and the asymptotic expansion (6), we employ Wentzel-Kramers-Brillouin

(WKB) method from asymptotic analysis (Nayfeh, 2008) to derive the NMI model as:

6
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(1) The nondimensional streamfunctions of the blocking wavy anomaly 𝜓1, the associated zonal-mean anomaly 𝜓2 and the

preexisting synoptic-scale eddies 𝜓′
1 are represented as follows:

𝜓1 =
1
𝜖

√︄
2
𝐿𝑦

(
𝐵𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) + 𝐵𝑒−𝑖 (𝑘𝑥−𝜔𝑡 )

)
sin

(
𝑚𝑦 − 𝜋

4

)
, (7a)170

𝜓2 = −𝑔 |𝐵 |2 cos(2𝑚𝑦)
𝜖2 , (7b)

𝜓′
1 =

2𝐹0

𝜖
3
2

(
cos(𝑘1𝑥 −𝜔1𝑡) − cos(𝑘2𝑥 −𝜔2𝑡)

)
sin

(𝑚𝑦

2
− 𝜋

8

)
, (7c)

where 𝐹0 = 𝑎0 exp
[
−𝜇𝜖2 (𝑥 + 𝑥𝑇 )2]1 and the parameters are calculated as 𝑚 = −2𝜋/𝐿𝑦 and

𝑔 =
4𝑚𝑘2 (𝑚2 + 𝑘2 + 𝐹)2

𝑃𝑉𝑦𝐿𝑦

[
(4𝑚2 + 𝐹) (𝑚2 + 𝐹 − 𝑘2) − (𝑚2 + 𝑘2 + 𝐹)2

] .
(2) Both the phase and group velocities of the planetary-scale blocking anomaly and the phase velocities of the synoptic-175

scale eddies are derived separately as

𝑐 =
𝜔

𝑘
=𝑈 −

𝑃𝑉𝑦

𝑚2 + 𝑘2 + 𝐹
, (8a)

𝑐𝑔 =
𝜕𝜔

𝜕𝑘
=𝑈 −

𝑃𝑉𝑦 (𝑚2 − 𝑘2 + 𝐹)
(𝑚2 + 𝑘2 + 𝐹)2 , (8b)

𝑐1 =
𝜔1
𝑘1

=𝑈 −
𝑃𝑉𝑦

𝑚2

4 + 𝑘2
1 + 𝐹

, 𝑐2 =
𝜔2
𝑘2

=𝑈 −
𝑃𝑉𝑦

𝑚2

4 + 𝑘2
2 + 𝐹

. (8c)

(3) The blocking amplitude 𝐵 obeys the 1-dimensional forced NLS equation with the periodic boundary condition as180 
𝑖

(
𝜕𝐵

𝜕𝑡
+ 𝑐𝑔

𝜕𝐵

𝜕𝑥

)
+𝜆 𝜕

2𝐵

𝜕𝑥2 + 𝛿 |𝐵 |2𝐵 +𝐺𝐹2
0 exp(−𝑖Δ𝜔𝑡) = 0,

𝐵(0,−𝐿𝑥) = 𝐵(0, 𝐿𝑥),
(9)

where Δ𝜔 = 𝜔2 −𝜔1 −𝜔 and the parameters are set as

𝜆 =
𝑃𝑉𝑦𝑘

[
3(𝑚2 + 𝐹) − 𝑘2]

(𝑚2 + 𝑘2 + 𝐹)3 ,

𝛿 =
𝑔𝑘𝑚(3𝑚2 − 𝑘2)
𝑚2 + 𝑘2 + 𝐹

,

𝐺 = −
√︂

𝐿𝑦

2
· 𝑚(𝑘1 + 𝑘2)2 (𝑘2 − 𝑘1)

4(𝑚2 + 𝑘2 + 𝐹)
.

(10)

The detailed derivation of the NMI model is shown in Appendix A.

1The external force 𝐹0, acting as a filter for the waves, indeed serves as the core ingredient of the preexisting synoptic-scale eddies 𝜓′
1. Therefore, unless

specifically mentioned afterward, we use the external force 𝐹0 to represent the preexisting synoptic-scale eddies.
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2.2 The basic CNOP settings of optimal disturbances185

In the previous derivation of the NMI model, it has been established that the 1-dimensional forced NLS equation, particu-

larly eq. (9), is of great importance in understanding the blocking. Concretely, this equation plays a significant role in describing

the dynamic behavior of blocking. The motion of the blocking amplitude in the 1-dimensional forced NLS equation (9) is deter-

mined by three factors: the initial blocking amplitude 𝐵0, the preexisting synoptic-scale eddies 𝐹0 and the background westerly

wind 𝑈.2 Traditionally, the Lyapunov exponent has been used to characterize the nonlinear error growth (Lucarini and Gritsun,190

2020). However, it is applicable only to finite-dimensional dynamical systems as it requires computing the maximum of finite

eigenvalues. Therefore, it does not work for any partial differential equation since it corresponds to an infinite-dimensional

dynamical system with an unbounded maximum eigenvalue. It is indeed an interesting question to investigate the effects of

perturbations in the initial blocking amplitude 𝐵0 and the preexisting synoptic-scale eddies 𝐹0 on the motion of blocking. Since

both 𝐵0 and 𝐹0 are 1-dimensional functions, it raises curiosity about how variations in these parameters affect the evolution195

behavior of blocking. Additionally, it is worth exploring how changes in the westerly wind 𝑈 interact with these perturbations

to influence the motion of blocking. Understanding these relationships can provide valuable insights into the dynamics of

blocking and its predictability. In this paper, we employ the conditional nonlinear optimal perturbation (CNOP) method, which

was initially proposed by Mu et al. (2003), to explore the most influential perturbations and their effects.

In this scenario, we define 𝐵(𝑡, 𝑥; ·, ·, ·) as the reference blocking amplitude with time evolution in the configuration space,200

where the three dots represent the three factors influencing the motion of blocking as mentioned previously. Given the initial

blocking amplitude 𝐵0, the synoptic-scale eddies 𝐹0, and the background westerly wind 𝑈, we can express the blocking

amplitude as 𝐵(𝑡, 𝑥;𝐵0, 𝐹0,𝑈). To quantify the magnitude of the blocking amplitude 𝐵, we utilize the standard mass norm, also

known as the energy norm (Farrell and Ioannou, 1996). This norm is defined as

∥𝐵(𝑡)∥ =
©­­«

𝐿𝑥∫
−𝐿𝑥

|𝐵(𝑡, 𝑥) |2𝑑𝑥
ª®®¬

1
2

(11)205

where 𝐿𝑥 represents the limits of integration. Similarly, for the synoptic-scale eddies, we also employ the standard mass norm

given by

∥𝐹∥ =
©­­«

𝐿𝑥∫
−𝐿𝑥

|𝐹 (𝑥) |2𝑑𝑥
ª®®¬

1
2

. (12)

To enhance convenience in notation, we simplify the representation of the blocking amplitude as 𝐵(𝑡;𝐵0, 𝐹0,𝑈) by ignoring

the less commonly used variable 𝑥, which helps to avoid any confusion and improve the overall understanding and readability210

of the paper.

2In this study, the blocking’s motion is primarily determined by the meridional gradient of potential vorticity (𝑃𝑉𝑦), which is influenced by the westerly

wind 𝑈 and its meridional shear 𝑈𝑦𝑦 . However, for the specific focus of this paper, only the 1-dimensional forced NLS equation is considered, and therefore

the meridional shear of the westerly wind 𝑈𝑦𝑦 is disregarded. As a result, the main factor affecting the blocking’s motion is the westerly wind 𝑈.
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2.2.1 CNOP of initial blocking amplitude

If we consider the initial blocking amplitude as 𝐵0 + 𝑏0, where 𝑏0 represents a perturbation of the initial blocking amplitude

𝐵0, then the reference blocking amplitude at time 𝑇 can be expressed by 𝐵(𝑇 ;𝐵0 + 𝑏0, 𝐹0,𝑈). Therefore, the two reference

blocking amplitudes are given by 𝐵(𝑇 ;𝐵0, 𝐹0,𝑈) and 𝐵(𝑇 ;𝐵0+𝑏0;𝐹0,𝑈). Based on the conditions of the synoptic-scale eddies215

𝐹0 and the westerly wind 𝑈, we can formulate the objective function for the initial perturbation 𝑏0 about the initial blocking

amplitude 𝐵0 as

𝐽 (𝑏0;𝐵0, 𝐹0,𝑈) = ∥𝐵(𝑇 ;𝐵0 + 𝑏0, 𝐹0,𝑈) − 𝐵(𝑇 ;𝐵0, 𝐹0,𝑈)∥2 . (13)

The CNOP can then be computed by maximizing 𝐽 (𝑏0;𝐵0, 𝐹0,𝑈) while ensuring that the constraint ∥𝑏0∥ ≤ 𝜌 is satisfied,

where 𝜌 is a predetermined value that sets the upper limit for the norm of 𝑏0. In other words, our goal is to find the optimal220

solution that maximizes 𝐽 (𝑏0;𝐵0, 𝐹0,𝑈) while adhering to the constraint of ∥𝑏0∥ ≤ 𝜌, expressed as

max
∥𝑏0 ∥≤𝜌

𝐽 (𝑏0;𝐵0, 𝐹0,𝑈). (14)

By abbreviating 𝐽 (𝑏0;𝐵0, 𝐹0,𝑈) as 𝐽 (𝑏0), we can simplify and make it more convenient for subsequent discussions or calcu-

lations. This abbreviation allows us to refer to 𝐽 (𝑏0) more easily and conveniently without losing any generality.

2.2.2 CNOP of preexisting synoptic-scale eddies225

In a similar manner, if we consider the synoptic-scale eddies as 𝐹0 + 𝑓0, where 𝑓0 represents a perturbation of the preexisting

synoptic-scale eddies 𝐹0, then the reference blocking amplitude at time 𝑇 can be expressed by 𝐵(𝑇 ;𝐵0, 𝐹0 + 𝑓0,𝑈). Conse-

quently, we have two reference blocking amplitudes 𝐵(𝑇 ;𝐵0, 𝐹0,𝑈) and 𝐵(𝑇 ;𝐵0;𝐹0 + 𝑓0,𝑈). Based on the conditions of the

initial blocking amplitude 𝐵0 and the westerly wind 𝑈, we can formulate the objective function for the perturbation 𝑓0 about

the background synoptic-scale eddies 𝐹0 as230

𝐽 ( 𝑓0;𝐵0, 𝐹0,𝑈) = ∥𝐵(𝑇 ;𝐵0, 𝐹0 + 𝑓0,𝑈) − 𝐵(𝑇 ;𝐵0, 𝐹0,𝑈)∥2 . (15)

The CNOP can then be stated as maximizing 𝐽 ( 𝑓0;𝐵0, 𝐹0,𝑈) while ensuring that the constraint ∥ 𝑓0∥ ≤ 𝜌 is satisfied, where 𝜌

is a predetermined value that sets the upper limit for the norm of 𝑓0. In other words, we aim to find the optimal solution that

maximizes 𝐽 ( 𝑓 0;𝐵0, 𝐹0,𝑈)while adhering to the constraint of ∥ 𝑓0∥ ≤ 𝜌, expressed as

max
∥ 𝑓0 ∥≤𝜌

𝐽 ( 𝑓0;𝐵0, 𝐹0,𝑈). (16)235

It is also mentioned here that we shorten the notation 𝐽 ( 𝑓0;𝐵0, 𝐹0,𝑈) as 𝐽 ( 𝑓0) for convenience.

2.2.3 Variations in the westerly wind

By utilizing the CNOP approach, we can compute the optimal disturbance of the initial blocking amplitude, denoted as 𝑏0

in eq. (14), and the optimal disturbance of the preexisting synoptic-scale eddies, denoted as 𝑓0 in eq. (16). To explore the
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influence of changes in the westerly wind 𝑈 on these optimal disturbances, we can assign different values to the westerly wind240

𝑈 and observe the resulting changes, which allows us to understand how variations in the westerly wind affect the optimal

disturbances.

2.2.4 Numerical implementation

In the theoretical analysis, the optimization problems concerning the optimal perturbations 𝑏0 and 𝑓0, as described in eq. (14)

and eq. (16), are directly derived from the forced NLS equation (9), which is considered as an infinite-dimensional model.245

However, when implementing it numerically on a computer, the optimization problems, (14) and (16), are reduced to finite-

dimensional ones.

In this paper, we adopt the same method and numerical settings as described in (Luo, 2005; Luo et al., 2014, 2019) to study

the time evolution of the blocking amplitude 𝐵. To numerically simulate the forced NLS equation with the periodic boundary

condition (9), we utilize the high-order split-step Fourier scheme developed in (Muslu and Erbay, 2005), which is known250

for its excellent performance. We set the nondimensional grid parameters, Δ𝑥 = 0.2296 as the spatial grid size (𝑑 = 101) and

Δ𝑡 = 0.0864 as the time step. Additionally, the boundary parameter is set as 𝐿𝑥 = 11.48 and the initial blocking amplitude is set

as 𝐵0 = 0.4. To compute the CNOP, we conventionally employ the second spectral projected gradient method (SPG2) proposed

in (Birgin et al., 2000). The standard numerical gradient is computed with the step size 𝜖 = 10−8. The energy norm of the

blocking amplitude is numerically set as255

∥𝑏0∥ ≈
(

𝑑∑︁
𝑖=1

𝑏2
0,𝑖

) 1
2 √

Δ𝑥 ≤ 𝜌 = 𝛾
√
Δ𝑥.

It is worth noting that an important observation from the empirical study (Breeden et al., 2020) is that the intensification of a

blocking event often reaches its maximum around 10 days from the onset. Therefore, in this analysis, the prediction time is set

at day 𝑇 = 10 (unit: day). In line with the approach used in the previous studies (Luo, 2005; Luo et al., 2014, 2019), we set the

initial blocking amplitude as 𝐵0 = 0.4 and the preexisting synoptic-scale eddies as 𝐹0 = 𝑎 exp
[
−𝜇𝜖2 (𝑥 + 𝑥𝑇 )2] .260

3 Optimal disturbance of the initial blocking amplitude

In this section, the main objective is to investigate the optimal disturbance of the initial blocking amplitude. Our aim is to gain

a better understanding of spatial patterns and nonlinear growth that are associated with this disturbance. Additionally, we also

explore how the total blocking evolves as the optimal disturbance increases in size. Furthermore, we analyze the time-delay

effect of the optimal initial disturbance and its relation with predictability.265

3.1 Spatial pattern and nonlinear growth

In the given text, our goal is to numerically compute the optimal disturbance of the initial blocking amplitude, denoted as 𝑏0,

which involves considering the governing forced NLS equation with the periodic boundary condition (2.9) and the initial block-

ing amplitude 𝐵0 = 0.4. This computation can be achieved by maximizing the constrained objective function (13). Increasing
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the size of the optimal disturbance allows for a more in-depth analysis of the numerical performance of spatial patterns. These270

spatial patterns are visualized in Figure 1, clearly representing how the spatial pattern varies with the incremental increase

of the size parameter 𝛾. It is truly fascinating to observe the spatial pattern of the optimal disturbance of the initial blocking

amplitude in relation to the slow-varying preexisting synoptic-scale eddies 𝐹0 = 𝑎0 exp
[
−𝜇𝜖2 (𝑥 + 𝑥𝑇 )2] . In Figure 1, we can

clearly see a bulge around the zonal location 𝑥 = −𝑥𝑇 , accompanied by two small dents beside it, resembling a solitary wave, as

noted in (Zabusky and Porter, 2010). As we increase the size parameter 𝛾 incrementally from 0.25 to 1, the optimal disturbance275

exhibits a more pronounced solitary wave-like behavior. Specifically, the bulge becomes highly concentrated around the zonal

center 𝑥 = −𝑥𝑇 , with a sharply rising peak. This suggests that, in the context of blocking events in the real world, the largest

deviation in the initial blocking amplitude 𝐵0 occurs due to a positive incremental increase in the vicinity of the zonal location

𝑥 = −𝑥𝑇 , which corresponds to the location of the synoptic-scale eddies acting as external forces. Additionally, the center of

the optimal disturbance of the initial blocking amplitude is slightly offset to the left of the zonal center 𝑥 = −𝑥𝑇 , as depicted280

in Figure 1.

-11.48 -5.74 0 5.74 11.48
0.3

0.4

0.5

0.6

0.7

Figure 1. Spatial patterns (nondimensionalization) of the optimal disturbance 𝑏0 under the initial blocking amplitude 𝐵0 = 0.4 varies with

the incremental increase of the size parameter 𝛾.

Then, we utilize the energy norm (11) to characterize how the nonlinear growth of the optimal disturbance varies as the size

increases, that is,

∥𝑏(𝑡)∥2

Δ𝑥
=
∥𝐵(𝑡;𝐵0 + 𝑏0, 𝐹0,𝑈) − 𝐵(𝑡;𝐵0, 𝐹0,𝑈)∥2

Δ𝑥
, (17)

where the nonlinear evolution of the optimal disturbance ∥𝑏 (𝑡 ) ∥2

Δ𝑥
measures the difference between the blocking amplitudes 𝐵285

at time 𝑡, taking into account both the initial blocking amplitude 𝐵0 and the most perturbed initial blocking amplitude 𝐵0 + 𝑏0,
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while keeping the synoptic-scale eddies 𝐹0 and the westerly wind speed 𝑈 fixed. This allows for a comparison of the effects of

the optimal disturbance on the blocking amplitude. The numerical performance of the nonlinear growth behavior is visualized

in Figure 2a. To further understand the nonlinear growth behavior, it is indeed important to investigate the relative nonlinear

0 2 4 6 8 10
0  

0.5

1  

1.5

2  

(a) (standard) Error Growth

0 2 4 6 8 10
0   

0.02

0.04

0.06

0.08

0.1 

(b) Relative Error Growth

Figure 2. Nonlinear growth of the optimal disturbance given by (17) and (18) varies with the incremental increase of the size parameter 𝛾.

growth of the optimal disturbance. This can be done by comparing the nonlinear growth of the optimal disturbance ∥𝑏 (𝑡 ) ∥2

Δ𝑥
290

with the blocking amplitude ∥𝐵(𝑡 ) ∥2

Δ𝑥
using their ratio, that is,

∥𝑏(𝑡)∥2

∥𝐵(𝑡)∥2 =
∥𝐵(𝑡;𝐵0 + 𝑏0, 𝐹0,𝑈) − 𝐵(𝑡;𝐵0, 𝐹0,𝑈)∥2

∥𝐵(𝑡;𝐵0, 𝐹0,𝑈)∥2 . (18)

By examining the relative nonlinear growth of the optimal disturbance (18), it is observed that the nonlinear growth of the

optimal disturbance is slower compared to the growth of the blocking amplitude during the period of blocking growth, while

faster during other periods. The numerical performance is shown in Figure 2b. From both the subfigures in Figure 2, it is evident295

that there is a fixed turning-time point in the nonlinear growth of the optimal disturbance. Prior to reaching this turning-

time point, the nonlinear growth is relatively slow. However, once the turning-time point is reached, the nonlinear growth

accelerates rapidly, and its growth pattern undergoes a significant change. It is also noteworthy that as the size parameter 𝛾

increases incrementally, the turning-time point occurs earlier and the nonlinear growth of the optimal disturbance becomes

more pronounced. This suggests that the size of the optimal disturbance has a positive impact on the timing and magnitude300

of its nonlinear growth. Meanwhile, we show the ratios of the nonlinear growth of the optimal disturbance in terms of norm

squares in Table 2, where it is observed that the ratio increases as the size increases incrementally, further indicating a rising

growth rate. The quantitative evidence in Table 2 supports the idea that the size of the optimal disturbance has a positive effect

on accelerating its nonlinear growth. Additionally, we compare the ratio of the relative nonlinear growth to further quantify

the positive effect of the size of the optimal disturbance on its nonlinear growth, which is demonstrated in Table 3. It is worth305

noting that the nonlinear growth behavior observed in Table 3 aligns with the findings in Table 2. This consistency provides
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𝛾 = 0.25 𝛾 = 0.5 𝛾 = 0.75 𝛾 = 1

∥𝑏 (10) ∥2

∥𝑏 (0) ∥2 1.5616 1.6568 1.7664 1.8935

Table 2. The ratio of the nonlinear growth of the optimal disturbance in terms of norm squares, ∥𝑏(10)∥2/∥𝑏(0)∥2.

𝛾 = 0.25 𝛾 = 0.5 𝛾 = 0.75 𝛾 = 1

∥𝑏 (0) ∥2

∥𝐵(0) ∥2 0.39% 1.55% 3.48% 6.19%
∥𝑏 (10) ∥2

∥𝐵(10) ∥2 0.47% 1.97% 4.73% 9.02%

∥𝑏 (10) ∥2

∥𝐵(10) ∥2 /
∥𝑏 (0) ∥2

∥𝐵(0) ∥2 1.2051 1.2710 1.3592 1.4572

Table 3. The relative nonlinear growth of the optimal disturbance in terms of norm squares, ∥𝑏(0)∥2/∥𝐵(0)∥2 and ∥𝑏(10)∥2/∥𝐵(10)∥2, and

the ratio between them.

further evidence to support the idea that the size of the optimal disturbance does have a positive effect on accelerating its

nonlinear growth.

By normalizing the initial conditions for the growth curves in Figure 2, we demonstrate that increasing the size of the optimal

disturbance can indeed accelerate its nonlinear growth. The normalization for the nonlinear growth is given by ∥𝑏 (𝑡 ) ∥2

∥𝑏 (0) ∥2 , while310

the relative nonlinear growth is given by ∥𝑏 (𝑡 ) ∥2

∥𝐵(𝑡 ) ∥2 / ∥𝑏 (0) ∥2

∥𝐵(0) ∥2 . This normalization indeed provides a clearer visualization of the

nonlinear growth patterns of the optimal disturbances in terms of norm square, as shown in Figure 3. This normalization allows

us to observe how fast the optimal disturbance grows over time as the size parameter 𝛾 increases incrementally from 0.25 to 1.

Furthermore, Figure 3 shows that the nonlinear evolution of the optimal disturbances, transitioning from units to ratios, which

aligns with the data shown in Table 2 and Table 3. This comprehensive representation provides us with a better understanding315

of how the optimal disturbances change and grow throughout the process. By comparing Figure 3a and Figure 3b, it further

supports the idea that the growth of the optimal disturbance is weaker than that of the blocking amplitude during the period of

blocking growth, while faster during other periods.

3.2 Temporal evolution of blocking under the optimal disturbance

After analyzing the spatial patterns and the nonlinear growth of the optimal disturbance, it would indeed be valuable to explore320

how the motion of the blocking is influenced by the optimal disturbance. Understanding the dynamic relationship between the

optimal disturbance and the evolution of the blocking can provide further insights into the impact of the optimal disturbance

on the overall behavior of the blocking system. In particular, it would be interesting to investigate how the blocking evolves

with time when the optimal disturbance is added to the initial blocking amplitude.

Based on the provided expressions (7a) and (7b), the blocking wavy anomaly is represented as 𝜓𝐵 = 𝜖𝜓1 and the associ-325

ated zonal-mean anomaly is represented as 𝜓𝑚 = 𝜖2𝜓2. Additionally, based on eq. (7c), the streamfunction of the preexisting
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Figure 3. Nonlinear growth of the optimal disturbance given by (17) and (18) under initial normalization varies with the increase of the size

parameter 𝛾.

synoptic-scale eddies is approximated by 𝜓′ ≈ 𝜖
3
2 𝜓′

1 + 𝜖
5
2 𝜓′

2.3 According to the expression (2), the total streamfunction can be

approximated as 𝜓𝑇 = 𝜓 +𝜓 +𝜓′ ≈ 𝜓 +𝜓𝐵 +𝜓𝑚 + 𝜖 3
2 𝜓′

1 + 𝜖
5
2 𝜓′

2. In Section 2.1, it is derived that the blocking amplitude is gov-

erned by the forced NLS equation with the periodic boundary condition (9). As mentioned in (Luo et al., 2019), the evolution

of the instantaneous total streamfunction 𝜓𝑇 is entirely dependent on the blocking amplitude throughout the whole life of the330

blocking. In Figure 4, we show the evolution of the instantaneous total streamfunction 𝜓𝑇 when the initial blocking amplitude

is added by the optimal disturbances. This visualization provides a clear representation of how the total streamfunction changes

as the size parameter 𝛾 increases incrementally. Figure 4a visualizes the evolution of the instantaneous total streamfunction

without any perturbations, highlighting two predominant phenomena commonly associated with the blocking events: eddy

straining and wave breaking. These phenomena, as described in (Shutts, 1983; Pelly and Hoskins, 2003), are known to play a335

significant role in the occurrence of blocking events. By comparing Figure 4a to Figure 4b and Figure 4c from left to right, it is

observed that as the size parameter 𝛾 increases, the phenomena of eddy straining and wave breaking become more prominent.

However, both the position and the period of the blocking remain almost unchanged. During the maintenance period of the

blocking, the intensification of eddy straining and wave breaking becomes extremely dominant, but their positions and periods

remain mostly invariant. From a physics perspective, it appears that the optimal disturbance of initial blocking amplitude tends340

to intensify the strength of the blocking without causing any other significant changes. This intensification becomes more pro-

nounced as the size of the optimal disturbance increases. This observation provides valuable insights into the motion of the

blocking and the role of the size of the optimal disturbance in their intensification. It is possible that the nonlinear overgrowth

caused by the optimal disturbance of the initial blocking amplitude, as mentioned in (Bengtsson, 1981; Tibaldi and Molteni,

1990; Burroughs, 1997), could be a contributing factor to the frequent occurrence of extreme weather events and the subse-345

3The derivation of the deformed synoptic-scale eddy 𝜓′
2 is so tedious and circumstantial that we postpone it to the supplementary materials.
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(b) 𝐵0 = 0.4, 𝛾 = 0.5
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(c) 𝐵0 = 0.4, 𝛾 = 1

Figure 4. Nonlinear evolution of the instantaneous total streamfunction field 𝜓𝑇 when the initial blocking amplitude is added by the optimal

disturbance with the incremental increase of the size parameter 𝛾.

quent decrease in predictability. This suggests that the nonlinear growth of the optimal disturbance, dominated by its size, may

lead to the complex dynamics of the blocking.
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3.3 Less predictability on the medium-range

Weather prediction systems have indeed made significant progress over the years, thanks to advancements in technology, data

collection, and modeling techniques. These advancements have greatly improved the accuracy and reliability of weather fore-350

casts. However, despite these improvements, accurately predicting blocking on the medium-range weather timescale remains a

challenge, as highlighted in (Kautz et al., 2022). Additionally, Hamill and Kiladis (2014) have found that forecast errors tend to

be larger for European blocking compared to other regimes, particularly during the transition phases into or out of a blocking

regime. These findings emphasize the complexity and difficulty in accurately forecasting blocking events.

It sounds like a reasonable approach for conducting a numerical experiment using the NMI model to explore whether there355

are larger forecast errors caused by the optimal disturbance. To start, we run the forced NLS equation (9) for 5 days without any

perturbations. After that, using the blocking amplitude on the 5th day as the initial condition, our goal is to obtain the optimal

disturbance during the period from 5 to 15 days. The spatial pattern of the optimal disturbance at a later stage, compared with

the initial stage, is shown in Figure 5a, where it is observed that the peak of the solitary wave slightly offsets to the right and

becomes sharper. The nonlinear growth and relative nonlinear growth of the optimal disturbances are depicted in Figure 5b360

and Figure 5c, as described by eq. (17) and eq. (18), respectively. It is worth noting that when the time interval 𝑇 and the size

parameter 𝛾 = 1 are fixed, the optimal disturbance at a later stage leads to a larger error, which is demonstrated quantitatively

by the ratios between the later stage and the initial stage are 1.8776 for the nonlinear growth and 1.8781 for the relative

nonlinear growth, respectively. Additionally, the experiment reveals that the nonlinear evolution of the optimal disturbance is

more pronounced during the decay of the blocking, while the error is smaller during the maintenance of the blocking. This365

finding aligns with the less predictability of blockings on the medium-range, as mentioned in (Hamill and Kiladis, 2014;

Ferranti et al., 2015; Zhang et al., 2019). This suggests that the presence of the optimal disturbance at a later stage, as observed

in the numerical experiment, can contribute to larger forecast errors in predicting blockings.
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Figure 5. Spatial pattern and nonlinear growth of the optimal disturbance at a later stage in comparison to the baseline at the initial stage.
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4 Optimal disturbance of the preexisting synoptic-scale eddies

In this section, our focus is on investigating the optimal disturbance of the preexisting synoptic-scale eddies. Our aim is to370

understand the spatial patterns and the nonlinear growth of the error associated with this disturbance. We also explore how

the total blocking evolves as the optimal disturbance incrementally increases in size. Furthermore, we analyze the time-delay

effect of the optimal disturbance and its relation with predictability.

4.1 Spatial pattern and nonlinear growth

In this given context, our goal is to numerically compute the optimal disturbance of the preexisting synoptic-scale eddies, de-375

noted as 𝑓0. This computation is based on the forced NLS equation with the periodic boundary condition (9) and the preexisting

synoptic-scale eddies 𝐹0 = 𝑎0 exp
[
−𝜇𝜖2 (𝑥 + 𝑥𝑇 )2] . To achieve this, we can maximize the constrained objective function (15).

Increasing the size of the optimal disturbance, denoted by the parameter 𝛾, allows for a more in-depth analysis of the numerical

performance of spatial patterns. In Figure 6, we provide a clear visualization of the spatial patterns, showcasing how they vary

as the size parameter 𝛾 increases incrementally. The optimal disturbance is observed to concentrate sharply around a slight380

offset to the left of the zonal center 𝑥 = −𝑥𝑇 , which appears as a sharp bulge with two small dents on either side and two small

bulges beside them. As the size parameter 𝛾 increases incrementally from 0.25 to 1, the optimal disturbance becomes even

more pronouncedly sharp. Specifically, the bulge becomes highly concentrated, resembling a sharply rising peak, which ap-

pears to be more predominant than the optimal disturbance of the initial blocking amplitude. This suggests that, in the context

of blocking events in the real world, the largest deviation in the preexisting synoptic-scale eddies concentrates sharply around385

a slight offset to the left of the zonal center 𝑥 = −𝑥𝑇 .

Next, we explore the nonlinear growth of the error caused by the optimal disturbance of the preexisting synoptic-scale eddies.

The energy norm (11) is utilized to quantify this growth as

∥𝑏(𝑡)∥2

Δ𝑥
=
∥𝐵(𝑡;𝐵0, 𝐹0 + 𝑓0,𝑈) − 𝐵(𝑡;𝐵0, 𝐹0,𝑈)∥2

Δ𝑥
, (19)

which measures the difference between the blocking amplitudes 𝐵 at time 𝑡, considering both the preexisting synoptic-scale390

eddies 𝐹0 and the most perturbed preexisting synoptic-scale eddies 𝐹0 + 𝑓0, while keeping the initial blocking amplitude 𝐵0

and the westerly wind speed 𝑈 fixed. This allows for a comparison of the effects of the optimal disturbance on the blocking

amplitude. The numerical performance of the nonlinear growth behavior is visualized in Figure 7a. It is intriguing to see that

the nonlinear growth of the error caused by the optimal disturbance of the preexisting synoptic-scale eddies exhibits a striking

rise as the size parameter 𝛾 increases incrementally. This behavior seems to be fully distinct from the nonlinear growth of395

the optimal disturbance of the initial blocking amplitude, as shown in Figure 2a and Figure 3a. The phenomenon of the error

growing several times aligns with weather predictions in the real world, as mentioned by Zhang et al. (2019). Similarly, we

also explore the relative nonlinear growth of the error generated by the optimal disturbance, which can be calculated by taking

the ratio between the nonlinear growth of the error ∥𝑏 (𝑡 ) ∥2

Δ𝑥
and the blocking amplitude ∥𝐵(𝑡 ) ∥2

Δ𝑥
as

∥𝑏(𝑡)∥2

∥𝐵(𝑡)∥2 =
∥𝐵(𝑡;𝐵0, 𝐹0 + 𝑓0,𝑈) − 𝐵(𝑡;𝐵0, 𝐹0,𝑈)∥2

∥𝐵(𝑡;𝐵0, 𝐹0,𝑈)∥2 . (20)400
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Figure 6. Spatial patterns (nondimensionalization) of the optimal disturbance 𝑓0 under the preexisting synoptic-scale eddies varies with the

increase of the size parameter 𝛾.

It is interesting to note that in Figure 7b, the relative nonlinear evolution of the error caused by the optimal disturbance also

exhibits a significant growth, which is consistent with the nonlinear growth observed in Figure 7a. Comparing these subfigures

in Figure 7 with the nonlinear growth of the optimal disturbance of the initial blocking amplitude shown in Figure 2 and Figure 3

can help identify their differences. It appears that the optimal disturbance of the preexisting synoptic-scale eddies results in a

considerably large error growth. This finding provides further insight into the role played by the fast-moving short-lived (high-405

frequency) synoptic-scale eddies in the blocking system, which has been previously studied in (Berggren et al., 1949; Shutts,

1983; Hoskins et al., 1985; Luo et al., 2014, 2019). This highlights the potential impact of such disturbance on blockings,

which could be a probable cause of weather extremes and reduce predictability. To further provide a more comprehensive

characterization of the striking growth of the error caused by the optimal disturbance of the preexisting synoptic-scale eddies, it

is indeed important to include the quantitative measurements of the nonlinear growth and the relative nonlinear growth. These410

quantitative measurements are calculated and presented in Table 4, which further provides the evidence that the nonlinear

growth and the relative nonlinear growth appear more pronouncedly sharp as the size parameter 𝛾 increases incrementally

from 0.25 to 1 .

4.2 Temporal evolution of blocking under the optimal disturbance

It is indeed a valuable step to explore how the motion of the blocking is influenced by the optimal disturbance. Understanding415

the dynamic relationship between the optimal disturbance and the evolution of the blocking can provide further insights into
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Figure 7. Nonlinear growth of the error generated by the optimal disturbance of the preexisting synoptic-scale eddies given by (19) and (20)

varies with the increase of the size parameter 𝛾.

𝛾 = 0.25 𝛾 = 0.5 𝛾 = 0.75 𝛾 = 1

∥𝑏 (10) ∥2

Δ𝑥
2.4371 15.6206 56.2985 123.8228

∥𝑏 (10) ∥2

∥𝐵(10) ∥2 0.1161 0.7443 2.6826 5.9000

Table 4. The nonlinear growth and relative nonlinear growth of the error caused by the optimal disturbance of the preexisting synoptic-scale

eddies in terms of norm squares.

the impact of the optimal disturbance on the overall behavior of the blocking system. In particular, it would be interesting to

investigate how the blocking evolves with time when the optimal disturbance is added to the preexisting synoptic-scale eddies.

In Figure 8, we depict the evolution of the instantaneous total streamfunction 𝜓𝑇 when the preexisting synoptic-scale ed-

dies are added by the optimal disturbances. This visualization offers a clear representation of how the total streamfunction420

changes as the size parameter 𝛾 increases incrementally. Figure 8a is the same as Figure 4a, which illustrates that the evo-

lution of the instantaneous total streamfunction without any perturbations. Taking a corresponding comparison, Figure 8a

with Figure 4a, Figure 8b with Figure 4b, Figure 8c with Figure 4c, it becomes evident that as the size parameter 𝛾 increases

incrementally, the phenomena related to blocking, eddy straining and wave breaking, become more prominent in comparison

to the motion of the blocking added by the optimal disturbance of the initial blocking amplitude. Additionally, both the position425

and the period of the blocking exhibit significant changes and become chaotic. This observation indicates that the behavior of

the blocking indeed becomes more unpredictable and less stable when perturbations occur in the preexisting synoptic-scale

eddies. In other words, this highlights the sensitivity of the blocking to perturbations of the preexisting synoptic-scale eddies,

which can potentially lead to weather extremes and pose challenges in accurately predicting them, as mentioned in (Bengtsson,

1981; Tibaldi and Molteni, 1990; Burroughs, 1997). This further suggests that the error caused by the optimal disturbance430
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(a) 𝐹0=𝑎0𝑒
−𝜇𝜖 2 (𝑥+𝑥𝑇 )2
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(b) 𝐹0=𝑎0𝑒
−𝜇𝜖 2 (𝑥+𝑥𝑇 )2 , 𝛾=0.5
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(c) 𝐹0=𝑎0𝑒
−𝜇𝜖 2 (𝑥+𝑥𝑇 )2 , 𝛾=1

Figure 8. Nonlinear evolution of the instantaneous total streamfunction field 𝜓𝑇 when the preexisting synoptic-scale eddies are added by the

optimal disturbance with the incremental increase of the size parameter 𝛾.

of the preexisting synoptic-scale eddies can indeed contribute to the complex dynamics of the blocking. As the size of the

disturbance increases, the complexity of the blocking can also increase.
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4.3 Less predictability on the medium-range

Similarly, it is also a valuable endeavor to conduct the numerical experiment to explore the potential impact of the optimal

disturbance of preexisting synoptic-scale eddies on forecast errors. Specifically, we investigate whether there are larger forecast435

errors at a later stage by taking a comparison of optimal disturbances between different time ranges, such as an early stage

from 0 to 10 days and a later stage from 5 to 15 days. The spatial pattern of the optimal disturbance at a later stage, compared

with an early stage, is shown in Figure 9a, where it is observed that the concentration distribution as a sharp peak slightly

offsets to the right and flattens. Additionally, the nonlinear growth and relative nonlinear growth of the error caused by the
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Figure 9. Spatial patterns and nonlinear growth of the error caused by the optimal disturbance at a later stage in comparison to the baseline

at the initial stage.

optimal disturbances are depicted in Figure 9b and Figure 9c, as described by eq. (19) and eq. (20), respectively. Compared440

with the growth patterns of the optimal disturbance of the initial blocking amplitude shown in Figure 5b and Figure 5c, it

appears that the error caused by the optimal disturbance of the preexisting synoptic-scale eddies grows more predominantly

during the decay period of the blocking. It is worth noting that when the time interval 𝑇 and the size parameter 𝛾 = 1 are fixed,

the optimal disturbance at a later stage leads to a larger error. This difference in error is further quantitatively highlighted by

the ratios between the later stage and the initial stage, 2.1256 for the nonlinear growth and 1.8706 for the relative nonlinear445

growth. Additionally, the experiment reveals that the nonlinear evolution of the error caused by the optimal disturbance of

the preexisting synoptic-scale eddies exhibits a sharp growth during the decay of the blocking. This finding about the optimal

disturbance of the synoptic-scale eddies aligns with that of the initial blocking amplitude shown in Section 3.3, which leads

to the less predictability of blockings on the medium-range, as mentioned in (Hamill and Kiladis, 2014; Ferranti et al., 2015;

Zhang et al., 2019). This also support the idea that the presence of the optimal disturbance at a later stage, as observed in the450

numerical experiment, can contribute to larger forecast errors in predicting blockings.

21

https://doi.org/10.5194/egusphere-2024-2747
Preprint. Discussion started: 18 September 2024
c© Author(s) 2024. CC BY 4.0 License.



5 The impact of the background westerly wind

In this section, we take several numerical experiments to explore how the background westerly wind affects the optimal

disturbances of both the initial blocking amplitude and the preexisting synoptic-scale eddies. Specifically, we investigate their

spatial patterns and nonlinear growth of the error caused by the optimal disturbances, which provide insights into the influence455

of the background westerly wind on these weather phenomena.

5.0.1 The optimal disturbance of the initial blocking amplitude

In our numerical experiment, we fix the size parameter of the optimal disturbance as 𝛾 = 1. Decreasing the westerly wind speed

𝑈 from 1.1 to 0.3 with a decrement of 0.2 allows us to explore how the variation of wind speed affects the optimal disturbance

of the initial blocking amplitude. The spatial patterns, as shown in Figure 10a, indicate that the solitary wave-like pattern460

becomes more concentrated, sharper, and gradually shifts to the right as the wind speed gradually dwindles. Additionally, the

growth patterns depicted in Figure 10b and Figure 10c reveal that the nonlinear growth and relative nonlinear growth become

gradually larger as the wind speed gradually dwindles. These observations suggest that the westerly wind speed 𝑈 plays a role
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Figure 10. Spatial patterns and nonlinear growth of the optimal disturbance of the initial blocking amplitude varies with the changes of the

background westerly winds.

shaping the spatial and growth patterns. Furthermore, we quantitatively show the nonlinear growth (17) and relative nonlinear

growth (18) at the prediction time 𝑇 = 10 in Table 5. Indeed, it verifies that the nonlinear growth and relative nonlinear growth465

become gradually larger as the wind speed gradually dwindles.

𝑈 = 0.3 𝑈 = 0.5 𝑈 = 0.7 𝑈 = 0.9 𝑈 = 1.1

∥𝑏 (10) ∥2

Δ𝑥
2.7481 2.2307 1.8935 1.6610 1.5036

∥𝑏 (10) ∥2

∥𝐵(10) ∥2 0.1142 0.0993 0.0902 0.0842 0.0802

Table 5. The growth patterns of the optimal disturbance of the initial blocking amplitude 𝐵0 = 0.4.
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The influence of the westerly wind on the nonlinear growth behavior, as depicted in Figure 10 and Table 5, aligns with the

𝑃𝑉𝑦 theory for the NMI model proposed in (Luo et al., 2019). The relationship between the potential vorticity and the westerly

wind, as described in (Pedlosky, 1987), can be expressed as 𝑃𝑉 = 𝑓0 + 𝛽𝑦 −𝑈𝑦 − 𝐹𝜓. When considering a uniform westerly

wind, the meridional gradient of potential vorticity has a linear relation with the westerly wind, given by 𝑃𝑉𝑦 = 𝛽+𝐹𝑈. Based470

on the forced NLS equation (9) and the conditions of coefficients (10), we can deduce that the coefficient of the dispersive term

is proportional to 𝑃𝑉𝑦 , i.e., 𝜆 ∝ 𝑃𝑉𝑦 = 𝛽 + 𝐹𝑈, and the coefficient of the nonlinear term is inversely proportional to 𝑃𝑉𝑦 , i.e.,

𝛿 ∝ 1/𝑃𝑉𝑦 = 1/(𝛽+𝐹𝑈). Therefore, when the westerly wind weakens, the meridional gradient of potential vorticity decreases,

resulting in the suppression of the dispersive effect and the intensification of the nonlinear effect. This results in an increase in

the nonlinear growth. Conversely, when the westerly wind strengthens, the meridional gradient of potential vorticity increases,475

resulting in the intensification of the dispersive effect and the suppression of the nonlinear effect, leading to a decrease in the

nonlinear growth. Furthermore, as the coefficient of the nonlinear term is inversely proportional to 𝑃𝑉𝑦 , when the westerly

wind speed gradually dwindles, the rate of increase in 𝑃𝑉𝑦 becomes fast, causing the nonlinear growth rate to become large.

5.0.2 The optimal disturbance of the preexisting synoptic-scale eddies

Similarly, for the numerical experiment related to the preexisting synoptic-scale eddies, the size parameter of the optimal480

disturbance is also set as 𝛾 = 1. Then, we explore how the variation of the wind speed affects the optimal disturbance of the

preexisting synoptic-scale eddies by decreasing the westerly wind speed 𝑈 from 1.1 to 0.3 with a decrement of 0.2. The

spatial patterns, as shown in Figure 11a, demonstrate how the spatial patterns change as the wind speed varies. It is intriguing
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Figure 11. Spatial patterns and nonlinear growth of the error caused by the optimal disturbance of the preexisting synoptic-scale eddies vary

with the changes of the background westerly winds.

to observe the different behaviors of the peak-like pattern based on wind speed variations. When the wind speed is smaller

than the standard speed 𝑈 = 0.7, the sharp peak-like pattern separates into two lower peaks on both sides. As the wind speed485

decreases further, the two peak-like pattern moves outside and becomes lower. On the other hand, when the wind speed is

larger than the standard speed 𝑈 = 0.7, the sharp peak-like pattern descends and shifts slightly to the right. As the wind speed

increases further, the sharp peak-like pattern continues to descend and shift slightly to the right. However, it is worth noting
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that the growth behaviors of the error caused by the optimal disturbance of the preexisting synoptic-scale eddies, regardless

of the nonlinear growth or the relative nonlinear growth, are rarely influenced by the variation of the wind speed, as shown490

in Figure 11b and Figure 11c.

6 Summary and Discussion

Taking the barotropic NMI model developed in (Luo, 2000, 2005; Luo et al., 2014, 2019) as a basis, we have specifically

focused on exploring optimal disturbances of blocking by utilizing the CNOP approach in this paper. In the NMI model,

the motion of blocking is governed by the forced NLS equation (9), which provides a framework for studying the optimal495

disturbances of the initial blocking amplitude and preexisting synoptic-scale eddies. Our analysis of the optimal disturbances

includes examining their spatial patterns, nonlinear growth patterns of the error caused by them, their influence on the motion

of the total blocking, and their time-delay effect. It is observed that the optimal disturbance of the initial blocking amplitude

has a well-behaved impact solely on the blocking amplitude without any other influence. Increasing the size of the optimal

disturbance indeed accelerates the nonlinear growth of the error. However, a striking phenomenon is observed in the optimal500

disturbance of the preexisting synoptic-scale eddies, which leads to a significant increase in error growth. As the size of

the disturbance increases, the phenomena related to blocking, eddy straining and wave breaking, become highly noticeable.

Specifically, this results in significant changes in both the position and period of the blocking, leading to chaotic behavior.

This finding manifests that the blocking is extremely sensitive to perturbations of the fast-moving short-lived (high-frequency)

synoptic-scale eddies in the blocking system, as mentioned in (Bengtsson, 1981; Tibaldi and Molteni, 1990; Burroughs, 1997).505

Furthermore, it highlights the role played by the fast-moving short-lived (high-frequency) synoptic-scale eddies in the blocking

system, as mentioned in (Berggren et al., 1949; Shutts, 1983; Hoskins et al., 1985; Luo et al., 2014, 2019). The perturbations

of these eddies may be a probable cause of weather extremes and can reduce predictability. Additionally, both the optimal

disturbances occurring at a later stage, particularly during the decay period of blocking, also contribute to accelerating the

nonlinear growth of the error. This has implications for the predictability of blockings on the medium-range, which aligns with510

the practical weather prediction, as mentioned in (Hamill and Kiladis, 2014; Ferranti et al., 2015; Zhang et al., 2019). Finally,

we have analyzed the influences of the westerly wind on the optimal disturbances. Regarding the initial blocking amplitude,

the nonlinear evolution behavior indicates that the influence of the westerly wind on the optimal disturbance aligns with the

𝑃𝑉𝑦 theory proposed in (Luo et al., 2019). However, when considering the preexisting synoptic-scale eddies, it is observed that

the westerly wind has no impact on them.515

In this paper, our main focus is on studying the optimal disturbances of the initial blocking amplitude and preexisting

synoptic-scale eddies, as well as the influence of the westerly wind. This study utilizes the 1-dimensional forced NLS equa-

tion that specifically considers the zonal direction. However, it is acknowledged that the meridional shear of the westerly

wind, represented as 𝑃𝑉𝑦 = 𝛽 + 𝐹𝑈 −𝑈𝑦𝑦 , also plays a significant role in the meridional gradient of potential vorticity. Previ-

ous studies, such as (Thorncroft et al., 1993), have observed that the meridional shear of the background westerly wind can520

break up synoptic-scale anticyclones or cyclones. The 𝑃𝑉𝑦 theory proposed in (Luo et al., 2019), it further suggests that it
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affects the dispersive and nonlinear effects. When there is positive shear 𝑈𝑦𝑦 > 0, the dispersive effect is suppressed and the

nonlinear effect is intensified. On the other hand, there is the negative shear 𝑈𝑦𝑦 < 0, the dispersive effect is intensified, and

the nonlinear effect is suppressed. Therefore, it would be valuable to conduct further research to explore the optimal distur-

bances in the 2-dimensional NMI model. Additionally, the 3-dimensional baroclinic NMI model, developed in (Luo and Zhang,525

2020a, b, 2021), considers the non-homogeneous vertical structure. Hence, it would indeed be intriguing to further explore how

the optimal disturbances change and their influence on the growth of errors by taking into account the effect of the horizontal

temperature gradients.

There are indeed other theories and models related to blocking, such as the local wave activity proposed in (Huang and

Nakamura, 2016), the traffic jam theory in (Nakamura and Huang, 2018), and the amplified Rossby wave theory in (Kornhuber530

et al., 2020). It would be intriguing to investigate how different types of perturbations in these models influence the growth of

errors. Exploring the impact of these perturbations can provide valuable insights into the behavior and dynamics of blocking

systems. Furthermore, Mu and Jiang (2008) started utilizing the CNOP approach in the T21L3 quasi-geostrophic model (Van-

nitsem and Nicolis, 1997) to investigate the initial perturbations that trigger blocking onset. It would be worth exploring the

influence of the perturbations by employing the CNOP approach in the real numerical weather prediction model, as suggested535

in (Zhang et al., 2019). Additionally, the planetary solitary waves are also large-scale important phenomena occurring in the

atmosphere and ocean with diameters from a hundred kilometers to scale larger than the earth, such as vortices embedded in a

shear zone, Rossby solitons, and equatorial Kelvin solitary waves among others (Rizzoli, 1982; Boyd, 2007). It would also be

valuable to investigate the influence of the perturbations on their motion by employing the CNOP approach.

In the conclusion of this paper, we briefly discuss the perturbations of blocking in response to climate change, which is540

currently a hot topic, as suggested in (Woollings et al., 2018; Kautz et al., 2022). It is worth noting that numerical climate

models have always faced challenges in accurately representing blocking events, since these models tend to underestimate

both the occurrence and persistence of blocking events, as suggested in (Tibaldi and Molteni, 1990; d’Andrea et al., 1998;

Davini and D’Andrea, 2016). It has also been observed that apparent improvements of blocking representation in a numerical

model can sometimes occur through compensation of errors, as mentioned in (Davini et al., 2017). Additionally, increasing545

the horizontal resolution of a numerical model can enhance the transient eddy forcing of blocks, as highlighted in (Matsueda,

2009; Schiemann et al., 2017). These findings align with our observations made in this paper that the perturbations of the

preexisting synoptic-scale eddies are prone to result in unstable and chaotic behavior in the evolution of blocking events. It is

also a valuable topic to discuss the climatological seasonal impact of blocking, as mentioned in (Newman and Sardeshmukh,

1998).550

Code availability. The codes that support the findings of this study are available from the corresponding author, Bin Shi, upon reasonable

request.
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Data availability. No data sets were used in this article.

Appendix A: Derivation of the NMI model

In this section, we complement the details of the NMI model’s derivation in Section 2.1.555

A1 The wave-superposition form of the preexisting synoptic-scale eddies streamfunction 𝝍′
1 and its phase velocities

Let us first put the asymptotic expansions of both the planetary-scale blocking anomaly and synoptic-scale eddies streamfunc-

tions, (6a) and (6b), into the characteristic equation of synoptic-scale eddies (3b). Taking the lowest approximation, we obtain

that 𝜓′
1 satisfies the 𝑂 (𝜖 3

2 )-order approximating equation of synoptic-scale eddies as(
𝜕

𝜕𝑡
+𝑈 𝜕

𝜕𝑥

) (
∇2𝜓′

1 − 𝐹𝜓′
1

)
+ 𝑃𝑉𝑦

𝜕𝜓′
1

𝜕𝑥
= 0. (A1)560

Then, according to the observation, we may assume that the synoptic-scale eddies streamfunction takes the following form as

𝜓′
1 (𝑥, 𝑡;𝑋1) =

2 𝑓0 (𝑋1)
𝜖

3
2

(
cos(𝑘1𝑥 −𝜔1𝑡) − cos(𝑘2𝑥 −𝜔2𝑡)

)
sin

(𝑚𝑦

2
− 𝜋

8

)
, (A2)

where 𝑓0 (𝑋1) = 𝑎0 exp
[
−𝜇(𝑋1 + 𝜖𝑥𝑇 )2] . Some simple substitution of variables tells us that the synoptic-scale streamfunction

𝜓′
1 takes the wave-superposition form of (7c). Taking the wave-superposition form (7c) into the 𝑂 (𝜖 3

2 )-order approximating

equation of synoptic-scale eddies (A1), the phase velocities in (8c) are derived.565

A2 The single-wave form of the blocking wavy anomaly stramfunction 𝝍1 and its phase velocity

Putting the asymptotic expansions of both the planetary-scale blocking anomaly and synoptic-scale eddies streamfunctions, (6a)

and (6b), into the characteristic equation of planetary-scale blocking anomaly (3a), we take the 𝑂 (𝜖)-order approximation and

obtain that 𝜓1 satisfies(
𝜕

𝜕𝑡
+𝑈 𝜕

𝜕𝑥

) (
∇2𝜓1 − 𝐹𝜓1

)
+ 𝑃𝑉𝑦

𝜕𝜓1
𝜕𝑥

= 0. (A3)570

The blocking wavy anomaly streamfunction 𝜓1 is assumed with the form (7a), where 𝐵 is the complex amplitude only de-

pendent on the slow-varying variables, 𝑋1, 𝑋2, . . . and 𝑇1,𝑇2, . . .. Taking the single-wave form of the blocking wavy anomaly

streamfunction (7a) into the 𝑂 (𝜖)-order approximating equation of the planetary-scale blocking anomaly streamfunction (3a),

we derive that the phase velocity satisfies (8a).

A3 The linear relationship of the complex blocking amplitude 𝑩 and the group velocity of the blocking wavy575

anomaly 𝝍1

Putting the asymptotic expansions of both the planetary-scale blocking anomaly and synoptic-scale eddies streamfunctions, (6a)

and (6b), into the characteristic equation of planetary-scale blocking anomaly (3a), we take the 𝑂 (𝜖2)-order approximation and
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obtain that 𝜓2 satisfies(
𝜕

𝜕𝑥
+𝑈 𝜕

𝜕𝑥

) (
∇2𝜓2 − 𝐹𝜓2

)
+ 𝑃𝑉𝑦

𝜕𝜓2
𝜕𝑥

580

=− 2
(
𝜕

𝜕𝑡
+𝑈 𝜕

𝜕𝑥

)
𝜕2𝜓1
𝜕𝑥𝜕𝑋1

−
(
𝜕

𝜕𝑇1
+𝑈 𝜕

𝜕𝑋1

) (
∇2𝜓1 − 𝐹𝜓1

)
− 𝑃𝑉𝑦

𝜕𝜓1
𝜕𝑋1

− 𝐽 (𝜓1,∇2𝜓1). (A4)

Let the associated zonal-mean anomaly 𝜓2 also satisfy the linear barotropic quasi-geostrophic equation. Then, we can obtain

2
(
𝜕

𝜕𝑡
+𝑈 𝜕

𝜕𝑥

)
𝜕2𝜓1
𝜕𝑥𝜕𝑋1

+
(
𝜕

𝜕𝑇1
+𝑈 𝜕

𝜕𝑋1

) (
∇2𝜓1 − 𝐹𝜓1

)
+ 𝑃𝑉𝑦

𝜕𝜓1
𝜕𝑋1

− 𝐽 (𝜓1,∇2𝜓1) = 0.

Putting the single-wave form of the blocking wavy anomaly streamfunction (7a) into it, we obtain the group velocity (8) and

the linear relationship as585

𝜕𝐵

𝜕𝑇1
+ 𝑐𝑔

𝜕𝐵

𝜕𝑋1
= 0. (A5)

A4 The static and sinusoidal form of the associated zonal-mean anomaly 𝝍2

Putting the asymptotic expansions of both the planetary-scale blocking anomaly and synoptic-scale eddies streamfunctions, (6a)

and (6b), into the characteristic equation of planetary-scale blocking anomaly (3a), we take the 𝑂 (𝜖3)-order approximation and

obtain that 𝜓3 satisfies590 (
𝜕

𝜕𝑡
+𝑈 𝜕

𝜕𝑥

) (
∇2𝜓3 − 𝐹𝜓3

)
+ 𝑃𝑉𝑦

𝜕𝜓3
𝜕𝑥

= −2
(
𝜕

𝜕𝑡
+𝑈 𝜕

𝜕𝑥

)
𝜕2𝜓2
𝜕𝑥𝜕𝑋1

−
(
𝜕

𝜕𝑇1
+𝑈 𝜕

𝜕𝑋1

) (
∇2𝜓2 − 𝐹𝜓2

)
− 𝑃𝑉𝑦

𝜕𝜓2
𝜕𝑋1

−2
(
𝜕

𝜕𝑡
+𝑈 𝜕

𝜕𝑥

)
𝜕2𝜓1
𝜕𝑥𝜕𝑋2︸                      ︷︷                      ︸

I1

−
(
𝜕

𝜕𝑇2
+𝑈 𝜕

𝜕𝑋2

) (
∇2𝜓1 − 𝐹𝜓1

)
︸                                  ︷︷                                  ︸

I2

−𝑃𝑉𝑦

𝜕𝜓1
𝜕𝑋2︸    ︷︷    ︸

I3

−2
(
𝜕

𝜕𝑇1
+𝑈 𝜕

𝜕𝑋1

)
𝜕2𝜓1
𝜕𝑥𝜕𝑋1︸                          ︷︷                          ︸

II1

−
(
𝜕

𝜕𝑡
+𝑈 𝜕

𝜕𝑥

)
𝜕2𝜓1

𝜕𝑋2
1︸                 ︷︷                 ︸

II2

−2𝐽
(
𝜓1,

𝜕2𝜓1
𝜕𝑥𝜕𝑋1

)
︸              ︷︷              ︸

III1

−
(
𝜕𝜓1
𝜕𝑋1

𝜕∇2𝜓1
𝜕𝑦

− 𝜕𝜓1
𝜕𝑦

𝜕∇2𝜓1
𝜕𝑋1

)
︸                                ︷︷                                ︸

III2

595

− 𝐽 (𝜓1,∇2𝜓2)︸         ︷︷         ︸
IV1

− 𝐽 (𝜓2,∇2𝜓1)︸         ︷︷         ︸
IV2

− 𝐽 (𝜓′
1,∇

2𝜓′
1)𝑃︸           ︷︷           ︸

V

(A6)

Let 𝜓3 also satisfy the linear barotropic quasi-geostrophic equation. With the single-wave form of the blocking wavy anomaly

streamfunction (7a), we know that ∇2𝜓1 is proportional to 𝜓1. Hence, taking the zonal average of (A6), we obtain that the
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associated zonal-mean anomaly streamfunction 𝜓2 satisfies600 (
𝜕

𝜕𝑇1
+𝑈 𝜕

𝜕𝑋1

) (
𝜕2𝜓2

𝜕𝑦2 − 𝐹𝜓2

)
+ 𝑃𝑉𝑦

𝜕𝜓2
𝜕𝑋1

=
4𝑚𝑘2

𝜖2𝐿𝑦

𝜕 |𝐵|2
𝜕𝑋1

cos(2𝑚𝑦) (A7)

Obviously, the assumption of the associated zonal-mean anomaly with the form 𝜓2 = −𝜖−2𝑔 |𝐵 |2 cos(2𝑚𝑦) is reasonable, since

𝜕𝜓2
𝜕𝑦

����
𝑦=0

=
𝜕𝜓2
𝜕𝑦

����
𝑦=𝐿𝑦

= 0

satisfy the boundary condition, thus we obtain that the associated zonal-mean anomaly 𝜓1 satisfies (7b). With the equality of

zonal average (A7), the coefficient is obtained as605

𝑔 =
4𝑚𝑘2 (𝑚2 + 𝑘2 + 𝐹)2

𝑃𝑉𝑦𝐿𝑦

[
(4𝑚2 + 𝐹) (𝑚2 + 𝐹 − 𝑘2) − (𝑚2 + 𝑘2 + 𝐹)2

] .
A5 Nonlinear time-evolution behavior of the complex amplitude 𝑩

Since the nondimensional blocking wavy anomaly streamfunction, 𝜓1, is composed of the superposition of the single wave

component, such as 1
𝜖

√︃
2
𝐿𝑦

sin
(
𝑚𝑦 − 𝜋

4
)
𝐵𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) , and its conjugate 1

𝜖

√︃
2
𝐿𝑦

sin
(
𝑚𝑦 − 𝜋

4
)
𝐵𝑒−𝑖 (𝑘𝑥−𝜔𝑡 ) , we only focus on the

part 1
𝜖

√︃
2
𝐿𝑦

sin
(
𝑚𝑦 − 𝜋

4
)
𝐵𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) in our analysis for convenience. Then, we show the right-hand side of (A6) by five parts610

as

– Part-I: Putting 𝜓1 =
1
𝜖

√︃
2
𝐿𝑦

sin
(
𝑚𝑦 − 𝜋

4
)
𝐵𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) into Part-I, we obtain that

I1 + I2 + I3 =2
(
𝜕

𝜕𝑡
+𝑈 𝜕

𝜕𝑥

)
𝜕2𝜓1
𝜕𝑥𝜕𝑋2

+
(
𝜕

𝜕𝑇2
+𝑈 𝜕

𝜕𝑋2

) (
∇2𝜓1 − 𝐹𝜓1

)
+ 𝑃𝑉𝑦

𝜕𝜓1
𝜕𝑋2

=− 1
𝜖

√︄
2
𝐿𝑦

(
𝑚2 + 𝑘2 + 𝐹

) (
𝜕𝐵

𝜕𝑇2
+ 𝑐𝑔

𝜕𝐵

𝜕𝑋2

)
sin

(
𝑚𝑦 − 𝜋

4

)
𝐵𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) .

– Part-II: With the phase velocity (8a) and the linear relationship (A5), we take 𝜓1 =
1
𝜖

√︃
2
𝐿𝑦

sin
(
𝑚𝑦 − 𝜋

4
)
𝐵𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) into615

Part-II as

II1 + II2 = 2
(
𝜕

𝜕𝑇1
+𝑈 𝜕

𝜕𝑋1

)
𝜕2𝜓1
𝜕𝑥𝜕𝑋1

+
(
𝜕

𝜕𝑡
+𝑈 𝜕

𝜕𝑥

)
𝜕2𝜓1

𝜕𝑋2
1

=
𝑖

𝜖

[
−𝜔 + 𝑘𝑈 +

2𝑘𝑃𝑉𝑦 (𝑚2 − 𝑘2 + 𝐹)
(𝑚2 + 𝑘2 + 𝐹)2

]
𝜕2𝜓1

𝜕𝑋2
1

=
𝑖

𝜖

√︄
2
𝐿𝑦

𝑘𝑃𝑉𝑦

[
3(𝑚2 + 𝐹) − 𝑘2]

(𝑚2 + 𝑘2 + 𝐹)2
𝜕2𝐵

𝜕𝑋2
1

sin
(
𝑚𝑦 − 𝜋

4

)
𝐵𝑒𝑖 (𝑘𝑥−𝜔𝑡 )

– Part-III: With the property that ∇2𝜓1 is proportional to 𝜓1, we known III2 = 0. With the property of Jacobians, we620

obtain III1 is proportional to cos(2𝑚𝑦), thus

III1 + III2 ∝ cos(2𝑚𝑦).
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– Part-IV: Putting 𝜓1 =
1
𝜖

√︃
2
𝐿𝑦

sin
(
𝑚𝑦 − 𝜋

4
)
𝐵𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) and 𝜓2 = −𝜖−2𝑔 |𝐵 |2 cos(2𝑚𝑦) into Part-IV, we obtain that

IV1 + IV2 = 𝐽 (𝜓1,∇2𝜓2) + 𝐽 (𝜓2,∇2𝜓1)

= − 2𝑖
𝜖3

√︂
𝐿𝑦

2
𝑔𝑘𝑚(3𝑚2 − 𝑘2) |𝐵 |2𝐵 sin

(
𝑚𝑦 − 𝜋

4

)
sin(2𝑚𝑦)𝑒𝑖 (𝑘𝑥−𝜔𝑡 )625

– Part-V: Here, we only consider the coefficient of the wave with wavenumber 𝑘2 − 𝑘1. Hence, we take the superposition

form of 𝜓′
1 (A2) into Part-V and obtain that

1
2𝐿𝑥

𝐿𝑥∫
−𝐿𝑥

V𝑒−𝑖 (𝑘2−𝑘1 )𝑥𝑑𝑥 =
𝑖 𝑓0 (𝑋1)

𝜖3

𝑚(𝑘1 + 𝑘2) (𝑘2
1 − 𝑘2

2)
4

·
𝐿𝑦

2
𝑒−𝑖 (𝜔2−𝜔1 )𝑡

Taking some basic calculations, we obtain the following two equalities as

𝐿𝑦∫
0

sin2
(
𝑚𝑦 − 𝜋

4

)
𝑑𝑦 =

𝐿𝑦

2
, and

𝐿𝑦∫
0

sin2
(
𝑚𝑦 − 𝜋

4

)
sin(2𝑚𝑦)𝑑𝑦 = −

𝐿𝑦

4
.630

Filtering out the wave with the zonal wavenumber 𝑘 = 2𝑘0 and the meridional wavenumber 𝑚 of the right-hand side of the

𝑂 (𝜖3)-order expansion (A6), we obtain the forced NLS equation of the complex blocking amplitude 𝐵 with the periodic

boundary condition (9).

Appendix B: The wave-superposition form of the deformed synoptic-scale eddies streamfunction 𝝍′
2

In the supplemental material, we complement the detailed derivation of the wave-superpostion form of the deformed synoptic-635

scale eddies streamfunction 𝜓′
2 for the reference, which has been derived in (Luo, 2000, 2005; Luo et al., 2014, 2019). Putting

the asymptotic expansions of both the planetary-scale and synoptic-scale streamfunctions, (2.6a) and (2.6b), into the char-

acteristic equation of synoptic-scale eddies (2.3b), we obtain that 𝜓′
2 satisfies the 𝑂 (𝜖 5

2 )-order approximating equation of

synoptic-scale eddies as(
𝜕

𝜕𝑥
+𝑈 𝜕

𝜕𝑥

) (
∇2𝜓′

2 − 𝐹𝜓′
2

)
+ 𝑃𝑉𝑦

𝜕𝜓′
2

𝜕𝑥
640

= −2
(
𝜕

𝜕𝑡
+𝑈 𝜕

𝜕𝑥

)
𝜕2𝜓′

1
𝜕𝑥𝜕𝑋1

−𝑈
𝜕

𝜕𝑋1

(
∇2𝜓′

1 − 𝐹𝜓′
1

)
− 𝑃𝑉𝑦

𝜕𝜓′
1

𝜕𝑋1
+∇2𝜓★

𝑆

−𝐽 (𝜓1,∇2𝜓′
1) − 𝐽 (𝜓′

1,∇
2𝜓1). (B1)

It is stated in (Luo, 2005) that the deformed synoptic-scale eddies streamfunction 𝜓′
2 is induced by the feedback of the blocking

development and a modification to the preexisting synoptic-scale eddies, thus

−2
(
𝜕

𝜕𝑡
+𝑈 𝜕

𝜕𝑥

)
𝜕2𝜓′

1
𝜕𝑥𝜕𝑋1

−𝑈
𝜕

𝜕𝑋1

(
∇2𝜓′

1 − 𝐹𝜓′
1

)
− 𝑃𝑉𝑦

𝜕𝜓′
1

𝜕𝑋1
+∇2𝜓★

𝑆 = 0.645
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Hence, the 𝑂 (𝜖 5
2 )-order approximating equation (B1) is simplified as(

𝜕

𝜕𝑥
+𝑈 𝜕

𝜕𝑥

) (
∇2𝜓′

2 − 𝐹𝜓′
2

)
+ 𝑃𝑉𝑦

𝜕𝜓′
2

𝜕𝑥
= −𝐽 (𝜓1,∇2𝜓′

1) − 𝐽 (𝜓′
1,∇

2𝜓1). (B2)

Since the preexisting synoptic-scale eddies 𝜓′
1 is the superposition of two singe waves, then we represent it as 𝜓′

1 = 𝜓′
1,𝑘1

+𝜓′
1,𝑘2

,

where the two single waves are respectively

𝜓′
1,𝑘1

=
𝑓 (𝑋1)
𝜖

3
2

𝑒𝑖 (𝑘1𝑥−𝜔1𝑡 ) sin
(𝑚𝑦

2
− 𝜋

8

)
+ 𝑐𝑐. and 𝜓′

2,𝑘1
=

2 𝑓 (𝑋1)
𝜖

3
2

𝑒𝑖 (𝑘2𝑥−𝜔2𝑡 ) sin
(𝑚𝑦

2
− 𝜋

8

)
+ 𝑐𝑐.650

Then, with the linearity of Jacobians, we separate the right-hand side of (B1) into two parts as

𝐽 (𝜓1,∇2𝜓′
1) + 𝐽 (𝜓′

1,∇
2𝜓1) = 𝐽 (𝜓1,∇2𝜓′

1,𝑘1
) + 𝐽 (𝜓′

1,𝑘1
,∇2𝜓1)︸                                   ︷︷                                   ︸

I

+ 𝐽 (𝜓1,∇2𝜓′
1,𝑘2

) + 𝐽 (𝜓′
1,𝑘2

,∇2𝜓1)︸                                   ︷︷                                   ︸
II

.

– For the Part-I, with the property that the Laplacian of the streamfuncion is proportional to the streamfunction itself, we

can obtain

I = 𝐽 (𝜓1,∇2𝜓′
1,𝑘1

) + 𝐽 (𝜓′
1,𝑘1

,∇2𝜓1)655

= −
(
𝑘2

1 +
𝑚2

4

)
𝐽 (𝜓1,𝜓

′
1,𝑘1

) −
(
𝑘2 +𝑚2

)
𝐽 (𝜓′

1,𝑘1
,𝜓1)

= −
(
𝑘2

1 − 𝑘2 − 3𝑚2

4

)
𝑓 (𝑋1)
𝜖

5
2

√︄
2
𝐿𝑦


𝐽

(
𝐵𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) sin

(
𝑚𝑦 − 𝜋

4

)
, 𝑒𝑖 (𝑘1𝑥−𝜔1𝑡 ) sin

(𝑚𝑦

2
− 𝜋

8

))
︸                                                                    ︷︷                                                                    ︸

I1

+ 𝐽

(
𝐵𝑒−𝑖 (𝑘𝑥−𝜔𝑡 ) sin

(
𝑚𝑦 − 𝜋

4

)
, 𝑒𝑖 (𝑘1𝑥−𝜔1𝑡 ) sin

(𝑚𝑦

2
− 𝜋

8

))
︸                                                                      ︷︷                                                                      ︸

I2

+𝑐𝑐.


,

where I1 and I2 are calculated respectively as

I1 =𝐽
(
𝐵𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) sin

(
𝑚𝑦 − 𝜋

4

)
, 𝑒𝑖 (𝑘1𝑥−𝜔1𝑡 ) sin

(𝑚𝑦

2
− 𝜋

8

))
660

=𝑖𝑚𝐵𝑒𝑖 [ (𝑘1+𝑘 )𝑥−(𝜔1+𝜔)𝑡 ]
[(

𝑘

2
− 𝑘1

)
sin

(
3𝑚𝑦

2
− 3𝜋

8

)
+

(
𝑘

2
+ 𝑘1

)
sin

(𝑚𝑦

2
− 𝜋

4

)]
and

I2 =𝐽
(
𝐵𝑒−𝑖 (𝑘𝑥−𝜔𝑡 ) sin

(
𝑚𝑦 − 𝜋

4

)
, 𝑒𝑖 (𝑘1𝑥−𝜔1𝑡 ) sin

(𝑚𝑦

2
− 𝜋

8

))
=− 𝑖𝑚𝐵𝑒𝑖 [ (𝑘1−𝑘 )𝑥−(𝜔1−𝜔)𝑡 ]

[(
𝑘

2
+ 𝑘1

)
sin

(
3𝑚𝑦

2
− 3𝜋

8

)
−

(
𝑘

2
− 𝑘1

)
sin

(𝑚𝑦

2
− 𝜋

4

)]
.

30

https://doi.org/10.5194/egusphere-2024-2747
Preprint. Discussion started: 18 September 2024
c© Author(s) 2024. CC BY 4.0 License.



– For the Part-II, with the property that the Laplacian of the streamfuncion is proportional to the streamfunction itself, we665

can obtain

II = 𝐽 (𝜓1,∇2𝜓′
1,𝑘2

) + 𝐽 (𝜓′
1,𝑘2

,∇2𝜓1)

= −
(
𝑘2

2 +
𝑚2

4

)
𝐽 (𝜓1,𝜓

′
1,𝑘2

) −
(
𝑘2 +𝑚2

)
𝐽 (𝜓′

1,𝑘2
,𝜓1)

= −
(
𝑘2

2 − 𝑘2 − 3𝑚2

4

)
𝑓 (𝑋1)
𝜖

5
2

√︄
2
𝐿𝑦


𝐽

(
𝐵𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) sin

(
𝑚𝑦 − 𝜋

4

)
, 𝑒𝑖 (𝑘2𝑥−𝜔2𝑡 ) sin

(𝑚𝑦

2
− 𝜋

8

))
︸                                                                    ︷︷                                                                    ︸

II1

+ 𝐽

(
𝐵𝑒−𝑖 (𝑘𝑥−𝜔𝑡 ) sin

(
𝑚𝑦 − 𝜋

4

)
, 𝑒𝑖 (𝑘2𝑥−𝜔2𝑡 ) sin

(𝑚𝑦

2
− 𝜋

8

))
︸                                                                      ︷︷                                                                      ︸

II2

+𝑐𝑐.


,670

where I1 and I2 are calculated respectively as

II1 =𝐽
(
𝐵𝑒𝑖 (𝑘𝑥−𝜔𝑡 ) sin

(
𝑚𝑦 − 𝜋

4

)
, 𝑒𝑖 (𝑘2𝑥−𝜔2𝑡 ) sin

(𝑚𝑦

2
− 𝜋

8

))
=𝑖𝑚𝐵𝑒𝑖 [ (𝑘2+𝑘 )𝑥−(𝜔2+𝜔)𝑡 ]

[(
𝑘

2
− 𝑘2

)
sin

(
3𝑚𝑦

2
− 3𝜋

8

)
+

(
𝑘

2
+ 𝑘2

)
sin

(𝑚𝑦

2
− 𝜋

4

)]
and

II2 =𝐽
(
𝐵𝑒−𝑖 (𝑘𝑥−𝜔𝑡 ) sin

(
𝑚𝑦 − 𝜋

4

)
, 𝑒𝑖 (𝑘2𝑥−𝜔2𝑡 ) sin

(𝑚𝑦

2
− 𝜋

8

))
675

=− 𝑖𝑚𝐵𝑒𝑖 [ (𝑘2−𝑘 )𝑥−(𝜔2−𝜔)𝑡 ]
[(

𝑘

2
+ 𝑘2

)
sin

(
3𝑚𝑦

2
− 3𝜋

8

)
−

(
𝑘

2
− 𝑘2

)
sin

(𝑚𝑦

2
− 𝜋

4

)]
.

Hence, we know that the deformed synoptic-scale eddies streamfunction 𝜓′
2 is the superposition of four kinds of waves,

𝐵𝑒𝑖[ (𝑘 𝑗+𝑘 )𝑥−(𝜔 𝑗+𝜔)𝑡]
[(

𝑘

2
− 𝑘 𝑗

)
sin

(
3𝑚𝑦

2
− 3𝜋

8

)
+

(
𝑘

2
+ 𝑘 𝑗

)
sin

(𝑚𝑦

2
− 𝜋

4

)]
and

𝐵𝑒𝑖[ (𝑘 𝑗−𝑘 )𝑥−(𝜔 𝑗−𝜔)𝑡]
[(

𝑘

2
+ 𝑘 𝑗

)
sin

(
3𝑚𝑦

2
− 3𝜋

8

)
−

(
𝑘

2
− 𝑘 𝑗

)
sin

(𝑚𝑦

2
− 𝜋

4

)]
,680

where 𝑘 = 1,2. Taking the wave-superposition form of the deformed synoptic-scale eddies streamfunction 𝜓′
2 into (B1), we can

obtain

𝜓′
2 =−

2∑︁
𝑗=1

𝑄 𝑗𝐵exp
{
𝑖
[
(𝑘 𝑗 + 𝑘)𝑥 − (𝜔 𝑗 +𝜔)𝑡

]} [
𝑝 𝑗 sin

(
3𝑚𝑦

2
− 3𝜋

8

)
+ 𝑟 𝑗 sin

(𝑚𝑦

2
− 𝜋

8

)]
+

2∑︁
𝑗=1

𝑄 𝑗𝐵exp
{
𝑖
[
(𝑘 𝑗 − 𝑘)𝑥 − (𝜔 𝑗 −𝜔)𝑡

]} [
𝑠 𝑗 sin

(
3𝑚𝑦

2
− 3𝜋

8

)
+ ℎ 𝑗 sin

(𝑚𝑦

2
− 𝜋

8

)]
(B3)
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where the parameters are set for 𝑗 = 1,2 as685

𝑄 𝑗 = −𝑚

4

√︄
2
𝐿𝑦

𝑓0 (𝑥)
(
𝑘2
𝑗 − 𝑘2 − 3𝑚2

4

)
and

𝑝 𝑗 =
𝑘 − 2𝑘 𝑗

𝑃𝑉𝑦

{
𝑘 𝑗 + 𝑘 −

(
𝑘 𝑗

𝑘2
𝑗
+𝑚2

4 +𝐹
+ 𝑘

𝑘2+𝑚2+𝐹

) [
(𝑘 𝑗 + 𝑘)2 + 9𝑚2

4 + 𝐹

]} ,
𝑟 𝑗 =

𝑘 + 2𝑘 𝑗

𝑃𝑉𝑦

{
𝑘 𝑗 + 𝑘 −

(
𝑘 𝑗

𝑘2
𝑗
+𝑚2

4 +𝐹
+ 𝑘

𝑘2+𝑚2+𝐹

) [
(𝑘 𝑗 + 𝑘)2 + 𝑚2

4 + 𝐹

]} ,
𝑠 𝑗 =

𝑘 + 2𝑘 𝑗

𝑃𝑉𝑦

{
𝑘 𝑗 − 𝑘 −

(
𝑘 𝑗

𝑘2
𝑗
+𝑚2

4 +𝐹
− 𝑘

𝑘2+𝑚2+𝐹

) [
(𝑘 𝑗 − 𝑘)2 + 9𝑚2

4 + 𝐹

]} ,690

ℎ 𝑗 =
𝑘 − 2𝑘 𝑗

𝑃𝑉𝑦

{
𝑘 𝑗 − 𝑘 −

(
𝑘 𝑗

𝑘2
𝑗
+𝑚2

4 +𝐹
− 𝑘

𝑘2+𝑚2+𝐹

) [
(𝑘 𝑗 − 𝑘)2 + 𝑚2

4 + 𝐹

]} .

Author contributions. Bin Shi constructed the basic idea of this paper, derived all formulas, and wrote the paper. Wenqi Zhang and Bin Shi

coded the CNOP method in the NMI model and performed the experiments. All authors have read and approved the final manuscript.

Competing interests. The contact author has declared that none of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and institutional695

affiliations.

Acknowledgements. This work was supported by Grant No.12241105 of NSFC and Grant No.YSBR-034 of CAS.

32

https://doi.org/10.5194/egusphere-2024-2747
Preprint. Discussion started: 18 September 2024
c© Author(s) 2024. CC BY 4.0 License.



References

Bengtsson, L.: Numerical prediction of atmospheric blocking—A case study, Tellus, 33, 19–42, 1981.

Berggren, R., Bolin, B., and Rossby, C.-G.: An aerological study of zonal motion, its perturbations and break-down, Tellus, 1, 14–37, 1949.700

Birgin, E. G., Martínez, J. M., and Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets, SIAM Journal on Opti-

mization, 10, 1196–1211, 2000.

Boyd, J.: Planetary solitary waves, Solitary Waves in Fluids, 47, 125, 2007.

Breeden, M. L., Hoover, B. T., Newman, M., and Vimont, D. J.: Optimal North Pacific blocking precursors and their deterministic subseasonal

evolution during boreal winter, Monthly Weather Review, 148, 739–761, 2020.705

Burroughs, W. J.: Does the Weather Really Matter?: The Social Implications of Climate Change, Cambridge University Press,

https://doi.org/10.1017/CBO9780511586484, 1997.

Charney, J. G. and DeVore, J. G.: Multiple flow equilibria in the atmosphere and blocking, Journal of Atmospheric Sciences, 36, 1205–1216,

1979.

Colucci, S. J., Loesch, A. Z., and Bosart, L. F.: Spectral evolution of a blocking episode and comparison with wave interaction theory, Journal710

of Atmospheric Sciences, 38, 2092–2111, 1981.

Davini, P. and D’Andrea, F.: Northern Hemisphere atmospheric blocking representation in global climate models: twenty years of improve-

ments?, Journal of Climate, 29, 8823–8840, 2016.

Davini, P., Corti, S., D’Andrea, F., Rivière, G., and von Hardenberg, J.: Improved winter European atmospheric blocking frequencies in

high-resolution global climate simulations, Journal of Advances in Modeling Earth Systems, 9, 2615–2634, 2017.715

Davolio, S., Stocchi, P., Benetazzo, A., Bohm, E., Riminucci, F., Ravaioli, M., Li, X.-M., and Carniel, S.: Exceptional Bora outbreak in winter

2012: Validation and analysis of high-resolution atmospheric model simulations in the northern Adriatic area, Dynamics of Atmospheres

and Oceans, 71, 1–20, 2015.

Diao, Y., Li, J., and Luo, D.: A new blocking index and its application: Blocking action in the Northern Hemisphere, Journal of Climate, 19,

4819–4839, 2006.720

Dole, R. M. and Gordon, N. D.: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distri-

bution and regional persistence characteristics, Monthly Weather Review, 111, 1567–1586, 1983.

Duan, W. and Hu, J.: The initial errors that induce a significant “spring predictability barrier” for El Niño events and their implications for

target observation: Results from an earth system model, Climate Dynamics, 46, 3599–3615, 2016.

Duan, W., Liu, X., Zhu, K., and Mu, M.: Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events,725

Journal of Geophysical Research: Oceans, 114, 2009.

d’Andrea, F., Tibaldi, S., Blackburn, M., Boer, G., Déqué, M., Dix, M., Dugas, B., Ferranti, L., Iwasaki, T., Kitoh, A., et al.: Northern

Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988, Climate Dynamics,

14, 385–407, 1998.

Farrell, B. F. and Ioannou, P. J.: Generalized stability theory. Part II: Nonautonomous operators, Journal of Atmospheric Sciences, 53,730

2041–2053, 1996.

Ferranti, L., Corti, S., and Janousek, M.: Flow-dependent verification of the ECMWF ensemble over the Euro-Atlantic sector, Quarterly

Journal of the Royal Meteorological Society, 141, 916–924, 2015.

33

https://doi.org/10.5194/egusphere-2024-2747
Preprint. Discussion started: 18 September 2024
c© Author(s) 2024. CC BY 4.0 License.



Haines, K. and Marshall, J.: Eddy-forced coherent structures as a prototype of atmospheric blocking, Quarterly Journal of the Royal Meteo-

rological Society, 113, 681–704, 1987.735

Häkkinen, S., Hall, D. K., Shuman, C. A., Worthen, D. L., and DiGirolamo, N. E.: Greenland ice sheet melt from MODIS and associated

atmospheric variability, Geophysical Research Letters, 41, 1600–1607, 2014.

Hamill, T. M. and Kiladis, G. N.: Skill of the MJO and Northern Hemisphere blocking in GEFS medium-range reforecasts, Monthly Weather

Review, 142, 868–885, 2014.

Higgins, R. W. and Schubert, S. D.: Simulated life cycles of persistent anticyclonic anomalies over the North Pacific: Role of synoptic-scale740

eddies, Journal of Atmospheric Sciences, 51, 3238–3260, 1994.

Holopainen, E. and Fortelius, C.: High-frequency transient eddies and blocking, Journal of Atmospheric Sciences, 44, 1632–1645, 1987.

Hoskins, B. J., McIntyre, M. E., and Robertson, A. W.: On the use and significance of isentropic potential vorticity maps, Quarterly Journal

of the Royal Meteorological Society, 111, 877–946, 1985.

Huang, C. S. and Nakamura, N.: Local finite-amplitude wave activity as a diagnostic of anomalous weather events, Journal of the Atmospheric745

Sciences, 73, 211–229, 2016.

Illari, L. and Marshall, J. C.: On the interpretation of eddy fluxes during a blocking episode, Journal of Atmospheric Sciences, 40, 2232–2242,

1983.

Ji, L. and Tibaldi, S.: Numerical simulations of a case of blocking: The effects of orography and land–sea contrast, Monthly Weather Review,

111, 2068–2086, 1983.750

Kautz, L.-A., Martius, O., Pfahl, S., Pinto, J. G., Ramos, A. M., Sousa, P. M., and Woollings, T.: Atmospheric blocking and weather extremes

over the Euro-Atlantic sector–a review, Weather and climate dynamics, 3, 305–336, 2022.

Kerswell, R. R.: Nonlinear nonmodal stability theory, Annual Review of Fluid Mechanics, 50, 319–345, 2018.

Kornhuber, K., Coumou, D., Vogel, E., Lesk, C., Donges, J. F., Lehmann, J., and Horton, R. M.: Amplified Rossby waves enhance risk of

concurrent heatwaves in major breadbasket regions, Nature Climate Change, 10, 48–53, 2020.755

Lenggenhager, S., Croci-Maspoli, M., Brönnimann, S., and Martius, O.: On the dynamical coupling between atmospheric blocks and heavy

precipitation events: A discussion of the southern Alpine flood in October 2000, Quarterly Journal of the Royal Meteorological Society,

145, 530–545, 2019.

Liu, Q.: On the definition and persistence of blocking, Tellus A, 46, 286–298, 1994.

Lucarini, V. and Gritsun, A.: A new mathematical framework for atmospheric blocking events, Climate Dynamics, 54, 575–598, 2020.760

Luo, D.: Planetary-scale baroclinic envelope Rossby solitons in a two-layer model and their interaction with synoptic-scale eddies, Dynamics

of atmospheres and oceans, 32, 27–74, 2000.

Luo, D.: A barotropic envelope Rossby soliton model for block-eddy interaction. Part I: Effect of topography, Journal of the Atmospheric

Sciences, 62, 5–21, 2005.

Luo, D. and Zhang, W.: A nonlinear multiscale theory of atmospheric blocking: Dynamical and thermodynamic effects of meridional poten-765

tial vorticity gradient, Journal of the Atmospheric Sciences, 77, 2471–2500, 2020a.

Luo, D. and Zhang, W.: A nonlinear multiscale theory of atmospheric blocking: eastward and upward propagation and energy dispersion of

tropospheric blocking wave packets, Journal of the Atmospheric Sciences, 77, 4025–4049, 2020b.

Luo, D. and Zhang, W.: A nonlinear multiscale theory of atmospheric blocking: Structure and evolution of blocking linked to meridional and

vertical structures of storm tracks, Journal of the Atmospheric Sciences, 78, 3153–3180, 2021.770

34

https://doi.org/10.5194/egusphere-2024-2747
Preprint. Discussion started: 18 September 2024
c© Author(s) 2024. CC BY 4.0 License.



Luo, D., Lupo, A. R., and Wan, H.: Dynamics of eddy-driven low-frequency dipole modes. Part I: A simple model of North Atlantic

Oscillations, Journal of the Atmospheric Sciences, 64, 3–28, 2007.

Luo, D., Cha, J., Zhong, L., and Dai, A.: A nonlinear multiscale interaction model for atmospheric blocking: The eddy-blocking matching

mechanism, Quarterly Journal of the Royal Meteorological Society, 140, 1785–1808, 2014.

Luo, D., Zhang, W., Zhong, L., and Dai, A.: A nonlinear theory of atmospheric blocking: A potential vorticity gradient view, Journal of the775

Atmospheric Sciences, 76, 2399–2427, 2019.

Mak, M. and Cai, M.: Local barotropic instability, Journal of the atmospheric sciences, 46, 3289–3311, 1989.

Masato, G., Hoskins, B. J., and Woollings, T.: Wave-breaking characteristics of Northern Hemisphere winter blocking: A two-dimensional

approach, Journal of climate, 26, 4535–4549, 2013.

Matsueda, M.: Blocking predictability in operational medium-range ensemble forecasts, Sola, 5, 113–116, 2009.780

McWilliams, J. C.: An application of equivalent modons to atmospheric blocking, Dynamics of Atmospheres and Oceans, 5, 43–66, 1980.

Mu, M. and Jiang, Z.: A method to find perturbations that trigger blocking onset: Conditional nonlinear optimal perturbations, Journal of the

atmospheric sciences, 65, 3935–3946, 2008.

Mu, M., Duan, W. S., and Wang, B.: Conditional nonlinear optimal perturbation and its applications, Nonlinear Processes in Geophysics, 10,

493–501, 2003.785

Mu, M., Zhou, F., and Wang, H.: A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction:

Conditional nonlinear optimal perturbation, Monthly Weather Review, 137, 1623–1639, 2009.

Mullen, S. L.: Transient eddy forcing of blocking flows, Journal of Atmospheric Sciences, 44, 3–22, 1987.

Muslu, G. M. and Erbay, H.: Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation, Mathematics and

Computers in Simulation, 67, 581–595, 2005.790

Nakamura, H. and Wallace, J. M.: Synoptic behavior of baroclinic eddies during the blocking onset, Monthly weather review, 121, 1892–

1903, 1993.

Nakamura, N. and Huang, C. S.: Atmospheric blocking as a traffic jam in the jet stream, Science, 361, 42–47, 2018.

Navrose, Johnson, H. G., Brion, V., Jacquin, L., and Robinet, J.-C.: Optimal perturbation for two-dimensional vortex systems: route to

non-axisymmetric state, Journal of Fluid Mechanics, 855, 922–952, 2018.795

Nayfeh, A. H.: Perturbation methods, John Wiley & Sons, 2008.

Newman, M. and Sardeshmukh, P. D.: The impact of the annual cycle on the North Pacific/North American response to remote low-frequency

forcing, Journal of the Atmospheric Sciences, 55, 1336–1353, 1998.

Pedlosky, J.: Geophysical fluid dynamics, vol. 710, Springer, 1987.

Pelly, J. L. and Hoskins, B. J.: A new perspective on blocking, Journal of the atmospheric sciences, 60, 743–755, 2003.800

Pierrehumbert, R. T.: Local and global baroclinic instability of zonally varying flow, Journal of Atmospheric Sciences, 41, 2141–2162, 1984.

Pierrehumbert, R. T. and Malguzzi, P.: Forced coherent structures and local multiple equilibria in a barotropic atmosphere, Journal of the

atmospheric sciences, 41, 246–257, 1984.

Pierrehumbert, R. T. and Swanson, K. L.: Baroclinic instability, Annual review of fluid mechanics, 27, 419–467, 1995.

Pringle, C. C. T. and Kerswell, R. R.: Using nonlinear transient growth to construct the minimal seed for shear flow turbulence, Physical805

review letters, 105, 154 502, 2010.

Qin, X. and Mu, M.: Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts, Quarterly Journal of the

Royal Meteorological Society, 138, 185–197, 2012.

35

https://doi.org/10.5194/egusphere-2024-2747
Preprint. Discussion started: 18 September 2024
c© Author(s) 2024. CC BY 4.0 License.



Rex, D. F.: Blocking action in the middle troposphere and its effect upon regional climate, Tellus, 2, 275–301, 1950.

Rizzoli, P. M.: Planetary solitary waves in geophysical flows, in: Advances in Geophysics, vol. 24, pp. 147–224, Elsevier, 1982.810

Schiemann, R., Demory, M.-E., Shaffrey, L. C., Strachan, J., Vidale, P. L., Mizielinski, M. S., Roberts, M. J., Matsueda, M., Wehner, M. F.,

and Jung, T.: The resolution sensitivity of Northern Hemisphere blocking in four 25-km atmospheric global circulation models, Journal

of Climate, 30, 337–358, 2017.

Shi, B. and Ma, J.: The Sampling Method for Optimal Precursors of ENSO Events, arXiv preprint arXiv:2308.13830, 2023.

Shi, B. and Sun, G.: An adjoint-free algorithm for conditional nonlinear optimal perturbations (CNOPs) via sampling, Nonlinear Processes815

in Geophysics, 30, 263–276, 2023.

Shutts, G.: The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of ‘blocking’flow fields, Quarterly Journal of the Royal

Meteorological Society, 109, 737–761, 1983.

Sousa, P. M., Trigo, R. M., Barriopedro, D., Soares, P. M., and Santos, J. A.: European temperature responses to blocking and ridge regional

patterns, Climate Dynamics, 50, 457–477, 2018.820

Steinfeld, D. and Pfahl, S.: The role of latent heating in atmospheric blocking dynamics: a global climatology, Climate Dynamics, 53,

6159–6180, 2019.

Swanson, K. L.: Blocking as a local instability to zonally varying flows, Quarterly Journal of the Royal Meteorological Society, 127, 1341–

1355, 2001.

Thorncroft, C. D., Hoskins, B. J., and McIntyre, M. E.: Two paradigms of baroclinic-wave life-cycle behaviour, Quarterly Journal of the825

Royal Meteorological Society, 119, 17–55, 1993.

Tibaldi, S. and Molteni, F.: On the operational predictability of blocking, Tellus A, 42, 343–365, 1990.

Tung, K. K. and Lindzen, R. S.: A theory of stationary long waves. Part I: A simple theory of blocking, Monthly Weather Review, 107,

714–734, 1979.

Vannitsem, S. and Nicolis, C.: Lyapunov vectors and error growth patterns in a T21L3 quasigeostrophic model, Journal of the atmospheric830

sciences, 54, 347–361, 1997.

Vautard, R.: Multiple weather regimes over the North Atlantic: Analysis of precursors and successors, Monthly weather review, 118, 2056–

2081, 1990.

Wang, Q. and Mu, M.: A new application of conditional nonlinear optimal perturbation approach to boundary condition uncertainty, Journal

of Geophysical Research: Oceans, 120, 7979–7996, 2015.835

Weijenborg, C., de Vries, H., and Haarsma, R. J.: On the direction of Rossby wave breaking in blocking, Climate dynamics, 39, 2823–2831,

2012.

Witte, J. C., Douglass, A. R., Da Silva, A., Torres, O., Levy, R., and Duncan, B. N.: NASA A-Train and Terra observations of the 2010

Russian wildfires, Atmospheric Chemistry and Physics, 11, 9287–9301, 2011.

Woollings, T., Barriopedro, D., Methven, J., Son, S.-W., Martius, O., Harvey, B., Sillmann, J., Lupo, A. R., and Seneviratne, S.: Blocking840

and its response to climate change, Current climate change reports, 4, 287–300, 2018.

Zabusky, N. J. and Porter, M. A.: Soliton, Scholarpedia, 5, 2068, https://doi.org/10.4249/scholarpedia.2068, revision #186585, 2010.

Zhang, F., Sun, Y. Q., Magnusson, L., Buizza, R., Lin, S.-J., Chen, J.-H., and Emanuel, K.: What is the predictability limit of midlatitude

weather?, Journal of the Atmospheric Sciences, 76, 1077–1091, 2019.

36

https://doi.org/10.5194/egusphere-2024-2747
Preprint. Discussion started: 18 September 2024
c© Author(s) 2024. CC BY 4.0 License.


