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 Abstract 

 Clouds  constitute,  through  their  interactions  with  incoming  solar  radiation  and  outgoing  terrestrial  radiation,  a  fundamental 
 element  of  the  Earth’s  climate  system.  Different  cloud  types  show  a  wide  variety  in  cloud  microphysical  or  optical  properties, 
 phase,  vertical  extent  or  temperature  among  others,  and  thus  disparate  radiative  effects.  Both  in  observational  and  model  datasets, 
 classifying  cloud  types  is  also  of  large  importance  since  different  cloud  types  respond  differently  to  current  and  future 
 anthropogenic  climate  change.  Cloud  types  have  traditionally  been  defined  using  a  simplified  partition  of  the  space  determined 
 by  spatially  aggregated  values  e.g.  of  the  cloud  top  pressure  and  the  cloud  optical  thickness.  In  this  study,  we  present  a  method 
 called  CloudViT  (Cloud  Vision  Transformer)  building  upon  spatial  extracts  of  cloud  properties  from  the  MODIS  instrument  to 
 derive  cloud  types,  leveraging  spatial  features  and  patterns  with  a  vision  transformer  model.  The  classification  model  is  based  on 
 global  surface  observations  of  cloud  types.  The  method  is  then  evaluated  through  the  distributions  of  cloud  type  properties  and 
 the  corresponding  spatial  patterns  of  cloud  type  occurrences  for  a  global  cloud  type  dataset  produced  over  a  year-long  period. 
 Subsequently,  a  first  application  of  the  cloud  type  classification  method  to  climate  model  data  is  presented.  This  application 
 additionally  provides  insights  into  how  global  storm-resolving  models  are  representing  clouds  as  these  models  are  increasingly 
 being  used  to  perform  simulations.  The  global  cloud  type  dataset  and  the  method  code  constituting  CloudViT  are  available  from 
 Zenodo (Lenhardt et al., 2024b). 
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 1 Introduction 

 Clouds  form  an  essential  component  in  the  Earth’s  climate,  by  impacting  the  atmospheric  energy  budget  and  water  cycle,  and  by 
 influencing  the  reflected  solar  radiation  as  well  as  the  outgoing  terrestrial  radiation  fluxes.  Clouds  are  highly  variable  spatially 
 and  temporally,  and  occur  in  a  large  variety  of  types  (Howard,  1803;  WMO,  2017).  Stratiform  and  cumuliform  clouds,  in  low, 
 medium  or  high  levels,  have  all  very  different  effects  on  radiation  and  precipitation  formation.  This  is  one  of  the  causes  for  the 
 uncertainties  in  estimates  of  their  response  to  anthropogenic  climate  change  both  currently  and  in  the  future  (Boucher  et  al., 
 2013;  Forster  et  al.,  2021).  These  uncertainties  manifest  both  in  observational  datasets  for  which  the  aim  is  to  constrain  past  and 
 current  effects,  and  in  climate  models  where  cloud  representation  is  of  utmost  importance  to  properly  constrain  future  scenarios. 
 Through  the  phase  (liquid,  ice  or  mixed),  the  droplet  size  distribution,  the  vertical  structure  or  other  micro-  and  macro-physical 
 properties,  different  cloud  types  can  lead  to  drastically  diverse  radiative  effects  making  the  cloud  type  a  property  of  interest  to 
 help  describe  their  involvement  in  the  weather  and  climate  system.  Unravelling  and  understanding  trends  in  clouds  has  become 
 more  tractable  in  recent  decades  due  to  the  large  amount  of  remote  sensing  data  made  available  globally  on  a  daily  basis. 
 However,  analysing  such  extensive  datasets  manually  becomes  challenging,  especially  with  the  goal  of  extracting  meaningful 
 information  about  different  cloud  types  based  on  their  patterns,  microphysical  properties  or  radiative  effects.  Algorithms  have 
 taken  over  this  complex  task  but  still  struggle  to  provide  objective  groupings  out  of  the  intricate  spatio-temporal  patterns 
 observed  in  remote  sensing  data.  At  the  same  time,  applying  methods  to  climate  models  which  are  engineered  on  remote  sensing 
 data could become more viable as new global climate models are bridging the gap by reaching km-scale resolutions. 
 Traditional  cloud  classification  methods  are  built  on  simple  characteristics.  The  standard  classification  developed  as  part  of  the 
 International  Satellite  Cloud  Climatology  Project  (ISCCP)  relies  on  three  levels  (low,  medium,  high)  of  cloud  altitude  using  as 
 proxy  the  cloud  top  pressure  (CTP)  and  three  thresholds  of  cloud  optical  thickness  (COT),  defining  overall  nine  cloud  types 
 (Rossow  et  al.,  1991).  This  classification  is  performed  pixel-wise,  setting  aside  any  spatial  pattern  in  the  cloud  field  from  which 
 information  could  be  obtained  to  better  inform  the  classification  process.  Relying  on  the  same  type  of  two-dimensional 
 histograms,  recent  methods  have  been  developed  aiming  at  refining  the  created  clusters  and  partially  relaxing  the  constraints  on 
 the  pre-defined  thresholds  (Tzallas  et  al.,  2022).  The  reason  to  choose  the  two  parameters  is  that  such  a  classification  lends  itself 
 to  the  analysis  of  cloud  radiative  effects:  the  cloud  radiative  effect  in  the  solar  is  a  monotonic  function  of  COT,  the  one  in  the 
 terrestrial  spectrum,  of  CTP.  However,  one  might  be  interested  in  sensitivities  of  cloud  thickness  or  water  content  to  different 
 drivers  (e.g.,  aerosols)  for  given  cloud  types,  which  is  hampered  by  using  CTP  and  COT  to  define  the  types.  Also,  COT  does  not 
 map  well  onto  the  distinction  between  cumuliform  and  stratiform  clouds.  For  such  reasons,  Unglaub  et  al.  (2020)  defined  cloud 
 regimes  from  cloud  base  height  and  variability  in  cloud  top  height,  hinting  at  the  added  value  of  some  measure  of  spatial 
 variability  and  pattern.  However,  to  leverage  spatial  structure  and  textures,  cloud  classification  methods  based  on  artificial 
 intelligence  (AI)  have  opened  new  avenues  of  research  built  upon  vast  amounts  of  remote  sensing  data.  For  example,  using 
 convolutional  neural  networks  (CNNs;  LeCun  et  al.,  1989;  LeCun  et  al.,  1995),  Zhang  et  al.  (2018)  used  ground-based  imagers 
 and  human-labelled  cloud  types,  Rasp  et  al.  (2020)  classified  clouds  from  expert-labelled  satellite  images  of  four  different  cloud 
 organisation  patterns  in  the  trades  and  Kuma  et  al.  (2023)  built  on  shortwave  and  longwave  radiation  satellite  retrievals  and 
 ground-based  observations.  Relying  on  similar  model  architectures,  Zantedeschi  et  al.  (2019)  and  Kaps  et  al.  (2023)  classified 
 cloud  types  derived  from  active  remote  sensing  labels.  Other  methods  have,  on  the  other  hand,  been  developed  without  the  use  of 
 labels,  drawing  conclusions  from  clusters  appearing  in  large  remote  sensing  radiation  retrievals  (Kurihana  et  al.,  2022).  While 
 computer  vision  models  have  proven  to  perform  satisfactorily  with  respect  to  their  respective  labelled  (or  not)  datasets, 
 developing  a  method  further  drawing  upon  large  datasets  of  ground-based  observations  and  satellite  retrievals  and  additionally 
 being  transferable  to  climate  model  simulations  could  prove  to  be  an  asset  in  evaluating  cloud  types  and  their  representation  in 
 both observational and climate models datasets. 
 In  this  study,  we  investigate  the  classification  of  clouds  by  merging  surface  observations  of  cloud  types  and  passive  satellite 
 retrievals  of  cloud  properties,  building  a  method  called  CloudViT  (Cloud  Vision  Transformer).  Following  a  similar  methodology 
 from  previous  work  (Lenhardt  et  al.,  2024a),  we  define  cloud  scenes  as  tiles  of  128x128 km²  which  encompass  cloud 
 microphysical  and  optical  properties  at  a  1 km  horizontal  resolution.  The  employed  cloud  properties  are  from  the  MODerate 
 Resolution  Imaging  Spectroradiometer  (MODIS,  Platnick  et  al.  (2017)),  and  more  particularly  the  cloud  top  height  (CTH),  the 
 cloud  optical  thickness  (COT)  and  the  cloud  water  path  (CWP),  which  are  paired  with  surface  network  observations  of  cloud 
 types  (cf.  Table  1).  To  harness  the  spatial  aspect  of  the  cloud  scene  and  extract  relevant  features  from  the  input  cloud  properties, 
 we  resort  to  computer  vision  models  based  on  CNNs  and  transformers  (Dosovitskiy  et  al.,  2020).  Firstly,  a  vision  transformer 
 model  is  trained  in  a  self-supervised  setting  to  create  a  condensed  latent  representation  of  the  input  cloud  field.  Subsequently,  a 
 simpler  classification  model  is  fitted  to  predict  the  cloud  type  corresponding  to  the  cloud  scene,  learning  from  the  labels  of  a 
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 wide  ground-based  observation  network.  The  formulated  method  has  the  goal  to  produce  robust  retrievals  of  cloud  types  while 
 generalising  from  the  local  ground  observations  to  global  distributions,  increasing  both  the  temporal  and  spatial  coverage.  The 
 method  relies  partly  on  the  assumption  that  the  observed  cloud  types  exist  on  scales  similar  to  the  extent  of  the  tiles,  and 
 additionally  builds  on  the  spatial  patterns  characteristic  of  different  cloud  types.  Moreover,  as  the  ground-based  cloud  type 
 observations  provide  consistent  labels  which  are  only  available  at  sparse  locations,  we  can  leverage  long-standing  instruments 
 like MODIS to design an algorithm based on satellite retrievals suited to generalisation to global distributions. 
 Firstly,  we  introduce  in  section  2  the  different  datasets  used  in  the  study  alongside  the  colocation  process  between  the 
 ground-based  and  satellite  datasets.  Subsequently,  the  different  components  of  the  CloudViT  method  are  presented  in  section  3, 
 supported  by  sensitivity  studies  about  the  generalisation  skill  of  the  models  and  the  benefits  of  the  spatial  context.  In  section  4, 
 we  evaluate  the  method  and  investigate  the  distribution  of  cloud  properties  following  the  predicted  cloud  types.  The  results  in 
 section  5  focus  on  the  extension  to  a  global  distribution  of  cloud  types  and  present  a  first  application  to  climate  model  data. 
 Eventually, we discuss the benefits of the presented method, the potential improvements and the remaining challenges. 

 2 Data 

 2.1 Surface observations 

 The  cloud  type  observations  used  in  this  study  come  from  two  similar  global  observation  datasets  maintained  by  the  UK  Met 
 Office,  one  providing  observations  made  at  sea  (Met  Office,  2006)  and  the  second  providing  observations  made  on  land  (Met 
 Office,  2008).  These  observations  are  performed  from  weather  stations  (land  or  sea)  or  ships,  by  trained  observers  following  the 
 WMO  code  tables  (WMO,  2019).  Each  cloud  level  (high,  WMO  code  table  0509;  medium,  WMO  code  table  0515;  low,  WMO 
 code  table  0513;  see  Table  A.1)  is  separated  in  9  different  types  describing  in  more  detail  the  aspect  and  type  of  the  observed 
 clouds.  The  labels  thus  provide  a  high  level  of  precision  regarding  the  observed  cloud  scene  from  the  surface.  Naturally,  the  case 
 of  multilayer  clouds  poses  a  problem  since  the  field  of  view  and  the  visibility  from  the  surface  are  limited,  which  is  why  we 
 remove  the  potential  multilayered  cases  from  the  training  dataset  to  focus  only  on  single-layer  observed  cloud  scenes.  It  induces 
 potential  selection  bias  issues  as  some  cloud  types  might  more  likely  be  observed  in  multilayered  configurations.  The  relative 
 amounts  of  each  cloud  type  before  and  after  the  filtering  and  colocation  process  are  displayed  in  Figure  2.  Similarly,  uncertainty 
 is  greater  for  medium  and  high  clouds  as  their  observation  can  be  more  challenging  than  for  low  clouds.  Furthermore,  the  spatial 
 distribution  of  the  labels  (Fig.  1,  Fig.  A.1)  can  be  problematic  as  the  marine  observations  are  distributed  mainly  along  ship 
 routes.  On  the  other  hand,  combining  that  with  land  observations  provides  a  more  complete  representation  of  cloud  types, 
 especially  for  high  level  ones,  all  the  while  introducing  the  influence  of  orography.  Other  studies  like  Kuma  et  al.  (2023)  and 
 Lenhardt  et  al.  (2024a)  have  built  skilled  retrievals  of  cloud  quantities  based  on  these  ground-based  observation  datasets, 
 overcoming limitations pertaining to incomplete field of view and disparate spatial distribution. 
 For  simplifying  the  analysis  but  also  the  training  of  the  classification  model,  we  group  the  27  reported  WMO  cloud  types  into  4 
 and  10  categories,  similarly  to  Kuma  et  al.  (2023).  The  first  categorisation  allows  for  broad  classification  by  dividing  the  cloud 
 species  into  high,  medium,  cumuliform  and  stratiform  types.  The  second  categorisation  provides  a  more  detailed  classification 
 while  still  limiting  the  subdivision  of  similar  cloud  types.  This  prevents  a  too  pronounced  unbalance  in  the  cloud  type  labels 
 while  possibly  removing  some  of  the  subjective  biases  and  uncertainty  stemming  from  the  human  observers.  The  detailed 
 categories corresponding to the WMO codes are available in Table A.1 and shown in Figure 2. 

 2.2 Satellite retrievals 

 In  addition  to  the  surface  observations,  we  use  satellite  retrievals  from  MODIS,  in  particular  from  the  AQUA  satellite.  MODIS 
 retrievals  offer  a  vast  amount  of  data  at  kilometre-scale  resolution  with  daily  overpasses.  Each  of  the  supplied  granule  file 
 contains  cloud  microphysical  and  optical  properties  across  a  region  with  a  span  of  around  2330 km  x  2000 km.  We  make  use  of 
 the  available  CUMULO  dataset  (Zantedeschi  et  al.,  2019)  since  it  allows  access  to  preprocessed  MODIS  level  2  satellite  data, 
 with  global  coverage,  and  for  two  full  years  (2008  and  2016).  Among  the  data  variables  available,  we  rely  on  two  unified 
 products  (cf.  Table  1)  describing  either  cloud  properties  (MODIS06  level  2  cloud  product,  hereafter  MYD06;  Platnick  et  al., 
 2017)  or  the  cloud  cover  (MODIS35  level  2  cloud  flag  mask,  hereafter  MYD35;  Ackerman  et  al.,  2017).  The  latter’s  main  usage 
 is to help screen for cloud scenes with a minimum cloud coverage. 
 The  MYD06  data  product  incorporates  miscellaneous  properties  pertaining  to  the  cloud  top  (temperature,  pressure,  height) 
 alongside  some  microphysical  and  optical  properties  (effective  radius,  water  path,  optical  depth).  As  mentioned  previously,  our 
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 method  builds  upon  level  2  data  which  are  typically  obtained  from  calibrated  radiances  through  methods  described  in  Platnick  et 
 al.  (2017).  More  specifically,  cloud  top  properties  are  retrieved  using  several  radiance  channels:  harnessing  the  opacity  of  CO  2  , 
 the  CTP  of  high  clouds  is  retrieved  with  wavelengths  in  the  CO  2  absorption  range,  while  infrared  wavelengths  combined  with 
 simulated  brightness  temperatures  are  used  for  lower  and  thicker  clouds.  The  related  CTH  retrieval  can  thus  suffer  from  regional 
 biases  as  the  brightness  temperatures  are  based  on  vertical  profiles  from  reanalysis  using  regional  and  monthly  averaged  lapse 
 rate  data  along  with  surface  temperature  (Baum  et  al.,  2012).  The  method  introduced  here  can  thus  incorporate  said  biases  from 
 the  input  data  into  the  learning  process.  The  microphysical  and  optical  properties  of  clouds  -  COT  and  cloud  effective  radius 
 (CER)  -  are  retrieved  concurrently  from  multispectral  reflectances,  CTP  values,  surface  types  and  cloud  masks.  Lastly,  the  CWP 
 is  also  retrieved  as  part  of  the  cloud  optical  properties  algorithm  detailed  in  Platnick  et  al.  (2017).  The  additional  input  quantities 
 needed  to  derive  and  retrieved  the  mentioned  cloud  properties  (e.g.  water  vapour  and  ozone  vertical  profiles  from  reanalysis; 
 Platnick  et  al.,  2003;  Baum  et  al.,  2012)  can  result  in  subsequent  uncertainties  where  only  sparse  observations  like  in  remote 
 marine  areas  are  available  for  the  data  assimilation.  Eventually,  from  the  entirety  of  available  MYD06  retrievals,  we  select  three 
 cloud properties in particular, namely the CTH, COT, and CWP. 
 As  a  whole,  the  MYD06  product  has  the  advantage  that,  building  directly  on  cloud  properties,  we  can  design  a  classification 
 model  from  which  the  relationship  between  cloud  type  and  other  cloud  properties  can  then  be  examined.  Relying  on  calibrated 
 radiances  which  lie  ahead  in  the  retrieval  process  could  offer  a  more  neutral  input  but  due  to  the  large  associated  dimensionality, 
 extracting  information  about  clouds  might  become  more  challenging.  Additionally,  basing  the  method  on  commonly  used  cloud 
 properties  allows  us  to  directly  associate  the  results  with  other  derived  cloud  classifications,  making  the  comparison  and 
 understanding  of  the  predictions  more  straightforward.  Nevertheless,  the  biases  introduced  by  using  level  2  data  in  comparison  to 
 level  1  calibrated  radiances  and  reflectances  should  be  properly  characterised  and  taken  into  account  in  the  behaviour  of  the 
 statistical model. 
 Alongside  the  colocated  dataset,  we  build  a  collection  of  randomly  sampled  tiles  out  of  the  satellite  retrievals  from  the  year  2008. 
 For  each  granule,  a  maximum  of  20  tiles  are  sampled  while  ensuring  the  amount  of  missing  data  stays  limited.  This  process  leads 
 to  the  compilation  of  more  than  1.3M  single  tiles  of  cloud  properties.  These  tiles  are  then  randomly  split  temporally  into  training 
 (70%),  validation  (10%)  and  test  (20%)  sets.  This  dataset  is  the  basis  for  the  self-supervised  training  procedure  presented  in  the 
 following section. 

 Data product  Description  Variables  Resolution  Usage 

 Global marine 
 meteorological 
 observations (Met 
 Office, 2006) 

 Marine surface 
 observations 

 Cloud type  Latitude/longitude 
 coordinates 0.1° 
 Hourly/daily 
 observations 

 Labels 

 Land SYNOP reports 
 (Met Office, 2008) 

 Land surface 
 observations 

 Cloud type  Latitude/longitude 
 coordinates 0.1° 
 Hourly/daily 
 observations 

 Labels 

 MODIS Atmosphere 
 L2 Cloud Product 
 (MYD06) (Platnick, 
 2017) 

 Cloud-top properties, 
 cloud optical and 
 microphysical 
 properties 

 Cloud top height, CTH 
 (m) 
 Cloud optical thickness, 
 COT (a.u.) 
 Cloud water path, CWP 
 (g.m  -2  ) 

 1-km pixel resolution 
 Daily overpass 

 Input features 

 MODIS Atmosphere 
 L2 Cloud Mask 
 Product (MYD35) 
 (Ackerman, 2017) 

 Cloud pixel flag  Cloud mask  1-km resolution 
 Daily overpass 

 Used for cloud 
 scene filtering 

 Table 1 : Datasets description. The surface observations are provided by a worldwide station network available from the 
 UK MetOffice (Met Office, 2006; Met Office, 2008; see section 2.1). The MODIS data are derived from the collection 6.1 

 of the datasets (Ackerman, 2017; Platnick et al., 2017; see section 2.2). 
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 Figure 1: Spatial distribution of cloud type observations for marine (years 2008 and 2016; Met Office, 2006) and land 
 (year 2016; Met Office, 2008). 

 Figure 2: Relative occurrences of cloud types before and after the colocation and filtering process, indicated for both the 
 marine (blue; Met Office, 2006) and land (green; Met Office, 2008) observational datasets. The x axis corresponds to the 

 cloud types in the case of 4 and 10 categories. 
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 3 Method 

 3.1 Method outline 

 Building  on  computer  vision  models  and  their  substantial  amount  of  trainable  parameters  usually  requires  adapting  the  training 
 strategy  when  the  available  dataset  is  of  modest  size.  In  the  presented  study,  the  amount  of  labels  available  is  greatly  reduced 
 during  the  colocation  process  but  still  contains  useful  and  exploitable  information  about  the  observed  cloud  types.  We  thus 
 introduce  a  self-supervised  learning  process  which  allows  us  to  draw  on  the  larger  amount  of  satellite  data  available  before 
 addressing  the  more  complex  task  of  cloud  classification.  The  larger  purpose  of  this  methodology  is  to  be  able  to  classify  clouds 
 on  a  global  scale,  outside  of  the  areas  where  surface  observations  were  made  and  outside  of  the  typical  coverage  of  human 
 observation stations. 
 For  the  self-supervised  task,  we  train  two  models  to  reconstruct  3D  data  cubes  of  cloud  properties.  The  first  model,  which  is  used 
 as  a  baseline,  is  a  CNN  backbone  we  previously  presented  in  Lenhardt  et  al.  (2024a)  to  handle  satellite  retrievals  of  cloud 
 properties  for  cloud  base  height  prediction.  The  second  model  we  develop  in  this  study  is  based  on  vision  transformers 
 (Dosovitskiy  et  al.,  2020),  a  recent  type  of  model  compared  to  the  more  typical  CNNs  for  computer  vision  applications.  The 
 spatial  pattern  of  the  cloud  properties  and  their  scale  provide  information  about  clouds,  which  can  be  leveraged  to  classify  them 
 for  example  into  more  stratiform  and  more  cumuliform  types.  During  the  training  phase  of  these  models,  the  samples  are  images 
 of  size  128x128  km²  and  128x128  pixels  consisting  of  three  different  cloud  properties:  CTH,  COT  and  CWP.  We  ensure  that  the 
 models  learn  to  distinguish  cloud  patterns  and  not  to  recognise  specific  geographical  locations  by  extracting  samples  randomly 
 across  global  satellite  retrievals  from  the  year  2008,  without  adding  information  about  their  location.  In  a  second  step,  a 
 classification  model  is  trained  on  the  colocated  samples  of  cloud  properties  and  surface  observations.  As  mentioned  in  section 
 2.1,  the  number  of  types  reported  in  the  observations  for  clouds  is  reduced  to  either  4  or  10  classes  (Kuma  et  al.  2023).  The 
 training  process  follows  a  supervised  learning  framework,  where  the  classification  model  outputs  a  single  cloud  type  (among  the 
 4  or  10  cloud  types)  for  the  whole  extent  of  the  input  cloud  scene  of  size  128x128  km²  and  128x128  pixels.  The  benefit  of  the 
 presented  method  using  either  a  CNN  or  a  vision  transformer,  which  are  models  with  some  degree  of  spatial  awareness,  is  that  it 
 is  consistent  with  the  cloud  type  identified  by  the  human  observer.  Furthermore,  in  comparison  to  conventional  methods  like  the 
 ISCCP, the method benefits from a potential ability to distinguish more detailed cloud types without using predefined thresholds. 

 3.2 Vision transformer 

 Vision  transformers  were  introduced  by  Dosovitskiy  et  al.  (2020),  building  on  the  transformer  architecture  previously  presented 
 in  Vaswani  et  al.  (2017)  which  was  mainly  applied  to  natural  language  processing  (NLP)  tasks.  The  adaptation  to  images  was 
 made  by  splitting  images  into  patches  of  a  certain  size,  16  pixels  in  the  case  of  the  seminal  paper,  and  providing  the  sequence  of 
 embeddings  of  these  patches  to  a  transformer.  The  patches  from  the  images  are  then  treated  as  words  would  be  in  a  NLP 
 application.  The  transformer  can  then  be  trained  in  a  supervised  fashion  to  classify  the  input  images.  They  have  been  shown  to 
 perform  at  the  same  level  or  even  outperform  classical  computer  vision  models  like  ResNets  on  tasks  like  classification  (e.g.  see 
 Section  4  of  Dosovitskiy  et  al.,  2020).  However,  as  mentioned  in  section  3.1,  this  type  of  model,  alongside  CNNs,  are  data 
 hungry  and  require  a  large  amount  of  labelled  samples  to  be  trained  from  scratch  in  a  supervised  fashion.  In  this  setting, 
 self-supervised  pretraining  can  lead  to  highly  performant  models  while  not  requiring  a  larger  training  dataset.  We  train  a  vision 
 transformer  following  the  self-supervised  pretraining  methodology  presented  in  Atito  et  al.  (2023),  named  Self-supervised  vision 
 Transformer  (SiT).  This  methodology  allows  to  train  vision  transformers  in  a  self-supervised  fashion  building  on  the  concept  of 
 Group  Masked  Model  Learning  (GMML),  additionally  using  the  same  autoencoder  framework  as  with  traditional  CNNs  like  the 
 commonly  used  U-Net  (Ronneberger  et  al.,  2015)  or  our  baseline  model  from  Lenhardt  et  al.  (2024a).  We  do  not  adapt  the 
 presented  architecture  of  the  SiT  which  was  adopted  directly  from  the  initial  vision  transformer  architecture,  apart  from  the  latent 
 dimension which is set to 256 similarly to the CNN built in Lenhardt et al. (2024a). 
 One  strength  of  the  transformer  architecture  is  the  possibility  to  easily  include  several  simultaneous  learning  tasks.  We  can  use 
 this  ability  to  our  advantage  and  incorporate  two  objectives  for  the  self-supervised  training  process:  input  reconstruction 
 following  GMML  and  contrastive  learning.  The  input  reconstruction  is  achieved  by  adapting  the  transformer  into  an  autoencoder 
 architecture.  Like  with  traditional  CNN  autoencoders,  the  task  is  for  the  model  to  reconstruct  the  provided  input.  We  benefit 
 further  from  another  advantage  of  vision  transformers  as  they  showcase  a  reduced  complexity  compared  to  CNNs  since  they  rely 
 to  a  much  lesser  degree  on  convolution  operations.  The  methodology  of  Atito  et  al.  (2023)  additionally  uses  recent  results  in 
 GMML  to  further  help  in  the  self-supervised  learning  task.  The  framework  of  GMML  is  integrated  in  the  reconstruction  task  by 
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 replacing  random  parts  of  the  input  image  with  noise.  The  overarching  goal  of  this  image  modification  is  to  train  the  model  to 
 learn  semantic  representations  of  the  input  data,  allowing  reconstruction  of  masked  areas  only  with  knowledge  of  some  other 
 patches  in  the  input  image.  The  objective  for  this  reconstruction  task  hence  takes  the  form  of  the  l1-loss,  a  commonly  used  metric 
 (Zhao et al., 2016) between the standardised input and the reconstructed output: 

 (1)  𝐿 
 𝑟 
   =     1 

 𝑁 
 𝑖 = 1 

 𝑁 

∑  𝑥 
 𝑖 
   −     𝐷 

θ
( 𝐸 

θ
( 𝑥 

 𝑖 
 𝑐 ))|||

|||
|||

|||
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 are namely the decoder and encoder parts of the model with  designating their learnable parameters. θ
 The  second  learning  task  included  in  the  training  process  is  based  on  contrastive  learning.  Since  the  presented  self-supervised 
 process  does  not  rely  on  labels  for  the  training  data  contrary  to  the  vision  transformer  from  Dosovitskiy  et  al.  (2020),  the  learning 
 task  needs  to  be  adapted.  To  this  extent,  several  geometric  transformations  and  perturbations  are  applied  to  the  training  samples 
 for  which  the  transformer  should  produce  similar  outputs.  The  synthetic  pairs  can  then  be  used  as  matching  pairs  and  a  metric 
 can  be  built  measuring  their  similarity.  The  contrastive  task  is  thus  training  the  model  to  minimise  the  distance  between  matching 
 pairs  of  sample  and  corresponding  augmented  sample,  while  maximising  the  distance  between  different  samples  in  the  batch. 
 Atito  et  al.  (2023)  propose  to  use  as  a  contrastive  metric  the  arithmetic  mean  over  the  matching  pairs  in  the  batch  of  the  cross 
 entropy of their normalised similarities: 
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 where  the  similarity  metric  between  a  sample  and  its  augmented  version  is  the  normalised  temperature-scaled  softmax  𝑥 
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 similarity  (Chen  et  al.,  2020).  The  actual  process  of  the  contrastive  learning  further  requires  the  use  of  a  momentum  encoder  to 
 generate different views of the samples and their augmented pendants. 
 The  integral  self-supervised  training  process  consists  in  a  combination  of  the  two  previously  presented  learning  tasks.  For  each 
 batch  of  samples,  we  create  augmented  versions  of  the  samples  which  together  constitute  matching  pairs.  GMML  corruptions  are 
 applied  to  both  samples  and  the  model  is  subsequently  trained  to  reconstruct  the  original  inputs  from  these  corrupted  samples.  At 
 the same time, the similarity between matching pairs of samples is maximised. The complete loss function thus takes the form of: 

 (3)  𝐿    =    α   ×     𝐿 
 𝑟 
   +     𝐿 

 𝑐 

 where  is  a  scaling  factor  between  the  two  tasks.  We  follow  the  recommendation  of  Atito  et  al.  (2023)  to  set  in  the  case α α   =     5 
 of small-scale datasets so that the vision transformer can learn enough of the local inductive bias. 
 We  set  out  to  examine  in  further  detail  the  ability  of  the  vision  transformer  and  of  the  self-supervised  training  methodology  by 
 evaluating  how  different  configurations  of  the  input  data  and  of  the  model  architecture  can  impact  the  quality  of  the  learnt 
 representations  and  the  transfer  to  cloud  classification.  We  mainly  discuss  in  this  section  the  reconstruction  skill  of  the  vision 
 transformer  and  the  potential  influence  of  contrastive  learning.  The  transfer  to  the  cloud  classification  task  will  be  described  in 
 the  following  section  where  fine-tuning  to  the  downstream  task  or  the  use  of  external  models  are  surveyed.  Since  training  vision 
 transformers  requires  large  computing  resources,  we  limit  ourselves  for  all  the  pretraining  processes  to  only  10%  of  the  initial 
 dataset mentioned in section 2.2, similar to what is done in Atito et al. (2023) regarding ablation studies. 
 To  begin  with,  we  investigate  how  the  two  architectures  of  vision  transformers  fare  during  the  self-supervised  training  and  how 
 the  scaling  factor  between  the  contrastive  loss  and  the  reconstruction  loss  impacts  the  learning  process.  The  two  architectures 
 tested  correspond  to  the  small  variant  of  the  vision  transformer  from  Atito  et  al.  (2023)  and  the  base  variant  from  Dosovitskiy  et 
 al.  (2020).  To  offer  an  overview  on  each  model’s  complexity,  their  respective  numbers  of  parameters  are  21M  and  86M,  the  main 
 difference  originating  from  the  number  of  heads  in  the  self-attention  layers,  the  size  of  the  multi-layer  perceptron  (MLP)  and  the 
 hidden  dimension.  We  additionally  investigate  the  self-supervised  training  process  by  using  pre-trained  weights  made  available 
 in  Atito  et  al.  (2023)  for  which  the  pretraining  was  done  on  a  computer  vision  task,  the  ImageNet-1K  dataset  (Deng  et  al.,  2009). 
 However,  the  pretrained  weights  of  the  ImageNet-1K  dataset  are  only  made  available  for  the  small  variant  of  the  vision 
 transformer.  An  additional  comparison  is  done  with  a  model  trained  only  on  the  colocated  dataset  using  the  small  variant.  The 
 contrastive  and  reconstruction  losses  for  the  different  model  setups  are  detailed  in  Figure  B.1.  Firstly,  we  notice  that  the  model 
 trained  solely  on  the  colocated  dataset  would  need  more  epochs  to  reach  similar  performance  compared  to  all  the  other  setups.  As 
 the  colocated  dataset  contains  two  orders  of  magnitude  less  samples  than  the  training  dataset,  the  model  has  also  seen  much  less 
 data  after  10  epochs,  hindering  the  training  process  most  notably  for  the  contrastive  loss.  Even  after  further  training  the  model  on 
 the  colocated  dataset  for  150  epochs,  it  is  struggling  to  match  the  other  models  trained  on  the  complete  training  dataset  with  best 
 contrastive  and  reconstruction  losses  of  0.95  and  0.23,  respectively.  On  the  other  hand,  the  other  setups  reach  similar 
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 performance  in  both  contrastive  and  reconstruction  losses  after  10  epochs.  The  model  with  pretrained  weights  displays  better 
 performance  right  from  the  start  of  the  training  process  but  improves  only  marginally  thereafter.  This  could  be  explained  by  the 
 fact  that  using  the  pretrained  weights  allows  the  model  to  capture  already  well  the  structure  and  patterns  of  the  clouds  in  the 
 remote  sensing  data  even  though  their  modality  is  different  from  the  one  seen  in  the  ImageNet-1K  dataset.  It  thus  shows  the 
 strength  of  transfer  learning  in  computer  vision  tasks.  Nevertheless,  we  can  observe  that  for  the  pretrained  model  both  the 
 contrastive  and  reconstruction  losses  are  reaching  a  plateau  after  only  a  few  epochs  while  the  other  model  setups  display  a 
 negative  gradient  indicating  further  learning  capabilities.  Focusing  on  the  different  variants  trained  with  scaling  factors  of  1  or  5, 
 we  notice  that  the  choice  of  a  larger  scaling  factor  leads  to  better  reconstruction  skill  while  losing  almost  no  performance  with 
 respect to the contrastive loss. 
 Eventually,  we  decide  to  use  as  model  the  small  variant  of  the  vision  transformer  with  a  scaling  factor  of  5,  as  it  showcases α
 good  performance  in  both  tasks  during  the  training  while  having  a  number  of  parameters  four  times  smaller  than  the  base  variant. 
 Furthermore,  the  self-supervised  training  task  on  the  large  unlabelled  dataset  allows  the  model  to  have  plenty  of  data  to  learn 
 from,  the  pre-trained  model  weights  giving  only  marginal  gain  for  a  few  epochs  at  the  start.  The  small  variant  of  the  vision 
 transformer  was  shown  to  perform  very  well  on  a  large  variety  of  tasks  as  per  the  results  from  Atito  et  al.  (2023).  The  results 
 across  the  training,  validation  and  test  datasets  are  shown  in  Figure  3  for  the  training  process  and  some  examples  of  reconstructed 
 samples  belonging  to  all  three  splits,  while  Figure  4  highlights  the  spatial  distribution  of  the  reconstruction  error  per  channel  and 
 across splits. 

 Figure 3: (left) Training and validation losses during model optimization for the small variant of the vision transformer 
 on the global training dataset. (right) Examples of tiles (first and third rows) with the corresponding reconstructions 

 (second and fourth rows) for the different cloud property channels. 

 Ultimately,  we  can  compare  the  skill  of  the  vision  transformer  to  that  of  the  baseline  CNN  autoencoder  from  Lenhardt  et  al. 
 (2024a).  The  CNN  autoencoder  was  trained  using  as  reconstruction  error  the  mean  squared  error  (MSE)  on  similar  MODIS  data 
 but  only  with  MODIS  granules  over  the  ocean.  It  was  shown  to  perform  similarly  with  a  slightly  higher  error  over  land  when 
 evaluated  over  a  global  dataset.  The  vision  transformer  model  outperforms  the  CNN  autoencoder  on  all  metrics  (MSE  and 
 l1-loss)  across  all  data  splits  (training,  validation  and  test),  displaying  consistently  across  data  splits  on  average  an  MSE  of  0.15 
 and  a  l1-loss  of  0.12  compared  to  0.3  for  both  metrics  for  the  CNN.  Examples  of  reconstructed  samples  additionally  show  how 
 the  l1-loss  helps  produce  sharper  edges  in  the  reconstruction,  a  well-known  issue  with  the  application  of  MSE  as  target  metric  in 
 computer  vision  (Zhao  et  al.,  2016).  The  contribution  to  the  error  comes  mostly  from  the  COT  channel  for  both  models  and  the 
 error  is  concentrated  in  areas  of  higher  variability  for  the  respective  channels.  The  metrics  values  are  summarised  in  Table  B.1. 
 The  spatial  generalisation  skill,  alongside  the  sensitivity  to  the  tile  size  and  the  impact  of  data  augmentation  on  the  performance 
 on the cloud classification task are analysed in the following section. 
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 Figure 4: Spatial distributions of mean channel reconstruction errors for CTH, COT and CWP, aggregated on a 5 ° 
 regular grid for the training, validation and test datasets. 

 3.3 Cloud type classification 

 The  next  task  at  hand  is  the  cloud  type  classification,  building  on  the  colocated  samples  of  satellite  retrievals  and  surface 
 observations.  For  the  two  years  of  MODIS  AQUA  data  available,  out  of  104  823  colocated  samples  we  retain  only  11  094  for  our 
 training  and  testing  datasets  after  filtering,  among  others,  for  missing  data  -  typically  50%  of  the  samples  are  discarded,  mainly 
 when  the  colocated  observation  lies  on  the  edges  of  the  satellite  granule  -  and  single  layer  cloud  observations  as  reported  by  the 
 observer  -  around  60%  of  the  previously  filtered  samples  are  kept.  The  cloud  type  observations  are  then  regrouped  into  4  or  10 
 types  as  mentioned  previously.  The  rest  of  the  study  will  focus  on  these  categories  as  targets.  From  the  latent  space 
 representations  produced  by  the  vision  transformer  or  the  CNN  autoencoder,  we  build  a  classification  model  either  by  attaching  a 
 classification  head  to  the  encoder  network  or  by  using  a  simpler  classification  model  like  a  random  forest  (RF;  Breiman,  2001). 
 To  investigate  the  performance  of  the  classification  models  on  the  two  classification  tasks  at  hand  (4  and  10  cloud  types),  we  use 
 different  metrics  tailored  to  unbalanced  classification  setups  as  the  cloud  types  are  not  equally  represented  (see  Table  A.1).  A 
 first  method  to  assign  similar  weight  to  all  classes  regardless  of  the  class’  cardinal  is  to  use  macro-averaged  metrics.  In  this 
 framework,  the  metric  of  interest  is  averaged  over  the  samples  of  each  class  separately  before  being  averaged  over  the  classes. 
 This  leads  to  a  higher  weight  for  minority  classes  for  which  the  model  might  perform  differently,  usually  worse,  compared  to  the 
 majority  classes  providing  different  information  over  traditional  averaging  strategies  (micro-averaged  for  example)  where  the 
 result  will  be  dominated  by  the  samples  from  the  majority  classes.  We  report  several  metrics  adapted  to  an  unbalanced  setting: 
 the  index  balanced  accuracy  (IBA;  Garcia  et  al.,  2012)  of  the  geometric  mean,  the  macro-averaged  accuracy  and  the 
 macro-averaged f1-score. 
 For  the  classification  model  we  investigate  two  alternatives:  a  RF  classification  model  (implementation  from  Scikit-learn 
 package,  Pedregosa  et  al.,  2011)  and  a  MLP  classification  head  (Hinton,  1989;  implemented  in  PyTorch  ,  Paszke  et  al.,  2019). 
 However,  a  wider  diversity  of  classification  models  could  be  implemented  based  on  the  backbone  provided  by  the  vision 
 transformer.  The  RF  model  provides  simplicity  in  the  implementation  and  the  training  process,  while  the  MLP  is  the  typical 
 architecture  used  for  the  downstream  task  following  a  network  like  a  vision  transformer  or  a  CNN.  The  RF  model  has  10  or  25 
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 trees,  for  the  cases  of  4  and  10  cloud  types  respectively,  with  a  maximum  depth  of  5.  Basic  hyper-parameter  optimization  showed 
 that  with  the  reduced  amount  of  samples  and  the  limited  variety  in  cloud  scenes  for  some  categories  (even  more  with  balanced 
 classes,  see  section  3.3.3),  models  displaying  limited  complexity  avoided  overfitting  and  generalised  better  on  unseen  data.  The 
 MLP  consists  of  two  fully-connected  layers  (hidden  dimension  4096)  with  a  Gaussian  Error  Linear  Unit  (Hendrycks  &  Gimpel, 
 2016)  in  between  and  is  trained  using  the  cross-entropy  loss.  The  sensitivity  studies  and  experiments  are  done  only  using  RF 
 models  but  the  evaluation  in  the  subsequent  section  will  be  done  on  both  types  of  classification  methods.  Various  sensitivities 
 could  be  explored  in  the  presented  setting  but  we  here  focus  on  the  potential  benefit  of  the  spatial  context,  the  ability  to 
 generalise spatially to unseen locations and the impact of balancing the labelled dataset. 

 3.3.1 Spatial context and tile size 
 We  look  at  the  influence  of  the  input  size  by  training  vision  transformers  (small  variant)  on  different  sizes  of  inputs  namely 
 128x128,  64x64,  32x32  and  16x16.  We  do  not  consider  larger  tile  sizes  as  the  cloud  scene  might  then  be  less  representative  of  the 
 surface  observation,  especially  since  we  only  consider  samples  with  single  labels,  and  as  the  assumption  that  the  observed  cloud 
 type  occurs  on  such  scales  would  likely  not  hold.  The  losses  relative  to  the  vision  transformer  models  trained  on  the  different 
 input  tile  sizes  are  detailed  in  Figure  B.2.  Since  these  models  were  trained  on  a  reduced  dataset  as  mentioned  previously,  their 
 skill  cannot  be  directly  compared  to  the  one  displayed  in  Figure  3.  While  the  contrastive  losses  are  similar  across  input  tile  sizes, 
 the  reconstruction  losses  differ.  Since  we  kept  the  ratio  between  the  patch  size  and  the  tile  size  constant  when  training  the 
 different  models,  the  difference  in  reconstruction  skill  could  be  attributed  to  the  dimensionality  of  each  patch  being  much 
 smaller,  for  example  for  a  tile  of  size  16x16  a  patch  will  be  2x2.  The  reconstruction  head  being  a  fairly  shallow  CNN,  the 
 reconstruction  of  the  spatial  patterns  inside  the  patches  showcases  better  skill  for  smaller  input  patches  after  a  few  epochs,  while 
 for  larger  patch  sizes  -  and  thus  tile  sizes  -  a  longer  training  process  would  be  needed  as  to  improve  the  truthfulness  of  the 
 reconstruction  to  the  input.  Examples  of  reconstructions  depending  on  the  input  tile  size  are  included  in  Figure  B.3  and  visually 
 display  how  a  larger  field  of  view  can  help  capture  the  larger  cloud  organisation  or  even  individual  sparse  clouds.  To  further 
 evaluate  the  potential  benefit  of  the  spatial  context  for  the  downstream  classification  task,  we  consider  as  an  alternate  input  the 
 flattened  cloud  properties  of  a  9x9  tile  centred  on  the  observation  location.  This  yields  an  input  of  similar  dimensionality 
 compared  to  the  latent  space  representation  of  both  the  CNN  and  the  vision  transformer  (3  channels  x  9  x  9  =  243).  We  then  train 
 the  same  RF  classification  model  on  each  of  the  latent  representations  derived  from  the  trained  vision  transformers  and  on  the 
 flattened  cloud  properties.  From  the  classification  metrics,  we  observe  that  the  smaller  the  tile  size  the  more  prone  the  model  is  to 
 overfitting  towards  the  majority  classes  (high  and  stratiform  cloud  types  in  the  case  of  4  types)  leading  to  a  decreased 
 performance  on  the  validation  set.  For  instance,  choosing  an  input  tile  size  of  16x16  results  in  a  decrease  of  20%  across  metrics 
 from  the  training  to  the  validation  set  (compared  to  around  10-15%  across  metrics  for  the  larger  input  tile  sizes),  and  leads  to 
 metrics  on  the  validation  set  more  than  10%  lower  than  with  larger  input  tile  sizes.  The  predictions  made  using  larger  spatial 
 context  (tile  size  greater  than  16x16)  outperform  the  method  with  9x9  flattened  tile  inputs  across  all  considered  metrics  on  the 
 validation  set.  With  the  input  tile  size  16x16,  the  reduced  spatial  context  seems  to  be  limiting  for  the  performance  but  another 
 explanation  could  be  a  complex  latent  space  compared  to  the  input  dimensionality.  Overall,  even  with  the  vision  transformer 
 backbones  being  trained  only  partially,  the  wider  input  tile  size  provides  better  classification  skill  and  generalisation  to  unseen 
 data. In the rest of the study and experiments, if not mentioned specifically, the input tile size is chosen to be 128x128. 

 3.3.2 Spatial generalisation 
 To  investigate  the  spatial  generalisation  skill  of  the  cloud  classification  method,  we  split  our  colocated  dataset  into  samples 
 located  in  the  Northern  or  Southern  hemispheres.  Two  vision  transformer  models  are  additionally  trained  on  samples  from  only 
 the  respective  hemisphere  and  tested  on  the  other  one.  The  losses  relative  to  the  training  and  testing  of  both  hemispherical 
 models  are  included  in  Figure  B.4.  Both  hemispherical  models  display  similar  performance  both  on  the  training  and  testing 
 datasets,  showing  that  even  for  a  reduced  number  of  training  samples,  epochs  and  spatial  coverage  the  vision  transformer 
 architecture  generalises  well  to  unseen  data.  Building  on  the  two  trained  vision  transformers,  we  set  out  to  evaluate  the  skill  on 
 the  classification  tasks.  Splitting  the  labels  between  the  two  hemispheres  yields  9246  samples  for  the  Northern  hemisphere  and 
 1848  samples  for  the  Southern  hemisphere.  Investigating  the  different  classification  metrics  for  training  and  testing  on  both 
 hemispheres,  it  is  clear  that  the  classification  model  trained  on  the  Southern  hemisphere  struggles  to  generalise  from  such  a  low 
 number  of  labelled  samples  and  probably  overfits  since  the  performance  is  worsened  on  the  Northern  hemisphere  samples 
 (decrease  of  almost  50%  across  metrics  from  the  training  to  the  testing  set).  The  classification  model  trained  on  the  Northern 
 hemisphere  generalises  well  in  the  case  of  the  4  cloud  types  with  consistent  metric  values  between  hemispheres  (marginal 
 decrease  of  around  15%  across  metrics  from  the  training  to  the  testing  set).  Overall,  the  model  trained  on  samples  from  the 
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 Northern  hemisphere  and  for  both  cases  of  number  of  cloud  types,  the  performance  on  the  Southern  hemisphere  is  similar  to 
 models  with  larger  tile  sizes  from  the  previous  section,  showing  consistency  across  experiments  even  with  limited  datasets  for 
 the training of the vision transformer. 

 3.3.3 Balanced training dataset 
 Balancing  the  number  of  samples  among  classes  in  the  input  dataset  can  be  a  way  to  leverage  enough  information  from  the 
 underrepresented  classes.  We  compare  here  the  performance  skill  of  two  classification  models  trained  on  the  colocated  dataset  or 
 on  a  balanced  equivalent.  To  this  extent,  we  use  a  sampler  implementation  from  the  imbalanced-learn  package  (Lemaitre  et  al., 
 2017),  namely  the  Synthetic  Minority  Oversampling  Technique  (SMOTE;  Chawla  et  al.,  2002)  to  oversample  the  minority 
 classes.  Doing  so  leads  to  improved  classification  skill  with  consistent  increases  across  metrics  on  the  validation  set  of  3-7%  and 
 15-35%  for  the  cases  of  4  or  10  cloud  types,  respectively.  The  oversampling  impacts  mostly  the  cloud  types  from  the  high  and 
 medium  classes,  and  from  the  cirrocumulus  and  cirrostratus  classes,  in  the  case  of  4  cloud  types  and  10  cloud  types,  respectively 
 (see  Table  A.1).  The  methods  evaluated  in  the  following  section  will  thus  include  the  same  over-sampling  strategy  to  overcome 
 the representation of the minority classes and improve the performance on the classification task. 

 4 Evaluation 

 4.1 Classification evaluation 

 In  the  following  section,  we  detail  the  classification  performance  on  the  test  set  of  the  previously  mentioned  models.  Two 
 baseline  models  are  included,  namely  a  classification  model  built  on  the  CNN  autoencoder  from  Lenhardt  et  al.  (2024a)  and  a  RF 
 model  built  on  the  flattened  9x9  input  tiles  as  described  in  section  3.3.1.  The  method  developed  in  this  study  is  represented  by 
 two  models  using  the  aforementioned  vision  transformer  model  (see  section  3.2)  as  backbone  complemented  by  either  a  RF 
 classifier  or  a  MLP  (see  section  3.3).  In  the  rest  of  the  study,  we  denote  the  trained  vision  transformer  model  followed  by  the 
 classification  model  as  CloudViT  (Cloud  Vision  Transformer)  in  its  two  classification  variants  (RF  or  MLP).  The  classification 
 metrics  on  the  test  dataset  for  these  four  models  are  summarised  in  Table  2  for  the  case  of  the  4  cloud  types  and  in  Table  C.1  for 
 the  10  cloud  types.  Since  the  number  of  samples  is  very  limited,  the  performance  of  the  models  cannot  be  only  considered  as  is 
 but  is  further  evaluated  in  the  subsequent  sections  through  distributions  of  cloud  properties  and  spatial  occurrence  distributions. 
 The  CloudVit/RF  method  performs  the  best  across  all  of  the  three  metrics  included.  Firstly,  the  macro-averaged  multi-class 
 accuracy  does  not  differ  by  a  large  margin  between  the  different  methods,  but  the  class-wise  accuracies  reveal  several  limitations. 
 The  baseline  9x9  RF  model  largely  overfits  towards  the  high  and  stratiform  types  (train  and  test  class  accuracies  of  0.84/0.81  and 
 0.63/0.62,  respectively),  performing  poorly  on  the  medium  and  cumuliform  types  (train  and  test  class  accuracies  of  0.31/0.21  and 
 0.19/0.15,  respectively).  The  CloudViT/MLP  model  is  biassed  towards  stratiform  clouds  (train  and  test  class  accuracy  of 
 0.79/0.79)  while  struggling  to  identify  the  other  three  types  (train  and  test  accuracies  all  falling  between  0.10  and  0.40).  The 
 baseline  CNN/RF  and  the  CloudViT/RF  models  are  performing  quite  similarly  both  on  aggregated  and  class-wise  metrics. 
 However,  the  CloudViT/RF  model  showcases  improved  performance  on  the  stratiform  class  (increase  of  0.13  in  the  class 
 accuracy  both  on  the  train  and  test  datasets)  and  only  a  marginal  decrease  (0.03)  on  the  class  accuracies  for  medium  and 
 cumuliform  clouds.  The  performance  on  the  high  clouds  is  similar  with  slightly  higher  accuracies  for  the  CloudViT/RF  model. 
 Other  metrics  like  the  IBA  of  the  geometric  mean  and  the  F1-score  further  emphasise  that  the  CloudViT/RF  model  outperforms 
 the  other  methods  while  addressing  the  imbalance  training  data  to  generalise  with  satisfactory  skill  on  the  unseen  test  dataset. 
 Furthermore,  the  patterns  in  the  class  accuracies  can  be  traced  back  to  shortcomings  in  the  observational  dataset.  Having  only 
 considered  single-layer  cloud  scenes  in  the  colocated  dataset,  the  high  clouds  are  well  predicted  in  accordance  with  the 
 observations  as  a  surface  observer  would  identify  with  certainty  this  type  of  cloud  if  no  other  lower  cloud  is  blocking  the  field  of 
 view  from  the  surface.  Stratiform  clouds  could  be  more  challenging  for  the  observers  as  they  typically  display  high  cloud 
 fraction  and  high  optical  thickness,  limiting  the  ability  of  the  surface  observer  to  quantify  with  certainty  the  amount  of  clouds  in 
 other  levels.  However,  such  characteristics  can  be  well  captured  by  computer  vision  models  which  build  on  patterns  in  the 
 three-dimensional  input  data  which  in  particular  the  baseline  9x9  RF  model  lacks.  This  difference  between  models  is  in  particular 
 apparent  for  the  cumuliform  class  which  is  mostly  composed  of  observations  of  cumulus.  A  cloud  scene  relative  to  a  cumulus 
 observation  will  most  likely  display  a  lower  cloud  fraction  as  the  individual  clouds  are  sparsely  distributed,  extracting  only  the 
 very  near  points  around  the  observation  might  then  be  too  reductive  and  limit  the  accuracy  of  the  classification  model.  It  is 
 confirmed  by  the  accuracy  on  this  cloud  type  for  which  the  baseline  9x9  RF  model  is  largely  outperformed  by  all  three  other 
 models both on training and test datasets (class accuracy increases between 150% up to 260% on the test dataset). 
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 Method  Multi-class accuracy *  IBA geometric mean  F1-score * 

 Baseline 9x9 RF  0.45  0.32  0.35 

 Baseline CNN/RF  0.45  0.32  0.40 

 CloudViT/MLP  0.40  0.32  0.42 

 CloudViT/RF  0.46  0.36  0.43 

 CloudViT/RF (train)  0.55  0.41  0.49 

 Table 2: Classification metrics on the test set in the case of 4 cloud types. The metrics noted with a * are referring to their 
 macro-averaged estimate. The method on which the rest of the study is based is highlighted in bold. The baseline 

 CNN/RF refers to the CNN backbone introduced in Lenhardt et al. (2024a). 

 4.2 Histograms of cloud properties 

 In  order  to  evaluate  the  physical  soundness  of  the  predictions  made  by  the  CloudViT  model,  we  investigate  the  distribution  of 
 several  cloud  properties  with  respect  to  the  observed  and  predicted  cloud  types.  In  Figure  5,  we  summarise  the  distribution  of 
 cloud  top  pressure  (CTP),  cloud  top  height  (CTH),  cloud  top  temperature  (CTT),  cloud  optical  thickness  (COT),  cloud  water  path 
 (CWP)  and  cloud  fraction  (CF)  for  the  4  cloud  types  (high,  medium,  cumuliform,  stratiform)  and  for  three  different  datasets:  the 
 test  set  labels,  the  test  set  predictions  and  the  dataset  of  global  predictions.  The  latter  is  built  on  global  MODIS  AQUA  granules 
 for  the  year  2016  -  the  year  is  chosen  to  avoid  any  overlap  with  cloud  scenes  seen  during  the  training  of  the  vision  transformer  on 
 data  from  2008  -  from  which  we  regularly  sample  tiles  in  order  to  build  a  more  comprehensive  and  global  dataset  of  cloud  types 
 to  further  evaluate  the  method.  The  spatial  distribution  of  cloud  types  for  this  dataset  is  highlighted  in  the  following  section  and 
 the  global  dataset  is  made  available  at  Lenhardt  et  al.  (2024b).  The  histograms  are  built  by  reporting  the  respective  cloud 
 properties  for  all  the  cloudy  pixels  in  each  sampled  tile  from  the  dataset  apart  from  the  cloud  fraction  which  is  computed  for  the 
 whole  tile  from  the  cloud  mask.  As  a  consequence,  unless  the  whole  cloud  field  is  composed  of  only  a  single  cloud  type,  the 
 histograms  will  cover  a  large  range  of  cloud  properties  due  to  multi-layer  clouds  or  multi  cloud  types  scenes  (e.g.  convective 
 cells  with  associated  anvils  or  cumulus/stratocumulus  transitions).  On  Figure  5,  the  histograms  pertaining  to  the  test  set  labels 
 and  predictions  have  distributions  close  to  identical  across  cloud  types  showing  a  good  agreement  in  the  clouds  depicted  in  both 
 datasets  while  the  global  dataset  histograms  provides  a  less  noisy  overview  of  the  distribution  of  the  cloud  properties  per  cloud 
 type.  The  high  clouds  are  characterised  by  low  cloud  water  path  and  optical  thickness,  along  with  colder  and  higher  cloud  tops  as 
 well  as  more  frequent  cloud  fractions  smaller  than  one.  All  of  these  aspects  are  emphasised  in  the  global  predictions  compared  to 
 the  limited  test  set  samples,  showing  the  CloudViT  model  manages  to  extract  the  representative  characteristics  of  the  cloud  type 
 from  the  labels.  The  cumuliform  category  encompasses  mostly  low  warm  clouds  with  reduced  cloud  fractions  and  moderate 
 cloud  water  path  and  optical  thickness.  Inside  this  class,  the  higher  and  colder  cloud  tops  are  concentrated  in  the  cumulonimbus 
 class,  along  with  larger  cloud  water  path  and  cloud  optical  thickness  (see  Fig.  C.1).  The  stratiform  class  includes  thick  cloud 
 fields  with  high  cloud  water  path  and  almost  full  spatial  coverage  of  the  cloud  scenes  (cloud  fraction  close  to  1  in  most  cases).  A 
 fraction  of  the  clouds  in  this  class  are  slightly  higher  and  colder  and  correspond  to  stratus/nimbostratus  clouds  which  can  also  be 
 seen  in  Figure  C.1.  The  distributions  for  medium  clouds  showcase  similarities  with  several  other  types  and  are  best  evaluated  in 
 combination  with  their  spatial  distribution  (see  Section  5).  Examining  in  more  detail  the  refined  cloud  types  with  the  10  cloud 
 types  (see  Fig.  C.1)  reveals  slight  differences  inside  broader  cloud  types.  For  example,  the  distinction  between  the  three  high 
 cloud  types  (cirrus,  cirrostratus  and  cirrocumulus)  appears  through  separations  in  cloud  fraction,  cloud  optical  thickness  and 
 cloud  water  path  which  were  not  obvious  from  the  limited  amount  of  labelled  samples.  The  differences  between  the  three  high 
 cloud  types  further  manifest  in  distributions  of  cloud  top  quantities  for  which  cirrus  and  cirrostratus  display  potential 
 multilayered  cloud  scenes  with  a  combination  of  low/warm  and  high/cold  cloud  tops.  Overall,  the  CloudViT  model  manages  to 
 generalise  well  from  a  few  samples  (only  around  10  for  the  cirrocumulus  class)  while  ensuring  physical  consistency  inside  types. 
 Due  to  the  large  cloud  scenes  considered  as  input  for  the  classification,  the  distribution  of  the  cloud  properties  might  not  be  as 
 representative  of  single  cloud  types  as  an  input  tile  of,  for  example,  16  km.  The  main  caveat  regarding  performance  on  high  and 
 medium  clouds  from  our  method  is  that  the  ground-based  observer  identifies  these  cloud  types  with  higher  uncertainty  compared 
 to  that  of  low  clouds.  Additionally,  stratiform  clouds  with  high  cloud  fraction  can  hinder  the  trustworthiness  of  the  surface 

 13 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

https://doi.org/10.5194/egusphere-2024-2724
Preprint. Discussion started: 2 October 2024
c© Author(s) 2024. CC BY 4.0 License.



 observation  if  the  whole  field  of  view  is  cloudy.  Even  though  the  limitations  of  ground-based  observations  are  evident,  they  still 
 provide quality observations on which an efficient and skilled classification model can be trained. 

 Figure 5: Density histograms of cloud properties for each cloud type from high, medium, cumuliform and stratiform. 

 5 Results 

 5.1 Global cloud type distributions in MODIS data 

 Additionally  to  the  physical  and  microphysical  characteristics  of  the  different  cloud  types,  their  global  spatial  distribution  can 
 help  us  further  understand  in  which  regions  they  are  more  or  less  frequent  and  qualitatively  assess  the  presented  classification 
 method  compared  to  other  remote  sensing  products.  To  this  extent,  as  mentioned  in  the  previous  evaluation  section  (see  Section 
 4),  we  build  an  extensive  cloud  type  dataset  for  the  year  2016  from  MODIS  AQUA  granules  which  are  regularly  sampled  for 
 tiles  of  128x128  pixels.  The  sampling  step  (64)  is  chosen  for  computational  efficiency  and  memory  purposes  to  be  not  too  small 
 to  avoid  large  overlap  between  neighbouring  tiles  but  large  enough  to  ensure  representativeness  in  the  later  aggregated 
 predictions  of  the  MODIS  granules.  Furthermore,  as  the  area  covered  by  each  tile  is  rather  wide,  the  spatial  distribution  of  cloud 
 types  might  be  less  smooth  than  other  products  (e.g.  Sassen  et  al.,  2008)  or  other  methods  (Zantedeschi  et  al.,  2020)  which  are 
 providing  cloud  types  for  smaller  cloud  fields.  Additionally,  the  dataset  is  built  on  single  daily  overpasses  of  the  MODIS 
 instrument and can thus be biassed towards the local retrieval time (13:30 h , early afternoon for AQUA). 
 The  spatial  distributions  of  the  predicted  cloud  types  for  the  global  dataset  for  the  year  2016  are  detailed  in  Figure  6  and  Figure 
 C.2  for  4  and  10  cloud  types,  respectively.  Firstly,  we  note  that  CloudViT  predictions  capture  large  scale  patterns  which  are  in 
 agreement  with  observational  datasets  (Sassen  et  al.,  2008;  Cesana  et  al.,  2019;  Wood,  2012;  Pincus  et  al.,  2023).  Stratiform 
 clouds,  and  in  particular  stratocumulus  (see  Fig  C.2),  are  frequent  in  the  high  latitudes  and  along  the  western  coasts  of  America 
 and  Africa.  Cumuliform  clouds  are  concentrated  in  the  Tropics  apart  from  the  areas  where  stratocumulus  clouds  are  dominant. 
 Medium  clouds  are  concentrated  in  the  polar  regions  and  over  land  in  the  higher  latitudes.  High  clouds  make  up  a  large  portion 
 of  clouds  in  the  polar  regions  but  also  over  land.  The  first  notable  difference  is  the  low  occurrence  of  high  clouds  in  the  Tropics 
 which  would  be  expected  to  be  higher  (Sassen  et  al.,  2008;  Pincus  et  al.,  2023).  An  explanation  could  be  the  frequent  occurrence 
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 of  high  clouds  in  multi-layer  cloud  scenes  related  to  convection  in  the  Tropics.  Furthermore,  in  such  cases  the  model  probably 
 identifies  the  cloud  types  with  larger  cloud  fraction  and  thus  discards  potential  high  clouds  in  the  scene.  Incorporating  more 
 samples  of  high  clouds  in  that  region  (see  Fig.  A.1)  could  potentially  help  the  performance  of  the  classification  model  in  that 
 regard. 

 Figure 6: Spatial distributions of the CloudViT cloud type occurrences (cloud types high, medium, cumuliform, 
 stratiform) for MYD06 granules for the year 2016 aggregated on a 1° regular grid. 

 5.2 Application to a global strom-resolving model simulation 

 As  a  proof  of  concept,  we  investigate  the  cloud  type  representation  in  general  circulation  model  (GCM)  outputs  using  our 
 CloudViT  method.  We  build  on  a  new  generation  of  GCMs  at  kilometre  resolution,  namely  the  ICON-Sapphire  (Hohenegger  et 
 al.,  2023).  As  the  resolution  of  the  simulation  increases,  some  processes  like  deep  convection  can  be  directly  resolved  instead  of 
 parameterized.  Hence,  building  diagnostics  about  cloud  representation  is  of  importance  to  help  evaluate  the  simulations.  In 
 particular,  we  use  the  simulation  run  by  the  Max  Planck  Institute  for  Meteorology  (MPI-M)  for  the  period  between  the  5th  and 
 12th  of  December  1972,  aiming  at  recreating  the  Blue  Marble  picture  made  during  the  Apollo  17  mission  on  the  7th  of 
 December.  Here  we  only  use  the  complete  outputs  provided  for  the  11th  of  December.  The  grid  used  contains  335  544  320  grid 
 points  at  each  level  in  the  atmosphere  (R02B11  grid),  and  outputs  are  provided  every  30  minutes  during  the  simulation  for  the 
 atmospheric  quantities  of  interest,  resulting  in  overall  48  time  steps.  As  the  effective  horizontal  resolution  of  the  model 
 simulation  and  the  MODIS  data  are  on  similar  scales,  we  can  effectively  apply  CloudViT  on  the  model  outputs.  From  the  model 
 outputs,  we  derive  the  cloud  properties  necessary  for  the  method  introduced  in  this  study.  More  information  about  the  particular 
 model  setup  and  the  derivation  of  cloud  properties  is  included  in  Appendix  D.  However,  the  standardisation  of  the  input  cloud 
 properties  for  the  vision  transformer  model  is  still  done  based  on  statistics  computed  on  MODIS  data  which  could  induce  a  bias 
 in  the  latent  representations  and  subsequently  on  the  predictions.  Extending  the  method  to  other  datasets  like  this  GCM 
 simulation thus requires careful investigation that the cloud properties lie in the same range or display similar distributions. 
 For  each  30-minute  time  step,  we  proceed  to  sample  tiles,  regularly  spaced,  to  reach  global  coverage  of  cloud  type  retrievals. 
 Figure  7  displays  the  daily  averaged  occurrence  of  the  cloud  type  predictions  on  a  1°  regular  grid  for  the  4  cloud  types,  the 
 equivalent  for  10  cloud  types  is  presented  in  Figure  D.3.  A  large  proportion  of  the  predicted  clouds  belong  to  the  high  cloud  type, 
 hinting  at  the  difference  in  sensitivity  to  clouds  retrieved  in  the  climate  model  data  compared  to  the  MODIS  retrievals.  However, 
 increasing  the  cloud  ice  content  threshold  by  an  order  of  magnitude  greatly  decreases  the  amount  of  thin,  high  and  cold  clouds  in 
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 the  simulation  dataset.  This  aspect  would  need  further  tuning  through  comparison  with  remote  sensing  retrievals  which  are  not 
 available  for  this  particular  simulated  period.  On  the  other  hand,  the  cumuliform  class  captures  well  the  convective  systems  in  the 
 tropics  while  the  stratocumulus  decks  can  be  identified  (Fig.  D.3).  Additionally,  the  medium  clouds  are  more  present  at  high 
 latitudes.  An  important  aspect  to  factor  in  is  that  the  classification  model  was  only  trained  on  daytime  satellite  observations  as  the 
 optical  cloud  properties  necessary  are  only  available  then.  Thus,  results  on  nighttime  cloud  retrievals  which  is  the  case  for  some 
 of  the  predictions  produced  from  the  presented  simulation  might  need  more  meticulous  evaluation.  Even  though  it  is  a  limiting 
 factor  in  the  case  of  the  satellite  dataset  we  are  using,  the  simulation  outputs  provide  us  with  the  required  variables  across  all 
 timesteps. 

 Figure 7: Spatial distributions of the CloudViT cloud type occurrences (cloud types high, medium, cumuliform, 
 stratiform) for the ICON-Sapphire Apollo 17 simulation of December 11  th  1972 aggregated on a 1° regular  grid. 

 6 Conclusion 

 This  study  introduces  a  new  method  called  CloudViT  to  classify  cloud  types  from  MODIS  cloud  properties,  specifically  CTH, 
 COT  and  CWP.  CloudViT  delivers  robust  cloud  classification  estimates  for  either  4  (high,  medium,  cumuliform,  stratiform)  or  10 
 (cirrus,  cirrostratus,  cirrocumulus,  altostratus,  altocumulus,  cumulus,  cumulus  and  stratocumulus,  cumulonimbus,  stratocumulus, 
 stratus)  cloud  types.  The  classification  model  was  built  on  ground-based  observations  of  cloud  types  (Section  2.1)  and 
 experiments  about  its  generalisation  skill  and  the  benefits  of  spatial  information  were  presented  (Section  3).  We  evaluated  the 
 classification  model  by  examining  distributions  of  cloud  properties  in  Section  4  and  the  global  spatial  distribution  of  cloud  types 
 in  Section  5.1.  Lastly,  we  transferred  our  method  to  a  km-scale  climate  model  simulation  made  with  ICON-Sapphire  (Section 
 5.2). The global dataset alongside the CloudViT code and weights are made available on Zenodo (Lenhardt et al., 2024b). 
 Spatially-resolved  cloud  properties  provide  usable  context  for  the  CloudViT  model  to  improve  the  cloud  classification,  as  shown 
 in  the  comparison  to  the  baseline  method  with  limited  spatial  information.  Introducing  this  new  transformer  model  architecture 
 additionally  improves  the  classification  skill  over  the  CNN  backbone  mentioned  in  Lenhardt  et  al.  (2024a).  Overall,  CloudViT 
 achieves  acceptable  performance  even  on  sparsely  represented  classes  for  both  cases  of  4  and  10  cloud  types.  The  limited 
 colocated  dataset  proves  to  be  a  hurdle  for  the  proper  evaluation  of  the  method  on  labelled  samples  but  the  generation  of  an 
 extensive  global  dataset  allows  deeper  investigation  into  the  cloud  types.  In  this  dataset,  the  predicted  cloud  types  exhibit 
 physically  reasonable  distributions  of  their  respective  cloud  properties,  and  their  global  spatial  distributions  are  consistent  with 
 other  products  (Section  5.1).  Application  to  climate  model  data  proves  to  be  straightforward  and  results  in  insights  into  how 
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 clouds  are  represented  in  global  km-scale  simulations.  The  necessary  cloud  quantities  are  obtained  from  common  simulation 
 outputs  (cloud  liquid  water  and  ice  contents,  altitude,  droplet  number)  which  makes  CloudViT  easily  applicable  to  other  climate 
 model  simulations.  Cloud  type  diagnostics  such  as  CloudViT  can  be  a  resourceful  addition  to  the  panel  of  assessment  methods 
 for model data (Kuma et al., 2023; Kaps et al., 2023). 
 Overall,  the  method  would  benefit  from  including  further  ground-based  observations  through  the  colocation  process  but  then 
 much  larger  storage  and  computational  facilities  would  be  needed  as  global  MODIS  data  represents  thousands  of  granules  each 
 day.  The  classification  model  could  also  be  refined  by  finding  better  alternatives  to  the  RF  or  MLP  presented  here.  The  overall 
 finetuning  process  involving  the  vision  transformer  and  the  MLP  classification  head  proved  to  be  cumbersome  but  holds  great 
 promise  if  the  labels  and  training  process  are  refined.  Transfer  learning  from  a  typical  ImageNet-trained  model  did  not  yield  a 
 notable  performance  difference  which  shows  the  current  need  for  foundation  models  trained  on  remote  sensing  data.  The  main 
 hurdle  here  remains  the  large  diversity  in  instruments,  quantities  and  resolutions  among  remote  sensing  products  which  hinders 
 the possibility of a unified model. 
 To  improve  the  spatial  coverage  of  the  CloudViT  predictions,  the  direct  application  to  granules  from  MODIS  TERRA  would 
 technically  not  require  much  more  work  as  the  instruments  are  similar  and  provide  the  same  cloud  properties.  An  additional 
 benefit  would  come  after  the  upcoming  decommissioning  of  the  CloudSat  mission  which  was  providing  cloud  type  retrievals 
 along  its  track  aligned  with  MODIS.  We  would  then  be  able  to  still  offer  information  about  cloud  types  over  the  same  areas  even 
 though  no  vertical  information  is  available  and  used  from  our  predictions  on  MODIS  level  2  data.  As  for  other  satellite  cloud 
 products,  the  main  difference  would  arise,  similarly  to  climate  model  data,  from  the  potentially  different  distributions  and  ranges 
 in  the  input  cloud  properties  which  would  need  either  retraining  of  the  vision  transformer  or  careful  scaling  to  match  the 
 distributions seen in MODIS data. 
 Furthermore,  some  caveats  appear  when  applying  CloudViT  to  climate  model  data.  As  mentioned  previously,  the  input  scaling  is 
 crucial  to  ensure  proper  portability  of  the  method  to  this  other  data  source.  The  absence  of  nighttime  retrievals  in  the  MODIS 
 data  also  turns  the  evaluation  of  predictions  on  nighttime  data  points  across  the  model  data  into  a  challenging  issue.  However, 
 clouds  play  a  role  in  the  climate  system  both  during  the  day  when  they  cool  the  surface  by  mostly  reflecting  incoming  solar 
 radiation  but  also  at  night  when  they  warm  the  surface  by  trapping  outgoing  terrestrial  radiation.  Shifts  and  changes  in  cloud 
 occurrence  and  distribution  in  the  current  climate  but  also  in  future  projections  could  further  influence  global  climate  change 
 (Luo  et  al.,  2024).  The  proof  of  concept  in  applying  CloudViT  to  a  limited  climate  model  simulation  is  encouraging  but 
 considering  more  common  and  computationally  less  expensive  global  km-scale  simulations  (horizontal  resolution  of  5  km  for 
 example)  could  be  of  greater  interest  to  the  community  to  study  longer  time  scales.  To  this  extent,  two  conceivable  approaches 
 would  consist  in  either  retraining  the  CloudViT  model  on  coarser  input  cloud  properties  matching  the  model  data  resolution  -  the 
 MODIS  Cloud  product  is  also  available  at  a  5  km  resolution  even  though  the  1  km  equivalent  is  recommended  for  use  -  or  in 
 using  CloudViT  as  is  but  with  the  coarse  input  scaled  to  fit  the  resolution  of  the  tiles  on  which  it  was  trained  on.  The  first  option 
 could  be  more  interesting  as  computer  vision  models  are  commonly  trained  on  coarser  resolutions  first  to  learn  the  broad 
 specificity and patterns in the data before fine-tuning the model on finer resolution (Touvron et al., 2019). 
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 Appendix 

 Appendix A: Cloud type observations 

 WMO codes  Cloud type: 4 groups  Cloud type: 10 groups  Colocated samples 

 High clouds 1-6  High  Cirrus  n = 574 

 High clouds 7-8  Cirrostratus  n = 142 

 High clouds 9  Cirrocumulus  n = 29 

 Medium clouds 1-2  Medium  Altostratus  n = 420 

 Medium clouds 3-9  Altocumulus  n = 944 

 Low clouds 1-3  Cumuliform  Cumulus  n = 1998 

 Low clouds 8  Cumulus and stratocumulus  n = 533 

 Low clouds 9  Cumulonimbus  n = 519 

 Low clouds 4-5  Stratiform  Stratocumulus  n = 2274 

 Low clouds 6-7  Stratus  n = 3661 

 Table A.1: Cloud types from the WMO observational datasets, their groups following Kuma et al. (2023) and the 
 corresponding number of samples in the colocated dataset. The WMO codes correspond to the 9 types for each level. 

 Figure A.1: Spatial distributions of observed cloud types (cloud types cirrus, cirrostratus, cirrocumulus, altostratus, 
 altocumulus, cumulus, cumulus and stratocumulus, cumulonimbus, stratocumulus, stratus) from the Met Office datasets 
 (Met Office, 2006; Met Office, 2008) for the years 2008 and 2016. Overall percentage of each label in the total dataset is 

 indicated in brackets. 
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 Figure A.2: Spatial distributions of observed cloud types (cloud types cirrus, cirrostratus, cirrocumulus, altostratus, 
 altocumulus, cumulus, cumulus and stratocumulus, cumulonimbus, stratocumulus, stratus) from the Met Office datasets 
 (Met Office, 2006; Met Office, 2008) for the years 2008 and 2016 colocated with the satellite cloud retrievals (Platnick et 
 al., 2017) used for training the classification model. Overall percentage of each label in the total dataset is indicated in 

 brackets. 
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 Appendix B : Vision transformer training and sensitivity on the cloud classification task 

 B.1 Model architecture and pretrained weights 

 Figure B.1: Training and validation contrastive (left) and reconstruction (right) losses for different vision transformer 
 architectures, pretraining weights, training datasets and scaling factor  . α

 B.2 Reconstruction errors for the CNN autoencoder and the vision transformer (small variant) on the test set 

 Model type  Reconstruction error  CTH  COT  CWP 

 CNN autoencoder 
 MSE  0.27  0.39  0.25 

 l1-loss  0.36  0.33  0.21 

 Vision transformer 
 (small variant) 

 MSE  0.06  0.25  0.13 

 l1-loss  0.10  0.17  0.10 

 Table B.1: Reconstruction relative errors of the CNN (Lenhardt et al., 2024a) and the vision transformer models across 
 channels (CTH, COT and CWP) on the test dataset. 
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 B.3 Spatial context and input tile size 

 Figure B.2: Training and validation contrastive (left) and reconstruction (right) losses for vision transformers trained on 
 different input tile sizes of 16, 32, 64 and 128. 

 Figure B.3: Input tiles (first and third rows) and corresponding reconstructions (second and fourth rows) for vision 
 transformers trained on the relevant input tile sizes of 16, 32, 64 and 128. 
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 B.4 Spatial generalisation 

 Figure B.4: Training (full lines) and validation (dashed lines) metrics for the contrastive (left) and reconstruction (right) 
 losses for vision transformers trained on samples from the Northern or Southern hemispheres. 

 Figure B.5: Spatial distributions of the mean channel reconstruction errors for the Northern and Southern hemispheres 
 colocated samples. The first two rows correspond to the model trained on the samples from the Northern hemisphere and 

 the last two rows to the model trained on the samples from the Southern hemisphere. 
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 Appendix C: Cloud type classification for 10 types 

 Method  Multi-class accuracy *  IBA geometric mean  F1-score * 

 Baseline 9x9 RF  0.19  0.26  0.16 

 Baseline CNN/RF  0.22  0.18  0.17 

 CloudViT/MLP  0.22  0.20  0.16 

 CloudViT/RF  0.23  0.26  0.21 

 Table C.1: Classification metrics on the test set in the case of 10 cloud types. The metrics noted with a * are referring to 
 their macro-averaged estimate. The baseline CNN/RF refers to the CNN backbone introduced in Lenhardt et al. (2024a). 

 Figure C.1: Density histograms of cloud properties for each cloud type from cirrus, cirrostratus, cirrocumulus, 
 altostratus, altocumulus, cumulus, cumulus and stratocumulus, cumulonimbus, stratocumulus, stratus. 
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 Figure C.2: Spatial distributions of the CloudViT cloud type occurrences (cloud types cirrus, cirrostratus, cirrocumulus, 
 altostratus, altocumulus, cumulus, cumulus and stratocumulus, cumulonimbus, stratocumulus, stratus) for MYD06 

 granules for the year 2016 aggregated on a 1° regular grid. 
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 Appendix D: Cloud properties computation from model simulation output 

 In  order  to  compute  the  different  cloud  properties  used  in  our  method  (Table  1),  we  use  the  available  atmospheric  outputs  from 
 the  model  simulation.  The  simulation  was  made  using  the  ICON-2.6.6-rc  version  in  R02B11  grid  resolution  with  90  vertical 
 levels  in  the  atmosphere  (335544320  grid  points  per  level)  and  128  vertical  levels  in  the  ocean  (237102291  surface  grid  points). 
 Observed aerosols and greenhouse gas concentrations of December 1972 were used for the atmosphere. 
 The  cloud  top  quantities  are  retrieved  by  defining  the  top-most  level  where  the  liquid  water  content  (variable  name  clw  )  or  the  ice 
 content  (variable  name  cli  )  are  above  a  predefined  threshold  of  1  mg.kg  -1  .  This  threshold  relates  to  particles  of  sizes  of  at  least  a 
 few  micrometres  which  is  similar  to  what  the  sensors  on  the  MODIS  AQUA  instrument  are  able  to  retrieve.  Using  3D  outputs  of 
 atmospheric  quantities  like  temperature  (variable  name  ta  )  and  pressure  (variable  name  pfull  ),  we  derive  the  cloud  top  properties 
 also  present  in  the  MODIS  MOD/MYD06  level  2  cloud  properties  product.  The  CTH  is  derived  using  the  altitude  in  the 
 corresponding  vertical  level  in  the  grid.  Secondly,  the  CWP  is  computed  by  summing  the  vertically  integrated  cloud  liquid  water 
 path  (variable  name  cllvi  )  and  cloud  ice  path  (variable  name  clivi  )  which  are  already  provided  as  simulation  outputs.  Lastly,  we 
 computed  the  COT  by  vertically  summing  the  layer-wise  COT  computed  from  the  following  equation,  detailed  in  Carslaw 
 (2022), equation 12.49 (Chapter 12.3, page 515): 

 (D.1) τ
 𝑐 
   =     9 

 5 (  4 π
 3  2 

) 1/3    ρ
 𝑤 

− 2/3    ( 𝑘  𝑁 
 𝑑 
) 1/3     𝑐 

 𝑤 
− 1/6     𝐿  5/6    =     0 .  2303     𝑘  𝑔 − 5/6     𝑚  8/3    ( 𝑘  𝑁 

 𝑑 
) 1/3     𝐿  5/6 

 Where  the  layer  liquid  water  path,  kg.m  -3  density  of  water,  a  factor  to  account  for  𝐿    =     𝑐𝑙𝑤    *    ρ
 𝑎𝑖𝑟 

   *    δ 𝑧 ρ
 𝑤 

   =     1000  𝑘    =     1 

 the  width  of  the  droplet  size  distribution,  kg.m  -4  the  adiabatic  condensation  rate  and  the  vertical  droplet  number  𝑐 
 𝑤 

   =     2  𝑒 − 6  𝑁 
 𝑑 

 defined in the simulation by the ECHAM6 parameterization (Equation 6; Stevens et al., 2013). 

 Figure D.1: Daily averages of cloud top height, cloud top pressure, cloud top temperature, cloud optical thickness and 
 cloud water path for the 11th of December 1972 from the ICON-Sapphire Apollo 17 simulation. 
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 Figure D.2: Distribution of cloud top pressure, cloud top height, cloud top temperature, cloud optical thickness and cloud 
 water path for MODIS AQUA retrievals and the ICON-Sapphire Apollo 17 simulation. 

 Figure D.3: Spatial distribution of the CloudViT cloud type occurrences (cloud types cirrus, cirrostratus, cirrocumulus, 
 altostratus, altocumulus, cumulus, cumulus and stratocumulus, cumulonimbus, stratocumulus, stratus) for the 

 ICON-Sapphire Apollo 17 simulation of December 11th 1972 aggregated on a 1° regular grid. 
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 Code availability 

 The code used for the method and producing the plots is available on Zenodo (Lenhardt et al., 2024b). 

 Data availability 

 The  global  dataset  of  the  cloud  type  predictions  for  the  year  2016  is  available  on  Zenodo  (Lenhardt  et  al.,  2024b).  The  dataset  is 
 available  as  a  csv  file  with  corresponding  coordinates,  MODIS  granule  file,  time  of  retrieval  and  predicted  cloud  type  (4  and  10 
 groups)  or  in  a  netCDF  file  as  daily  aggregates  on  a  regular  grid  with  a  resolution  of  1 °  or  5 °.  The  meteorological  observations 
 from  the  UK  MetOffice  (Met  Office,  2006;  Met  Office  2008)  are  available  through  the  CEDA  archive  at 
 https://catalogue.ceda.ac.uk/uuid/77910bcec71c820d4c92f40d3ed3f249  and 
 https://catalogue.ceda.ac.uk/uuid/9f80d42106ba708f92ada730ba321831  for  ocean  and  land  observations  respectively.  The  files 
 from  the  CUMULO  dataset  (Zantedeschi  et  al.,  2019)  are  available  at 
 https://www.dropbox.com/sh/i3s9q2v2jjyk2it/AACxXnXfMF5wuIqLXqH4NJOra?dl=0.  The  simulation  outputs  are  hosted  by 
 the DKRZ (Deutsches Klimarechenzentrum). 
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