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Abstract 10 

More frequent extreme rainfall events in a changing climate increase the risk of flash flooding that is affecting populations 

globally. However, the flood hazard modelling required to reduce disaster risk in populated urban environments is often limited 

by the availability of data required for model calibration and validation. In this study, we use a historical flood event captured 

by 5 m resolution satellite imagery to quantify the effects of flood model complexity and inform flood hazards under future 

climate scenarios in the West Bank, Palestine. Flooding in January 2013 affected over 12,500 people and large areas of 15 

cropland. Vegetation loss and damage during the event were captured using satellite imagery and a normalised difference 

vegetation index (NDVI), and used as a reference flood extent. The physics-based HEC-RAS flood model best reproduced this 

NDVI-derived inundation extent (F1 score = 0.76), although the FastFlood model was able to produce a similar inundation 

pattern (F1 score = 0.74) over 300 times faster. Simulated flood depths from both models were similar; FastFlood displayed a 

mean difference of -0.03 m and a mean absolute error of 0.51 m when compared to HEC-RAS. Climate analysis revealed that 20 

the January 2013 rainfall corresponded to a historical return period of between 1 in 5 and 1 in 10 years. In comparison, a 1 in 

100-year rainfall event (RX1day (maximum 1-day precipitation) of 148 mm) based on historical data (1985–2014) could 

increase by almost 40% (to 205 mm) in the mid-future (2041–2060), which could cause 23% (4 km2) greater inundation 

compared to the 2013 event. Although the patterns of future precipitation in the region are uncertain, our flood hazard maps 

can support urban planning and infrastructure development to manage storm water runoff, particularly where ephemeral 25 

channels, or wadis, intersect the road network.  

1 Introduction  

A warming climate with more frequent extreme rainfall events (Min et al., 2011; O’Gorman, 2015) coupled with increased 

exposure of populations and infrastructure to flooding (Alfieri et al., 2017; Jongman et al., 2012; Tellman et al., 2021) is driven 

by factors including higher magnitude flood events (Hirabayashi et al., 2013; Slater et al., 2021a), human-modified catchment 30 

runoff characteristics (Kundzewicz et al., 2014), and encroachment into flood-prone areas (Andreadis et al., 2022; Devitt et 
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al., 2023). The Intergovernmental Panel on Climate Change’s Sixth Assessment Report (IPCC AR6) states that in many parts 

of Asia, the risks related to climate change are projected to increase progressively for 1.5°C, 2°C, and 3°C of global warming 

(Shaw et al., 2023). Vulnerability to flooding, which is a function of physical, social, and economic factors, is generally highest 

in developing countries and informal settlements that lack planning and infrastructure to manage flood water (De Risi et al., 35 

2013; Kron, 2005). Therefore, pro-poor risk-informed planning is essential to reduce flood risk in an equitable way for future 

developments (Galasso et al., 2021). However, robust flood modelling processes required to inform disaster risk reduction 

strategies require high-quality input data including future precipitation trends generated by analysing historical precipitation 

observations alongside global climate models (Cannon et al., 2015; Shrestha et al., 2023); an accurate digital elevation model 

that represents the channel and floodplain topography (Hawker et al., 2018; Muthusamy et al., 2021; Watson et al., 2024); and 40 

data to calibrate and validate model outputs (Di Baldassarre et al., 2009; Molinari et al., 2019). In developing countries, one 

or more of these inputs are often lacking This can force simplifications to the modelling process and choice of flood model 

complexity, which can subsequently limit the effectiveness of model outputs in decision making. For example, global flood 

hazard maps at ≥90 m resolution that use open access DEMs can provide valuable probabilistic hazard information at regional 

scales (Dabbeek et al., 2020; Sampson et al., 2015). However, model intercomparisons highlight inconsistencies that are often 45 

linked to digital elevation model (DEM) resolution and accuracy, which affects how local channel and floodplain complexities 

are represented (Hawker et al., 2018; Jenkins et al., 2022; McClean et al., 2020; Trigg et al., 2016). 

 

Earth observation data have broad applicability in flood disaster response and planning, owing to the large spatial coverage, 

frequent revisit times, and diversity of information provided by different sensors. For example, information on the duration 50 

and intensity of storms is available from precipitation monitoring missions such as NASA’s Global Precipitation Measurement 

(Huffman et al., 2023; Pradhan et al., 2022); the height of rivers and inundated land can be derived using satellite altimetry 

(Asadzadeh Jarihani et al., 2013; Zakharova et al., 2020); antecedent conditions including soil moisture can be obtained using 

radar (Entekhabi et al., 2010; Kornelsen and Coulibaly, 2013); flood routing and the effects on vegetation can be quantified 

using changing reflectance characteristics (Cian et al., 2018; Shrestha et al., 2013); and inundation extents can be mapped 55 

using both optical and radar data (DeVries et al., 2020; Di Baldassarre et al., 2009; Mateo-Garcia et al., 2021; Schumann et 

al., 2018). Barriers to using earth observation datasets for city-scale flood hazard modelling include their availability and 

accessibility since it is only within the last decade that spatial and temporal resolution has improved, alongside open access 

licensing. Therefore, the use of earth observation data in historical flood assessments is still limited in data-sparse areas, 

particularly to capture infrequent flash flooding.  60 

 

Reducing flood disaster risk requires knowledge of current and future flood hazards under realistic climate scenarios, combined 

with the ability to influence decision making at local scales. The Tomorrow’s Cities project was designed to respond to this 

challenge through a risk-informed urban planning approach (Decision Support Environment (DSE)), weighted towards 

benefitting marginalised and vulnerable communities (Galasso et al., 2021). In this study, we aimed to draw on our experience 65 
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in the application of the DSE in Nablus, Palestine, to evaluate established and emerging flood modelling approaches to 

demonstrate their applicability in a data-sparse flash flood environment. Our objectives were to: (1) quantify the impact of an 

extensive historical flood event using pre- and post-flood satellite imagery; (2) evaluate three flood hazard models of increasing 

complexity using the historical event for validation; and (3) use this to inform an assessment of current and future flood hazard 

in the region. 70 

2 Study Area 

Our study focused on the north-western part of the West Bank, Palestine (in Jenin and Tulkarm governorates), which is thought 

to exhibit the greatest flood hazard, due to high rainfall and runoff potential (Shadeed, 2018)(Figure 1). In this region, increases 

in extreme rainfall, impermeable surfaces, and lack of infrastructure to deal with flood water have led to increasing 

vulnerability to flash floods (Asmar et al., 2021; Hassan et al., 2010; Hawajri et al., 2016; Shadeed, 2018). A particularly 75 

damaging flood event followed heavy and sustained winter rainfall in early January 2013, which affected 12,500 people and 

caused widespread damage to agricultural land (Hawajri et al., 2016; OCHA, 2013). The flooding highlighted existing 

vulnerabilities and the importance of advancing disaster risk reduction strategies and community and government levels 

(OCHA, 2013). 
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 80 

Figure 1: Study area spanning the Jenin and Tulkarm administrative governorates in the West Bank, Palestine. Rain gauge stations 
in Jenin and Tulkarm are shown. The Nablus rain gauge station is 9 km to the south of the study area. 
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3 Methodology 

3.1 Digital elevation model (DEM) preparation and analysis 85 

A 10 m resolution DEM was created to underpin the flood hazard modelling. Contour lines at 1 m vertical intervals were 

supplied by the Ministry of Local Government (Palestine) covering the study area and the Topo to Raster tool in ArcGIS Pro 

3.0 was used to interpolate a digital elevation model at 10 m resolution. The method and date of acquisition of the contour 

lines were not known. Therefore, we compared a hillshade of the DEM to satellite imagery in Google Earth to estimate an 

acquisition date of 2015–2016, based on the construction date of large buildings that were apparent in the DEM. Differencing 90 

the 10 m custom DEM from the 30 m Copernicus Digital Elevation Model (GLO30) revealed spatially variable offsets and 

artefacts (Figure 2a). Therefore, five components of the DEM were defined for independent adjustments to improve the DEM 

before flood hazard modelling ([1] to [5] shown in Figure 2a). Component [1] extended the custom DEM beyond the study 

area to avoid boundary effects in the flood modelling and was filled with the GLO30 DEM. Components [2, 3 and 5] were 

coregistered to the GLO30 DEM independently to correct their systematic offsets using a blockwise coregistration pipeline in 95 

the xDEM Python package, which incorporated a bias correction, iterative closest point registration, followed by the 

coregistration of Nuth and Kääb  (2011). Component [4] was replaced with the GLO30 DEM due to the presence of systematic 

artefacts. The refined custom DEM had a normalised median absolute deviation (NMAD) of 0.67 m when differenced with 

the GLO30 DEM, compared to 2.22 m before adjustment (Figure 2). Components [1] and [4] were excluded from this NMAD 

calculation since these were areas filled with the GLO30 DEM. Hydrological conditioning was applied to the coregistered 10 100 

m custom DEM using the BreachDepressionsLeastCost tool in Whitebox 1.4.0 (Lindsay, 2016) with a maximum breach 

distance of 1 km. A stream network was then derived using a flow accumulation threshold of 1,000 cells, which was selected 

based on a visual inspection of stream sources using the Google Satellite Imagery basemap in QGIS.  
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 105 

Figure 2: (a) DEM of difference between the GLO30 DEM and the custom DEM derived in this study from contour data. Labelled 
components are discussed in the text. (b) DEM of difference post-coregistration to the GLO30 DEM. 

3.2 Earth observation data 

3.2.1 RapidEye imagery 

Pre- and post-flood availability of RapidEye satellite imagery was used to assess the flood extent of the flooding in January 110 

2013. Two multi-spectral 5 m resolution RapidEye-1 satellite images (31 December 2012 and 15 January 2013) processed to 

surface reflectance (L3A) were accessed from PlanetLabs. The 2013 image was co-registered to the 2012 image using Cosi-

Corr (S. Leprince et al., 2007) and ENVI 5.6.3 to remove a spatially variable misregistration (east-west mean offset: 6.4±6.3 

m, north-south mean offset: 4.2±6 m) using a second order polynomial. A normalised difference vegetation index (NDVI) (1) 

was derived for the two acquisitions using the near infrared and red bands. 115 

 

𝑁𝐷𝑉𝐼 =  
(𝑁𝑖𝑟 − 𝑅𝑒𝑑) 

(𝑁𝑖𝑟 + 𝑅𝑒𝑑)
                                                                                                                                                                      (1)  

 

High chlorophyll reflectance in the Nir band compared to low reflectance in the red band means the NDVI is an indicator of 

vegetation presence and health (Pettorelli et al., 2005; Tarpley et al., 1984). The difference in NDVI values pre- and post-flood 120 

can be used to reconstruct the inundated extent using the change in reflectance of the damaged or scoured vegetation, which 

would be observed as an NDVI decrease (Atefi and Miura, 2022; Miles et al., 2018). The short timespan between the RapidEye 
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acquisitions of our study side (15 days) meant that changes in NDVI values were expected to primarily correspond to the 

effects of the extreme rainfall and flooding on vegetation. To mask out insignificant change in NDVI, we manually digitised 

‘stable’ sample polygons over areas where the spectral reflectance was less likely to be affected by the flooding, such as 125 

woodland and bare ground, and extracted their NDVI difference values pre- and post-flood. We then masked pixels with NDVI 

difference values less than two times the standard deviation of these stable polygons (NDVI<0.06) and sieved the output to 

retain connected clusters of at least 18 pixels (450 m2). Finally, we intersected the remaining NDVI changes with the stream 

network derived in Section 3.1 to determine whether they were likely the consequence of fluvial flooding. The Shreve stream 

order (Shreve, 1966) was allocated to the stream network derived in (3.1) and these values were used to sample the NDVI 130 

difference to investigate the relationship between stream order and the pre- and post-flood magnitude of NDVI change. 

3.2.2 Land cover 

ESA WorldCover 10 m v200 (Zanaga et al., 2021) was used to quantify the landcover of each area of significant NDVI change 

(3.2.1). We quantified this for both the full study area (506.5 km2)(Figure 1), which included NDVI changes corresponding to 

pluvial and fluvial flooding and agricultural activity, and separately for the NDVI changes directly connected to the stream 135 

network (Figure 1), which were most likely to be caused by fluvial flooding. To evaluate potential inundation impacts, we also 

used building footprints from the Global ML Buildings dataset (Microsoft, 2024), and the transportation network including 

roads and tracks from OCHA (OCHA, 2021), which were more complete than OpenStreetMap data. 

3.3 Rainfall data and climate scenarios 

Rainfall data for the January 2013 flood event were available from the Palestine Meteorological Department for Jenin 140 

(JEN00001, 145 m elevation), Tulkarm (TUL00002, 7 m elevation), and Nablus (NAB00003, 73 m elevation) stations (Figure 

1, 3a). Inverse distance weighted interpolation was used to create a grid representing peak rainfall (mm/hour) from the station 

data on 8th January (Figure 3b). We also downloaded the total rainfall on the 8th January 2013 from the calibrated GPM L3 

IMERG V06 precipitation product (Huffman et al., 2019) for comparison with the gauge stations (Figure 3b). 
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 145 

Figure 3: Rainfall data for the January 2013 flood event. (a) Rainfall recorded at three rain gauges bounding the study area. (b) 
Rainfall derived from the GPM L3 IMERG V06 product on the 8th of January 2013 and interpolated rainfall between the three rain 
gauges for the study area (inset). Labelled values correspond to the total recorded rainfall on 8th January 2013. 

Historical and future projected rainfall data were used in a climate change analysis. Historical rainfall data recorded at Nablus 

station (NAB00003) (9 km south of the study area) from 1985–2014 were provided by the Palestine Meteorological 150 

Department. Coupled Model Intercomparison Project Phase 6 (CMIP6) Global Circulation Models (GCMs) are used for the 

future projected rainfall data. The GCMs selected for this study are GFDL-ESM4 and MPI-ESM1-2-HR, as recommended by 

Hamed et al. (2022) and Mesgari et al. (2022). Hamed et al. (2022) compared CMIP5 and CMIP6 models over the Middle East 

and North African (MENA) region using historical simulations and future projections, while Mesgari et al. (2022) provides an 

assessment of CMIP6 models’ performances and projection of rainfall based on Shared Socio-economic Pathways (SSPs) 155 

scenarios over Middle East, North Africa, Afghanistan, and Pakistan (MENAP). The two SSPs considered in this study are 

SSP2-4.5 (medium challenges to mitigation and adaptation), and SSP5-8.5 (high challenges to mitigation, low challenges to 

adaptation). The time period of 1985–2014 is considered as historical. The time periods of 2021–2040, 2041–2060 and 2081–

2100 are classified as near future, mid-future, and far future respectively, in accordance with IPCC AR6. 

 160 

We analysed the historical rainfall patterns and characteristics, with focus on RX1day (annual maximum 1-day rainfall) (e.g. 

Shrestha et al., 2023). First, the GCM data were bias corrected and statistically downscaled to the desired spatial and temporal 

resolution. The bias correction and statistical downscaling were undertaken using the empirical quantile mapping method, 

which maps the probability distribution of rainfall of GCMs with the probability distribution of the observed rainfall. The 

concept of quantile mapping can be understood as: 165 

𝑋௙௨௧௨௥௘,௧
௖௢௥௥ =  𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑒𝑐𝑑𝑓 ௥௘௙௘௥௘௡௖௘

௢௕௦ ቀ𝑒𝑐𝑑𝑓௥௘௙௘௥௘௡௖௘
ெ௢ௗ௘௟ ൫𝑋௙௨௧௨௥௘,௧

ெ௢ௗ௘௟ ൯ቁ                                                    (1) 
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Here, ecdf is the empirical cumulative distribution function for the reference time period, 𝑋௙௨௧௨௥௘,௧
ெ௢ௗ௘௟  is the raw GCM at time t 

in the future, 𝑒𝑐𝑑𝑓௥௘௙௘௥௘௡௖௘
ெ௢ௗ௘௟  is the empirical cumulative distribution function of the GCM for the reference period, 

𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑒𝑐𝑑𝑓 ௥௘௙௘௥௘௡௖௘
௢௕௦  is the inverse empirical cumulative distribution function of the observed rainfall for the reference 

period, and  𝑋௙௨௧௨௥௘,௧
௖௢௥௥  is the corrected estimate of 𝑋௙௨௧௨௥௘,௧

ோெ௢ௗ௘௟ . The monthly ecdf for this study was developed using the observed 170 

rainfall data at Nablus station and GCM hindcast data for the period 1985-2014. Gudmundsson et al., (2012) illustrates this 

procedure in detail. Stationary or non-stationary rainfall frequency analysis was then performed on the bias corrected RX1day 

values based on the Mann Kendall trend test, to quantify the rainfall value associated with a given return period (Milly et al., 

2008; Slater et al., 2021b). The temporal disaggregation of rainfall values from the rainfall frequency analysis was done using 

the Global Precipitation Measurement (GPM) - Integrated Multi-satellitE Retrievals for GPM (IMERG) (GPM-IMERG) of 175 

half hourly temporal resolution and 0.1° X 0.1° spatial resolution based on the highest flood event recorded in Nablus. 

3.4 Flood modelling 

3.4.1 January 2013 flooding 

Three models were used to simulate the January 2013 flooding and evaluate their performance speed and accuracy: FastFlood 

v0.12 is a new computationally efficient model that has shown good agreement with fully dynamic physics-based models 180 

whilst requiring up to 1,500 times less computation time (van den Bout et al., 2023); HAIL-CAESAR is a high performance 

version of the Caesar-Lisflood model that uses simplified shallow-water equations (Coulthard et al., 2013); and HEC-RAS 

6.4.1 is a physics-based hydraulic model capable of 2D unsteady flow simulations using Shallow Water Equations. The data 

input and parameters for the flood models are shown in Table 1. Manning’s roughness values were uniformly applied across 

the study area for each simulation. Model sensitivity to the roughness value was determined by increasing the value from 0.01 185 

to 0.07 in 0.01 increments and assessing the modelled flood extent for depths greater than 0.1 m against the NDVI-derived 

reference data (Section 3.4.2). The FastFlood and Hail-Caesar models were run for the model domain shown in Figure 1 and 

the outputs were then clipped to the study area to avoid artefacts at the model boundary. A smaller study catchment was used 

for the HEC-RAS simulations to make them computationally viable, which was subsequently used as the reference area to 

compare the outputs from all three flood models.  190 

 

Table 1. Flood model input parameters. 

Model DEM Rainfall data Settings Manning’s 

Roughness values 

tested 
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FastFlood 10 m 

resolution 

(Section 3.1) 

clipped to the 

study area 

(Figure 1) 

8th January 2013 

interpolated grid 

(mm/hr) (Section 3.3, 

Figure 4b) 

Solver: very high quality 0.01–0.05 

HAIL-CAESAR 8th January 2013 hydro 

index of three rainfall 

zones (mm/hr) for 24 

hours 

See the example parameter 

file in the supplement 

0.01–0.05 

HEC-RAS 10 m 

resolution 

(Section 3.1) 

clipped to 

HEC-RAS 

domain (Figure 

1) 

8th January 2013 

interpolated grid 

(Section 3.3, Figure 

4b) 

(mm/hr) for 24 hours 

Downstream boundary: 

normal depth 

Computation interval: 10 

seconds 

Equations: SWE-ELM 

0.01–0.07 

3.4.2 Model comparison 

Modelled flood depth was evaluated against the NDVI changes that intersected with the stream network, which indicated the 

removal or damage of vegetation during the 2013 flood (Section 3.2.1). FastFlood and HAIL-CAESAR were run across the 195 

full study area (Figure 1), whereas HEC-RAS was run for a smaller catchment due to computational limitations. Therefore, 

the models were evaluated across these two domains. Since the NDVI changes were not expected to be fully representative of 

the observed flood extent, for example on banks lacking vegetation, polygons of NDVI decrease that intersected with the 

stream network and that visually appeared to correspond to the 2013 flood event (Section 3.2.1) were manually selected. These 

polygons were manually edited in some cases to improve their representation of the inundation extent (e.g. Figure S1b). Buffers 200 

of 110 m were then created from both sides of the stream centreline and these were clipped to encompass the NDVI polygons 

to form validation areas (Figure S1). These areas were then used to derive accuracy assessment scores for each flood model. 

The F1 score (2), which is a weighted average of precision (ratio of the true positive modelled flood area to the total modelled 

flood area) and recall (ratio of true positive modelled flood area to the total reference (NDVI) flood area), was used to represent 

overall model accuracy on a 0–1 scale where 1 is the highest accuracy (Kabir et al., 2020; Konapala et al., 2021). Additionally, 205 

the intersection over union (IoU) ratio (3) was used to quantify the amount of overlap between the predicted flood extent and 

the NDVI reference extent.  
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𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
(Precision ×  Recall)

(Precision +  Recall)/2
                                                                    (2) 

 210 

IoU =  
ቀ

Intersecting area of the predicted flood extent 
and the reference flood extent

ቁ

ቀ
Combined area of prediced flood extent 

and the reference flood extent
ቁ

                               (3) 

 

4 Results 

4.1 January 2013 flooding 

Peak rainfall during the 2013 flooding occurred on the 8th of January with 106.7, 89.0, and 81.5 mm of rainfall recorded at 215 

Nablus, Tulkarm, and Jenin rain gauges respectively (Figure 3). The GPM L3 IMERG V06 satellite product showed a 

maximum of 96.1 mm total rainfall in the study area for the same day, which was observed closest to Jenin station (Figure 3b). 

4.1.1 NDVI change 

The effects of the January 2013 flood event were evident in decreased NDVI values across the study area, particularly 

corresponding to the stream network and a large area of ponded water that accumulated during the storm (Figure 4). NDVI 220 

changes were not exclusively confined to the stream network and incorporated the effects of pluvial flooding and seasonal 

agricultural activity. The RapidEye images spanned a fifteen-day window, and the post-flood image was captured five days 

after the peak rainfall, therefore the effects of vegetation change unrelated to the storm event were minimised. However, NDVI 

increases northeast of Arraba town were related to specific agricultural activities (Figure 4b). It was noted from Sentinel-2 

data that NDVI values are typically increasing across the study area between the months of December–January and that this is 225 

also a time of crop harvest (Figure S2). There was a clear non-linear relationship between NDVI decrease and increasing 

Shreve stream order (Figure 4d). Except for stream orders 0–20, the median NDVI decrease for other streams exceeded the 

expected uncertainty of 0.06, with stream orders 200–220 displaying the largest median NDVI decrease of -0.33 (Section 

3.2.1). The highest stream orders displayed greater spread in the NDVI change (Figure 4d), likely due to a combination of their 

less ephemeral nature, greater carrying capacity, and lower detection of NDVI changes for channels in built-up environments. 230 

 

The total area of NDVI decrease and increase across the study area was 65.3 km2 (12.9% of the study area) and 12.4 km2 (2.5% 

of the study area) respectively (Figure 5a), with the cropland land cover class displaying the greatest extent of NDVI decrease 

and NDVI increase with 13.2 km2 (24% of all cropland) and 6.1 km2 (11% of all cropland) of land affected respectively. The 

NDVI decrease intersecting with the stream network, which was most likely to be a direct result of flooding, totalled 35.1 km2 235 

(6.9% of the study area) and cropland was the class most affected (10.5 km2, 19% of all cropland) followed by grassland (9.4 
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km2, 4.1% of all grassland) (Figure 5b). The area of NDVI decrease also included 1.8 km2 (3.5%) of the built-up area (Figure 

5b). Non-fluvial NDVI decrease was greatest for grassland (12.6 km2, 5.5% of all grassland) (Figure 5c) 

 

Figure 4: (a) Shreve stream order in the study area. (b) NDVI change derived from pre- and post-flood RapidEye imagery. (c) 240 
Example of the pre- and post-flood RapidEye imagery with the corresponding NDVI change. (d) NDVI difference plotted with 
increasing stream order. Basemap (a and c) is a RapidEye-1 image (15th January 2013). Image © 2013 Planet Labs PBC. 

 

 

 245 
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Figure 5: (a) NDVI increase and decrease in the study area coloured by the corresponding land cover extracted from ESA World 
Cover v200. (b) NDVI increase and decreases for areas connected to the stream network and (c) for areas not connected to the stream 
network. The area of each class in square kilometres is labelled. Percentages represent the class area as a percentage of the total 
area of each land cover class in the study area. Bars are coloured by their land cover class. 250 

4.1.2 Flood model comparison 

The modelled inundation extent across the full study area was 21.84 km2 for FastFlood and 17.42 km2 for HAIL-CAESAR for 

the 2013 flood event (Table 2). For the smaller HEC-RAS domain, the inundated areas were 3.05 km2, 2.99 km2, and 4.80 km2 

for FastFlood, HAIL-CAESAR, and HEC-RAS respectively (Table 2). FastFlood and HAIL-CAESAR were compared across 

the full study area, and all three models were directly compared in the HEC-RAS study domain (Table 2). Here, the F1 accuracy 255 

scores were 0.74, 0.75, and 0.76 for FastFlood, HAIL-CAESAR, and HEC-RAS respectively (Table 2). Similarly, the HEC-

RAS model displayed the highest IoU score (0.61), although FastFlood (0.59) and HAIL-CAESAR (0.60) were similar (Table 

2). The Manning’s n values used in these models were 0.03, 0.02, and 0.06 respectively and the sensitivity of model accuracy 

to Manning’s n values was low in the tested range of 0.01–0.06 (Table S1). The modelled flood depths from HAIL-CAESAR 

were a closer match to HEC-RAS compared to FastFlood (Figure 6). Here, FastFlood depths had a mean difference of -0.03 260 

m and a mean absolute error of 0.51 m when compared to HEC-RAS, compared to 0.21m and 0.36 m respectively for HAIL-

CAESAR (Figure 7). 
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Figure 6: Example modelled flood depths for the January 2013 rainfall event at two locations. NDVI-derived validation extents are 265 
shown as red polygons. 

 

Figure 7: Flood depth difference boxplots (median value is labelled) and half violin plots. (a) HEC-RAS flood depth minus FastFlood. 
(b) HEC-RAS flood depth minus HAIL-CAESAR. Mean, standard deviation (SD), root mean square error (RMSE), and mean 
absolute error (MAE) are shown.  270 

Table 2. Flood model accuracy assessment for the 2013 flood compared to the NDVI-derived inundation extents. 

Extent Model Mannings F1 score Precision Recall IoU Inundated 
area (km2) 

Model runtime 

Study 
area 

FastFlood 0.02 0.72 0.70 0.73 0.56 21.84 ~40 seconds1 

 HAIL-CAESAR 0.03 0.73 0.75 0.71 0.57 17.42 ~7 hours2 

HEC-
RAS  
domain 

FastFlood 0.03 0.74 0.73 0.76 0.59 3.05 

Clipped from full 
study extent 

 HAIL-CAESAR 0.02 0.75 0.75 0.75 0.60 2.99 

 HEC-RAS 0.06 0.76 0.68 0.86 0.61 4.80 ~4 hours1 
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1 Desktop PC with 14 cores (3.3 Ghz). 2 High Performance Computing node with 40 cores (2.0 Ghz) 

 

4.2 Future climate and flood hazard 

4.2.1 Climate 

Biases in the long term mean monthly rainfall between observed rainfall at Nablus rain gauge and the selected GCMs (Figure 275 

8a) were observed. Although the GCMs were able to capture the monthly rainfall pattern, significant biases were observed 

between the observed and modelled datasets. Figure 8b shows the historical RX1day with future bias corrected RX1day for 

the two climate models and SSP scenarios we tested. A maximum increase of 18% and 24% with respect to the historical 

RX1day was seen in GFDL-ESM4 and MPI-ESM1-2-HR, respectively, for the SSP2-4.5 near future period (2021-2040) (Table 

3). A negative change in RX1day, contrary to the majority of other locations worldwide (Arias et al., 2021), was observed in 280 

SSP5-8.5 scenario in the mid-future, whereas no changes in RX1day can be observed in SSP5-8.5 scenario in the near future 

period.  

 

Table 3: Percentage changes in future RX1day after bias correction 

RX1day (mm) and % changes: GFDL-ESM4 

Scenarios 
Historical Near future 

% change 
Mid-future 

% change 
Far future 

% change 
1985–2014 2021–2040 2041–2060 2081–2100 

SSP2-4.5 
71 

84 18 72 1 82 15 

SSP5-8.5 76 8 68 -4 80 13 

 RX1day (mm) and % changes: MPI-ESM1-2-HR 

SSP2-4.5 
71 

88 24 83 17 82 15 

SSP5-8.5 71 0 75 6 73 3 

 285 
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Figure 8: Rainfall data analysis. (a) Long term mean monthly rainfall of GFDL-ESM4 and MPI-ESM1-2-HR, compared with 
observed rainfall. (b) Historical RX1day and future RX1day (after bias correction). 290 

The Mann-Kendall trend test performed on bias-corrected future RX1day values indicated no significant trends, prompting the 

application of stationary rainfall frequency analysis using Gumbel’s method. Table 4 shows the changes in RX1day with 

respect to historical data for different return periods in the mid-future period, for both GCMs and both SSPs. For both the 

scenarios, GFDL-ESM4 projected a decrease in RX1day, whereas MPI-ESM1-2-HR projected an increase as high as 39%. 

This difference highlights the uncertainties inherent in climate models and future climate for the region. The return period 295 

(a) 

(b) 
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rainfall for the near future, mid-future, and far future is shown in Figure 9. Both models showed an increase in rainfall compared 

to historical RX1day, except for GFDL-ESM4 in the mid-future (Figure 9b). Higher changes were observed in SSP5-8.5 for 

the near future, while SSP2-4.5 showed more significant changes in the far future.  

Table 4: Return period rainfall for GFDL-ESM4 and MPI-ESM1-2-HR, SSP2-4.5 and SSP5-8.5 for the mid-future. 

Rainfall in Mid-future (2041–2060) for SSP2-4.5 

Return Period 

(years) 

Historical 

1985–2014 (mm) 

GFDL-ESM4 

(mm) 

% change MPI-ESM1-2-HR 

(mm) 

% change 

5 89 89 0.2 112 26 

10 103 102 -0.9 135 30 

25 121 119 -1.9 163 34 

50 135 132 -2.5 184 37 

100 148 144 -2.9 205 39 

Rainfall in Mid-Future (2041–2060) for SSP5-8.5 

5 89 86 -2.9 102 15 

10 103 100 -2.8 123 19 

25 121 118 -2.6 149 23 

50 135 131 -2.5 168 25 

100 148 145 -2.4 188 27 

 300 

 

 

 

Figure 9: Projected rainfall values for return periods and SSP2-4.5 and SSP5-8.5 for the near future, mid-future, and far future. 
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 305 

4.2.2 Flood hazard 

The rainfall recorded on the 8th of January 2013 (106.7, 89.0, and 81.5 mm of rainfall for Nablus, Tulkarm, and Jenin rain 

gauges respectively) corresponded to a historical return period of between 1 in 5 (89 mm) to 1 in 10 years (103 mm) (Table 

4). A 1 in 100-year event based on historical data (1985–2014) would feature 148 mm of rainfall. The highest projected future 

rainfall for a 1 in 100-year event (205 mm) was estimated by the mid-future (2041–2060) MPI-ESM1-2-HR model and SSP2-310 

4.5 scenario (Table 4). Owing to the uncertainty in the future climate between the GFDL-ESM4 and MPI-ESM1-2-HR models 

(Table 4), we modelled both these rainfall events to quantify the impacts of higher magnitude flooding. To derive a spatially 

variable rainfall grid, the Nablus rainfall scenarios were scaled proportionally for Tulkarm and Jenin stations using the 2013 

flood rainfall distributions (Table 5). Only FastFlood and HAIL-CAESAR were applied across the study area due to the 

computational limitations of using HEC-RAS. 315 

 

Table 5: RX1day rainfall scenarios and flood hazard. 

Event Nablus rainfall 

(mm) 

Tulkarm rainfall 

(mm) 

Jenin rainfall 

(mm) 

Inundated area (km2) 

2013 flood 106.7 89.0 81.5 21.84 (FastFlood) 

17.39 (HAIL-CAESAR) 

Historical 1 in 100-

year 

148 123.4* 113.0* 23.17 (FastFlood) 

17.94 (HAIL-CAESAR) 

1 in 100-year mid-

future (MPI-ESM1-

2-HR model, SSP2-

4.5 scenario) 

205 171.0* 156.6* 26.84 (FastFlood)  

21.41 (HAIL-CAESAR) 

*Rainfall values were derived as a proportion of Nablus’s rainfall according to the 2013 rainfall event. 
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 320 

Figure 10: HAIL-CAESAR and FastFlood flood inundation for historical and future (MPI-ESM1-2-HR model, SSP2-4.5 scenario) 
1 in 100-year RX1day rainfall events. Impacts are shown for the number of buildings intersecting with the inundated area, the length 
of transport network within the inundated area, and the area of cropland within the inundated area. Percentages are with respect 
to the total number, length, or area of the features for the study area. Building footprints are from Microsoft (2024), the road network 
is from OCHA (2021), and the cropland area is from ESA WorldCover V200 (Zanaga et al., 2021).  325 

https://doi.org/10.5194/egusphere-2024-2722
Preprint. Discussion started: 8 October 2024
c© Author(s) 2024. CC BY 4.0 License.



20 
 

FastFlood produced the largest inundated area for each 1 in 100-year rainfall scenario, with 26.84 km2 inundated for the future 

1 in 100-year rainfall event (Table 5). This model also inundated the greatest length of transportation network including roads 

and track (111.5 km or 9.2 % of the total length in the study area), and the largest area of cropland (14.5 km2 or 25.3% of all 

cropland in the study area) (Figure 10d). However, the HAIL-CAESAR model for the same scenario inundated a larger number 

of buildings (n = 3,207) (Figure 10c). Differences in the modelled inundation between FastFlood and HAIL-CAESAR were 330 

apparent in the low relief area north of Arraba town where FastFlood produced greater floodplain inundation (Figure 10).   

5 Discussion 

Strategies to reduce flood risk are becoming more urgent as the probability of extreme rainfall events increases with climate 

warming (Min et al., 2011; O’Gorman, 2015). In lower income countries, this is coupled with unregulated development into 

hazardous areas, undeveloped infrastructure to manage flood waters, and a lack of flood hazard maps required for decision 335 

making (Hassan et al., 2010; Rentschler et al., 2022; Sampson et al., 2015; Shadeed, 2018). Reliable urban flood hazard 

modelling requires accurate and typically high resolution (<10 m) DEM, combined with past flood inundation data, both of 

which are not globally available or open access (Fewtrell et al., 2008; Hawker et al., 2018; Neal et al., 2012; Shrestha et al., 

2023). Therefore, site-specific approaches are often required. In this study, we used flood extents observed in satellite 

imagery to evaluate three flood models, which were underpinned by a bespoke 10 m resolution DEM and future climate 340 

projections incorporating local rain gauge observations (1985–2014). 

 

Satellite imagery spanning the January 2013 flood event was used to derive NDVI’s that captured damaged and scoured 

vegetation reflecting the flood extent (Figure 4). Similar approaches have been used elsewhere to observe flash flood 

inundation extents (Atefi and Miura, 2022; Miles et al., 2018). However, this method does not represent a definitive flood 345 

map since not all riparian areas will experience vegetation loss or damage, and seasonal agricultural activity including crop 

harvest could bias the observations as was indicated in our study. Nonetheless, NDVI difference maps (Figure 4) revealed 

widespread flood impacts to cropland (24% of cropland in the study area) (Figure 5), which supports observations of 

widespread damage to crops in the northern West Bank reported by OCHA (2013). Additionally, the 2013 flooding 

prompted the formation of the Palestinian Agricultural Disaster Risk Reduction and Insurance Fund (PADRRIF) to reduce 350 

agricultural damage and losses (FAO, 2017). Probabilistic flood hazard mapping is a key mechanism to enable this 

preparatory risk mitigation and preparedness.  

 

In the absence of gauging station data or other flood extent observations, NDVI differencing provided the basis to evaluate 

three flood models’ ability to simulate the 2013 event (Table 2 and Figure 6). As expected, the physics-based flood models 355 

HEC-RAS and HAIL-CAESAR best matched the NDVI-derived flood extent, followed by FastFlood (Table 2). Similar 

accuracy assessment F1 scores of 0.74, 0.75, and 0.76 for FastFlood, HAIL-CAESAR, and HEC-RAS respectively showed 
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that all models provided a reasonable match to the NDVI-derived flood extent. Additionally, FastFlood’s run time of 40 

seconds for the full study area without requiring high-performance computing or complex model setup, demonstrates its 

value in providing useful flood hazard information, particularly where numerical modelling resources are limited (van den 360 

Bout et al., 2023; Najafi et al., 2024; Watson et al., 2024). In this study we focused on the maximum flood extent and depths 

as an indicator of impact. We would expect that dynamic flood effects, including arrival time and flow velocity, would be 

better captured by physics-based flood models but these were not considered due to the lack of gauging station validation 

data.  

 365 

In studying the impacts of climate change, GCM projections are a primary source of uncertainty (Teng et al., 2012), which 

affects the successive steps including bias correction and rainfall frequency analysis (Shrestha et al., 2023). Selecting models 

that accurately represent regional-scale climate is crucial for reducing uncertainty in future climate projections (Ahmadalipour 

et al., 2017). This study used GCMs recommended by Hamed et al., (2022) and Mesgari et al., (2022), which evaluated 11 

climate models (CMIP5 and CMIP6 versions) over the MENA region and assessed the performance of 11 CMIP6 models over 370 

the MENAP region, respectively. The inter-model variation can be seen in the return period rainfall values (Table 4). GFDL-

ESM4 projects mainly negative precipitation changes with respect to historical values, while MPI-ESM1-2-HR projects 

increases of up to 39%. Using GCMs specifically representative of Palestine’s weather patterns can help reduce uncertainties. 

For example, the flood hazard modelling study of Shrestha et al. (2023) applied climate models representative of Nepal (warm-

dry, cold-dry, warm-wet and cold-wet conditions), determined using the envelope-based approach by Lutz et al., (2016). 375 

Similarly, Richardson, (2020) followed a process-based evaluation based on McSweeney et al. (2015), who used realistic 

models with maximum possible range of changes to determine the climate models generating suitable information about future 

changes in extreme precipitation in South Asia. Downscaling methods add to the uncertainty of future climate projections 

(Teng et al., 2012). Quantile mapping, which has showed better performance for bias correction of stationary data (Heo et al., 

2019) was used in this study to correct the systematic biases of the GCMs. Here, the distribution of observed data is transferred 380 

to the projected values. Therefore, the quality of observed data also influences the biases in future climate uncertainty. 

 

The rainfall recorded on the 8th of January 2013 (106.7, 89.0, and 81.5 mm of rainfall for Nablus, Tulkarm, and Jenin rain 

gauges respectively) corresponded to a historical return period of between 1 in 5 (89 mm) to 1 in 10 years (103 mm), whereas 

a 1 in 100-year rainfall event (RX1day: 148 mm) from historical data (1985–2014) could become 205 mm in the mid-future 385 

(2041–2060). Flood models under a mid-future precipitation scenario (MPI-ESM1-2-HR) suggested a 23% (4 km2) greater 

inundation extent compared to the 2013 event, which could affect over 3,000 buildings and 100 km of road network (Figure 

10). In comparison, OCHA (2013) reported damage to 1,570 houses during the January 213 flood event, although it is not 

clear if the strong winds associated with the winter storm contributed to this count. Flash flooding affects built infrastructure 

and causes damage and erosion to cropland, but also presents an opportunity for water storage and groundwater recharge, 390 

which could simultaneously reduce flood hazard. Groundwater aquifers sustain populations and agricultural activity in the 
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West Bank but their recharge is projected to decline with climate warming (Mizyed, 2009). Issues with water quality linked to 

groundwater recharge are also a concern since inadequate waste water management and runoff from agricultural areas is linked 

to observations of increased nitrate contamination (Anayah and Almasri, 2009; Hejaz et al., 2020). Our flood hazard assessment 

provides the first high-resolution mapping for the region that can support urban planning and infrastructure development to 395 

manage storm water runoff and improve water security. Whilst this analysis acts to bound a range of flood hazard scenarios 

under current and future climate, future climate scenarios remain uncertain in the models we evaluated. 

 

6 Conclusions 

In this study, we used pre- and post-flood satellite imagery from an extreme rainfall event in January 2013 to map the associated 400 

inundation extent and impacts in the northern West Bank, Palestine. These extents were used as reference data to evaluate the 

performance of three flood models and quantify current and future flood hazard. Climate analysis revealed that the January 

2013 rainfall corresponded to a historical return period of between 1 in 5 to 1 in 10 years. The patterns of future precipitation 

in the region are uncertain, although more frequent precipitation extremes are likely to increase the risk of flash flooding. Our 

analysis showed that a 1 in 100-year rainfall event (RX1day: 148 mm) based on historical data (1985–2014) could become 405 

205 mm in the mid-future (2041–2060), which could cause 23% (4 km2) greater inundation compared to the 2013 event. 

Buildings, the road network, and agricultural land are particularly susceptible to flooding and infrastructure development will 

be required to manage storm water runoff, particularly where channels intersect the road network. Our study demonstrates the 

value of high-resolution satellite observations to observe flood extents, which then supports model calibration in data scare 

regions lacking other hydrological observations. Whilst the physics-based HEC-RAS flood model displayed the best 410 

performance, the FastFlood model was able to produce a similar inundation pattern and flood depths over 300 times faster 

using standard computing resources, which provides greater flexibility for deployment within an urban planning decision 

support environment. 
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