A Comprehensive Characterization of Empirical Parameterizations for OH Exposure in the Aerodyne Potential Aerosol Mass Oxidation Flow Reactor (PAM-OFR)

⁵ Qianying Liu^{1,2}, Dan Dan Huang^{2,*}, Andrew T. Lambe³, Shengrong Lou², Lulu Zeng¹, Yuhang Wu², Congyan Huang², Shikang Tao², Xi Cheng⁴, Qi Chen⁵, Ka In Hoi¹, Hongli Wang², Kai Meng Mok¹, Cheng Huang^{2,6}, Yong Jie Li^{1,*}

¹Department of Civil and Environmental Engineering, Department of Ocean Science and Technology, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, 999078, China

- ²State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
 ³Aerodyne Research Inc., Billerica, Massachusetts, 01821, United States
 ⁴School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
- 15 ⁵State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing, China

⁶State Ecology and Environment Scientific Observation and Research Station for the Yangtze River Delta at Dianshan Lake , Shanghai Environmental Monitoring Center, Shanghai, 200030, China

Correspondence to: Dan Dan Huang (huangdd@saes.sh.cn), Yong Jie Li (yongjieli@um.edu.mo)

List of the supporting information:

	Table S1: List of OFR185 trace-gas decay experiments under different conditions. SO ₂ or CO was used as the source of external OH reactivity (OHR _{ext}). Each set of experiments was performed under 5–9 lamp intensity settings
25	Table S2: List of OFR254 trace-gas decay experiments under different conditions. SO ₂ or CO was used as the source of OHR _{ext} . Each set of experiments was performed under 5–9 lamp intensity settings
	Table S3: In OFR185 mode, the parameters <i>a</i> - <i>f</i> for the OH _{exp, est} estimation were obtained from different data sets6
	Table S4: In OFR254 mode, the parameters $a-c$ of the OH _{exp, est} estimation were obtained from different data sets7
	Figures
30	Figure S1: The schematics of the PAM-OFR experimental setup for trace-gas decay experiments in (a) OFR185 mode and (b) OFR254 mode
	Figure S2: The examples of a set of experiments conducted in (a) the OFR185 mode and (b) the OFR254 mode, respectively. A set of experiments was operated with light voltage settings stepping decreasing from 10V to 0V. The highlighted areas indicate the periods when all conditions had reached a steady state and the tracer gas was sampled.
35	Figure S3: The regression results of OH _{exp, est} and OH _{exp, dec} when variations occurred in (a1–a3) residence time, (b1–b3) water vapor mixing ratio, and (c1–c3) output O ₃ concentration under atmospheric relevant OHR _{ext} level (4–23 s ⁻¹). Compared to panels a1, b1, and c1, panels a2, b2, and c2 respectively incorporated additional data points with lower t, H ₂ O, and O _{3, out} values, but still utilized the fitting parameters <i>a</i> – <i>f</i> obtained from the higher condition range to estimate OH _{exp, est} . In panels a3, b3, and c3, all data points within the extended condition range were used to re-fit
40	the parameters $a-f$, which were employed to estimate $OH_{exp, est}$
	Figure S4: (a1–a3) The variations of $c \times OHR_{ext}^d \times \log(O_{3, \text{ out}} \times 180/t)$, $e \times OHR_{ext}^f \times [\log(O_{3, \text{ out}} \times 180/t)]^2$ and their sum with respect to OHR _{ext} when using the fitted values of $c-f$ (-0.13922, 0.26786, 0.0026332, 0.4917) obtained from the low OHR _{ext} data points. (b1–b3) The variations of $c \times OHR_{ext}^d \times \log(O_{3, \text{ out}} \times 180/t)$, $e \times OHR_{ext}^f \times [\log(O_{3, \text{ out}} \times 180/t)]^2$ and their sum with respect to OHR _{ext} when using the fitted values of $c-f$ (-0.079114, 0.36805, 0.0041654, 180/t)] ²
45	0.38722) obtained from the data points with a wider range of OHRext condition11

Tables.

Experiment ID	Experiment Species Initial co ID		OHR _{ext} (s ⁻¹)	Residence time (s)	Water vapor mixing ratio (%)
1		182.8	4.27	33.3	0.58
2		191.0	4.46	33.3	0.63
3		193.2	4.52	33.3	0.64
4		274.0	6.40	99.8	0.79
5		291.0	6.80	99.8	0.69
6		331.0	7.74	295.6	1.60
7		366.0	8.55	181.4	1.55
8		379.4	8.87	33.3	0.63
9		380.3	8.89	33.3	1.05
10	SO_2	383.1	8.96	33.3	0.87
11		489.4	11.44	61.4	0.62
12		513.0	11.99	199.5	0.66
13		650.0	15.19	181.4	2.72
14		750.0	17.53	181.4	1.98
15		789.1	18.45	33.3	0.74
16		973.2	22.75	33.3	1.19
17		8556.4	197.98	61.4	0.52
18		8556.4	200.00	33.3	0.38
19		8718.6	203.79	33.3	0.53
20		10247.8	60.58	33.3	1.15
21		12298.2	72.70	33.3	0.86
22	CO	103238.4	610.27	33.3	0.95
23	CO	103852.8	613.91	33.3	0.86
24		207445.7	1226.27	33.3	0.97
25		207496.6	1226.58	33.3	0.89

Table S1: List of OFR185 trace-gas decay experiments under different conditions. SO_2 or CO was used as the source of50external OH reactivity (OHR_{ext}). Each set of experiments was performed under 5–9 lamp intensity settings.

Experiment ID	Species	Initial concentration (ppb)	OHR _{ext} (s ⁻¹)	Input O ₃ concentration (ppm)	Residence time (s)	Water vapor mixing ratio (%)
1		286.2	6.69	4.27	69.6	1.65
2		283.3	6.62	5.91	69.0	2.46
3		283.8	6.63	6.17	69.0	0.99
4		289.9	6.78	6.30	69.0	1.52
5		575.5	13.45	6.20	69.0	1.07
6		575.2	13.44	6.08	69.0	2.45
7		583.5	13.64	6.15	69.0	1.62
8		868.6	20.30	6.23	69.0	2.22
9		874.7	20.45	6.05	69.0	1.57
10		868.9	20.31	6.32	69.0	0.97
11		454.9	10.63	7.77	69.0	0.96
12		450.2	10.52	8.16	69.0	2.17
13		450.7	10.53	6.58	69.0	1.41
14		737.9	17.25	8.32	69.0	0.88
15	50	746.8	17.46	7.77	69.0	2.20
16	SO_2	747.0	17.46	9.38	69.0	1.50
17		204.0	4.77	2.62	34.4	2.11
18		201.9	4.72	3.00	34.4	1.32
19		196.9	4.60	2.90	34.4	0.94
20		282.6	6.61	6.07	34.4	0.79
21		572.9	13.39	6.11	34.4	0.82
22		908.6	21.24	6.08	34.4	0.78
23		204.7	4.78	4.47	43.7	0.86
24		402.8	9.41	5.47	47.4	2.14
25		459.9	10.75	5.34	54.0	1.91
26		840.2	19.64	9.82	111.5	1.74
27		262.7	6.14	8.23	70.9	2.27
28		430.8	10.07	8.19	70.6	2.23
29		260.1	6.08	13.17	69.6	2.38
30		511.4	11.95	19.39	125.5	2.61

Table S2: List of OFR254 trace-gas decay experiments under different conditions. SO_2 or CO was used as the source of OHR_{ext}. Each set of experiments was performed under 5–9 lamp intensity settings.

Experiment ID Species		Initial concentration (ppb)	OHR _{ext} (s ⁻¹)	Input O ₃ concentration (ppm)	Residence time (s)	Water vapor mixing ratio (%)
31		4909.4	29.02	3.15	19.8	0.91
32		4685.6	27.70	5.06	37.4	0.83
33		4958.3	29.31	4.13	47.1	0.78
34	СО	4829.8	28.55	5.59	69.4	2.20
35		4358.0	25.76	2.95	34.5	1.78
36		5034.5	29.76	4.82	46.8	2.18
37		4438.5	26.24	12.95	95.2	2.25

OED 195	Г: #	Data asta	ata sets FP	Coefficient					
UFK185	Figure #	Data sets		а	b	с	d	e	f
	Fig. 1a1	short t	FP _{st, 185}	4.2566	0.57973	-0.062233	0.47836	0.0027988	0.55255
Residence time	Fig. 1a2	adding long t							
	Fig. 1a3	adding long t	FP _{et, 185}	4.5772	0.58603	-0.10617	0.40819	0.004321	0.50352
	Fig. 1b1	low H ₂ O	FP _{1H2O, 185}	5.5822	0.62134	-0.23848	0.27915	0.0071196	0.42689
Water vapor mixing ratio	Fig. 1b2	adding bigh ILO							
	Fig. 1b3	adding high H_2O	FP _{eH2O, 185}	4.2899	0.70966	-0.21378	0.23242	0.0052289	0.39371
	Fig. 1c1	low O _{3, out}	FP _{103, 185}	3.3154	2.3046	-1.74	0.033076	0.0061601	0.29402
Output O ₃ concentration	Fig. 1c2								
	Fig. 1c3	adding high $O_{3, out}$	FP _{eO3, 185}	3.5229	2.2995	-1.7422	0.027553	0.0050063	0.29182
	Fig. 2a	low OHR _{ext}	FP _{IOHR, 185}	3.2404	0.74398	-0.13922	0.26786	0.0026332	0.4917
External OHR	Fig. 2b								
	Fig. 2c	adding high OHR _{ext}	FP _{eOHR, 185}	3.5103	0.62481	-0.079114	0.36805	0.0041654	0.38722
	Fig. 3a	SO_2	FP _{SO2, 185}	3.2759	0.65745	-0.10638	0.23087	0.0050212	0.24198
OHR source	Fig. 3b	СО	FP _{CO, 185}	4.1575	0.55935	-0.86966	-0.17843	0.089848	-0.2993
	Fig. 3c	$SO_2 + CO$	FP _{SO2&CO, 185}	2.1665	0.78424	-0.13214	0.089098	0.0036945	0.03358

Table S3: In OFR185 mode, the parameters *a*–*f* for the OH_{exp, est} estimation were obtained from different data sets.

OED 254	Figuro #	Dete sets	ED	Coefficient			
UFK254	Figure # Data sets		ГР	a	b	с	
	Fig. 4a1	low OHR _{ext}	FP _{IOHR} , 254	12.798	0.34588	0.085063	
External OHR	Fig. 4a2	adding high OHP					
	Fig. 4a3	adding night Officest	FPeOHR, 254	13.151	-17.172	0.12986	
	Fig. 4b1	low O _{3, in}	FP103, 254	13.459	-19.285	0.11153	
Input O ₃ concentration	Fig. 4b2	adding high O					
	Fig. 4b3	adding mgn O _{3, in}	FPeO3, 254	13.325	-19.393	0.12029	
	Fig. 4c1	medium r _{O3}	FP _{mrO3, 254}	12.989	-9.9122	0.12694	
r _{O3}	Fig. 4c2					0.13684	
	Fig. 4c3	adding extended r_{O3}	FP _{erO3, 254}	13.213	-18.921	0.13111	
	Fig. 5a	SO_2	FP _{SO2, 254}	13.145	-18.669	0.13316	
OHR source	Fig. 5b	CO	FP _{CO, 254}	16.161	-92.945	0.11466	
	Fig. 5c	$SO_2 + CO$	FPs02&C0, 254	13.075	-15.698	0.13741	

Table S4: In OFR254 mode, the parameters a-c of the OH_{exp, est} estimation were obtained from different data sets.

Figures.

Figure S1: The schematics of the PAM-OFR experimental setup for trace-gas decay experiments in (a) OFR185 mode and (b) OFR254 mode.

Figure S2: The examples of a set of experiments conducted in (a) the OFR185 mode and (b) the OFR254 mode, respectively. A set of experiments was operated with light voltage settings stepping decreasing from 10V to 0V. The highlighted areas indicate the periods when all conditions had reached a steady state and the tracer gas was sampled.

Figure S3: The regression results of $OH_{exp, est}$ and $OH_{exp, dec}$ when variations occurred in (a1–a3) residence time, (b1–b3) water vapor mixing ratio, and (c1–c3) output O₃ concentration under atmospheric relevant OHR_{ext} level (4–23 s⁻¹). Compared to panels a1, b1, and c1, panels a2, b2, and c2 respectively incorporated additional data points with lower t, H₂O, and O_{3, out} values, but still utilized the fitting parameters *a*–*f* obtained from the higher condition range to estimate $OH_{exp, est}$. In panels a3, b3, and c3, all data points within the extended condition range were used to re-fit the parameters *a*–*f*, which were employed to

⁷⁵ estimate OH_{exp, est}.

Figure S4: (a1–a3) The variations of $c \times OHR_{ext}^d \times \log(O_{3, out} \times 180/t)$, $e \times OHR_{ext}^f \times [\log(O_{3, out} \times 180/t)]^2$ and their sum with respect to OHR_{ext} when using the fitted values of c-f (-0.13922, 0.26786, 0.0026332, 0.4917) obtained from the low OHR_{ext} data points. (b1–b3) The variations of $c \times OHR_{ext}^d \times \log(O_{3, out} \times 180/t)$, $e \times OHR_{ext}^f \times [\log(O_{3, out} \times 180/t)]^2$ and their sum with respect to OHR_{ext} when using the fitted values of c-f (-0.079114, 0.36805, 0.0041654, 0.38722) obtained from the data points with a wider range of OHR_{ext} condition.