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Abstract 

Persistent drought conditions may alter catchment response to precipitation, both during and after the 

drought period, hindering accurate streamflow forecasting of high flows and floods. Yet, the influence 18 

of drought characteristics on the catchment response to precipitation remains unclear. In this study, we 

use a comprehensive dataset of global observations of streamflow and remotely sensed precipitation, 

soil moisture, total water storage and normalized difference vegetation index (NDVI). Using 21 

multivariate statistics on 4487 catchments with a stationary streamflow-to-precipitation ratio, we 

investigate the influence of drought on fluctuations of streamflow sensitivity to precipitation. Our 

analysis shows that generally droughts with streamflow or soil moisture anomalies below the 15th 24 

percentile lead to around 20% decrease in streamflow sensitivity to precipitation during drought 

compared to the historical norm, with up to a 2% decrease one year after the drought. Negative NDVI 

anomalies are the only exception, resulting in a 3% increase in sensitivity. These effects are more 27 

pronounced when droughts are longer and more severe. Most changes were found in arid and warm-

temperate regions, whereas snow-influenced regions exhibit less sensitivity changes due to drought. In 

addition, we used step-change analyses on 1107 catchments with non-stationary streamflow-to-30 

precipitation ratio to identify significant abrupt shifts on the timeseries, examining the role of drought 

in driving these shifts. This analysis revealed both positive and negative shifts in streamflow sensitivity 

after severe and persistent drought conditions regardless of climate and catchment characteristics. 33 

Positive shifts occur only when the drought propagated through the hydrological system after extended 
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dry periods, while negative shifts are usually linked to shorter, intense dry periods. This study sheds 

light on the importance of considering climate characteristics in predicting dynamic catchment response 36 

to precipitation during and after persistent drought conditions.  

 

 39 

1. Introduction 

Drought is known to exert significant influence on catchment hydrological behaviour. Events such as 

the mega drought in Chile (Alvarez-Garreton et al. 2021; Garreaud et al. 2017), the millennium drought 42 

in Australia (Saft, Peel, Western, and Zhang 2016) and the 2011 Texas drought (Klockow et al. 2018) 

have resulted in substantial changes in vegetation productivity and type, soil hydraulic properties, 

surface water-groundwater interactions and water storage. Yet, understanding the extent of drought 45 

influence on catchment hydrologic response remains a crucial question with significant implications for 

enhancing hydrological prediction under future conditions.  

Researchers have studied the impact of persistent drought conditions on catchment response using 48 

linear-regression approaches (Avanzi et al. 2020; Liu et al. 2022; Massari et al. 2022; Peterson et al. 

2021; Saft et al. 2015; Saft, Peel, Western, and Zhang 2016; Wu et al. 2021) and water balance models 

(Liu et al. 2023; Maurer et al. 2022; Pan et al. 2020), registering a shift in rainfall-runoff relationships 51 

during long drought periods. According to Saft et al. (2015, 2016), persistent drought conditions in 

Australia's multi-year drought resulted in significantly less than expected runoff for some of the basins 

studied. This has been mainly attributed to reduced groundwater levels and hence, initial precipitation 54 

is used for replenishing water storage before runoff can occur. This process is prevalent in arid regions 

with high surface water-groundwater connection and large soil thickness, highlighting the linkage 

between changes in rainfall-runoff and catchment characteristics during persistent drought conditions. 57 

Peterson et al. (2021) have shown that rainfall-runoff shifts can persist after drought, in this case due to 

an increase in the fraction of precipitation going to evapotranspiration. Similarly to the Australian study, 

Avanzi et al. (2020) and Maurer et al. (2022) have identified less runoff during droughts in California 60 

than expected, attributing this to nonlinear feedback mechanisms between evapotranspiration and 

storage. Only a few catchments showed runoff increases mainly explained by catchment buffer 

capacities such as soil storage and snow-to-rain transitions.  63 

Despite these findings, uncertainties remain on the specific catchment characteristics that contribute to 

vulnerability to drought-induced changes in the Q-P relationship, as well as the drought conditions that 

lead to these changes and the direction of the change (e.g., increase or decrease). Previous studies relied 66 

on samples with limited variability in catchment characteristics, with a large focus on natural catchments 

in Australia (Liu et al. 2021; Pan et al. 2020; Peterson et al. 2021; Saft et al. 2015; Saft, Peel, Western, 

and Zhang 2016) and California (Avanzi et al. 2020; Bales et al. 2018; Maurer et al. 2022). Furthermore, 69 
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analyses of changes in rainfall-runoff relationships have primarily focused on the effects of 

meteorological droughts (Liu et al. 2021; Massari et al. 2022; Pan et al. 2020; Peterson et al. 2021; Saft 

et al. 2015; Saft, Peel, Western, and Zhang 2016), neglecting other drought types and failing to assess 72 

the effect of drought severity and duration on changes in the rainfall-runoff relationship.  

Here, we analysed the temporal dynamics of the streamflow sensitivity to precipitation (computed as 

the ratio between annual streamflow and precipitation) in approximately 5000 catchments across the 75 

world. Specifically, we addressed the following questions: (1) how do drought characteristics (types, 

duration and severity) influence streamflow sensitivity to precipitation in general and in different hydro-

climatic regions across the globe? and (2) when and where do abrupt changes in streamflow sensitivity 78 

to precipitation occur and how do those changes align with drought periods? To address these research 

questions, we first divided the catchments according to stationary and non-stationary streamflow-

precipitation ratio timeseries. Then, we employed mixed effects panel data models on stationary 81 

streamflow-precipitation timeseries to answer RQ1 and step-change analysis by using threshold 

regression models on non-stationary streamflow-precipitation timeseries to answer RQ2.    

 84 

2. Methodology 

2.1 Data preparation and drought detection  

We identified a large sample of 5590 catchments, whose hydrometeorological timeseries span 25 to 34 87 

years from 1980 to 2016. We compiled observed streamflow data from the Global Streamflow Indices 

and Metadata Archive (GSIM) database (Do et al. 2018; Gudmundsson et al. 2018). Using the catchment 

delineations in the GSIM dataset, we derived a set of hydro-climatic time series using Multi-Source 90 

Weighted-Ensemble Precipitation (MSWEP; Beck et al. 2019) for the precipitation sum over the 

catchment, the Global Land Evaporation Amsterdam Model (GLEAM; Martens et al. 2017) for surface 

(0 – 5 cm depth) and root zone (0 – 250 cm depth) soil moisture, the Gravity Recovery And Climate 93 

Experiment (GRACE; Boergens, Dobslaw, and Dill 2019) for total water storage, Landsat for surface 

water extent(Donchyts et al. 2016; Earth Resources Observation and Science (EROS) Center 2022), and 

STAR - Global Vegetation Health Products for the normalized difference vegetation index (NDVI; 96 

NOAA 2022). These datasets and their post-processing are explained in more detail  in Table S1 of the 

Supplementary Information and in Matanó et al. (2024). 

From average daily streamflow and total precipitation per month, we derived annual average daily 99 

streamflow (mm/day) and annual average daily precipitation (mm/day) for each catchment. As such, we 

assume that the storage change is negligible over an annual time scale. Data aggregation to a yearly 

scale was based on water years, defined for each catchment as the 12-month period beginning in the 102 

month of the lowest average monthly streamflow (Wasko, Nathan, and Peel 2020). We then applied a 

Box-Cox transformation (Sakia 1992) to normalize the skewed yearly streamflow distribution (Saft et 
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al. 2015; Saft, Peel, Western, and Zhang 2016). This allowed us to obtain an approximately linear 105 

rainfall-runoff relationship, thereby facilitating the application of various statistical methods. Further, 

the Box–Cox transformation allowed us to overcome the issue of applying a log-transformation to 

streamflow timeseries with zero flow (e.g., ephemeral or intermittent rivers; Santos, Thirel, and Perrin 108 

2018). We then computed yearly streamflow-to-precipitation (Q-P) ratio timeseries for each catchment.  

Drought events were detected using a variable threshold-level approach for perennial rivers (Van Loon 

2015) and, a combined threshold-level and consecutive dry period method for ephemeral rivers (Van 111 

Huijgevoort et al. 2012; we refer to Matanó et al. 2024, for details on the method used for drought 

detection). We employed monthly-varying exceedance probabilities of the 15th, 10th, 5th, and 1st 

percentiles on precipitation, soil moisture, streamflow, total water storage, and surface water extent 114 

monthly timeseries. Additionally, NDVI anomalies per catchment were analysed to understand 

vegetation health and water flux dynamics. Drought characteristics were summarized at a yearly scale, 

by calculating maximum severity (defined as the difference between observed values and a predefined 117 

threshold), maximum cumulative severity (sum of consecutive severity across years), sum of severity, 

maximum cumulative duration (defined as the number of consecutive months in which observations are 

under a certain threshold), and sum of months under drought for each water year. These metrics were 120 

computed for each variable and were also aggregated for three types of drought: meteorological drought 

(based solely on precipitation data), soil moisture drought (incorporating surface and root zone soil 

moisture), and hydrological drought (taking into account streamflow, surface water extent, and total 123 

water storage). 

 

2.2 Stationarity test and research framework 126 

We tested the stationarity over time of yearly streamflow-to-precipitation ratios (Q-P) using the 

Augmented Dickey-Fuller (ADF) test (Paparoditis and Politis 2018), with a significance level set at 

0.05. This test primarily assesses whether the mean of the streamflow-precipitation relationship 129 

remained consistent over time, regardless of fluctuations around it. 

We then divided our catchments in two groups: catchments with stationary Q-P timeseries and those 

with non-stationary Q-P time series. For stationary Q-P timeseries (ADF test p_value < 0.05), we 132 

evaluated the influence of drought on streamflow sensitivity to precipitation by employing a mixed-

effects panel data model (Gelman and Hill 2007; Figure 1a). For Q-P timeseries displaying non-

stationary behaviour (ADF test p_value > 0.05), we identified potential step-changes in the streamflow-135 

to-precipitation ratio and their coincidence with drought conditions (Figure 1b). With the use of these 

two different approaches, we analysed both the dynamic influence of drought on stationary Q-P time 

series (RQ1) and the more structural changes during drought in non-stationary series (RQ2). 138 
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Figure 1. Research framework. (a) Methodology applied to investigate the influence of drought on streamflow 

sensitivity to precipitation. (b) Methodology applied to identify step changes in the Q-P ratio trend and system 141 

state conditions (e.g., anomaly presence) during the change year. 

 

2.3 Panel data models for stationary Q-P timeseries 144 

We used a mixed-effects panel data model (Gelman and Hill 2007) on 4487 catchments with a stationary 

streamflow-to-precipitation ratio to explore the influence of drought conditions on the variability of 

streamflow sensitivity to precipitation over time. The mixed-effects model offers several advantages. 147 

First, it estimates both the general effect of drought characteristics on streamflow sensitivity to 

precipitation across all catchments (fixed effect) and the variation of this effect between catchments 

(random effect). Second, this model is ideal for analysing hydrological units, as it can account for 150 

potential correlations between "nested" basins (Levy et al. 2018).  

We ran two mixed-effects panel data models whose formulation is presented in Equations 1 and 4, to 

assess the impact of various drought types on the streamflow-to-precipitation ratio, accounting for 153 

different data availability. Before employing these formulations, we tested several drought metrics such 

as maximum cumulative drought severity and maximum duration. However, as no substantial difference 

was found (see Supplementary Table S2), we opted for using maximum drought severity as a predictor 156 

for subsequent analyses.  

In the first panel data model (Eq. 1, 2 and 3), we quantified the relationship between the variability of 

streamflow-to-precipitation and maximum drought severity for meteorological, soil moisture, 159 

hydrological droughts and NDVI anomalies. We considered the full length of the available timeseries 

(1982 to 2016) and the influence of drought severity in the same year and the year after (i.e., t and t-1 

in Equation 1). Drought type variables included in the model formulation were selected based on 162 

https://doi.org/10.5194/egusphere-2024-2715
Preprint. Discussion started: 5 September 2024
c© Author(s) 2024. CC BY 4.0 License.



6 
 

correlation analysis (Figure S1 in Supplementary Information) and the length of their timeseries. For 

soil moisture drought, we used the maximum anomaly severity between soil moisture surface and root, 

given the high correlation between these anomalies (Figure S1c). Hydrological drought combining 165 

streamflow, surface water extent, and total water storage was chosen over the individual variables, as 

the latter two overlap with the other variables only for the last 10 years of data.  Thus, hydrological 

drought was computed as the maximum anomaly severity among streamflow, surface water extent, and 168 

total water storage.   

 

(
𝑄

𝑃
)𝑐𝑡 = (𝛼 + 𝛼𝑐) + ∑ (𝛽𝑖 + 𝛽𝑖𝑐) ∗ 𝐷𝑖(𝑡)

𝑝
𝑖 +  ∑ (𝛾𝑖 +  𝛾𝑖𝑐) ∗ 𝐷𝑖(𝑡−1)

𝑝
𝑖 +  𝜀                  (1) 171 

∑ 𝐷𝑖(𝑡)

𝑝
𝑖 = 𝐷𝑀𝑠𝑣 (𝑡)

+ 𝐷𝑆𝑀𝑠𝑣  (𝑡) + 𝐷𝐻𝑌𝑠𝑣  (𝑡)
 + 𝐷𝑁𝐷𝑉𝐼𝑠𝑣  (𝑡)

                                                             (2)                                                              

∑ 𝐷𝑖(𝑡−1)

𝑝
𝑖 = 𝐷𝑀𝑠𝑣 (𝑡−1)

+ 𝐷𝑆𝑀𝑠𝑣 (𝑡−1)
+ 𝐷𝐻𝑌𝑠𝑣 (𝑡−1)

+ 𝐷𝑁𝐷𝑉𝐼𝑠𝑣 (𝑡−1)
                                                 (3) 

 174 

Where: 

c is a catchment index and t is for year; 

(
𝑄

𝑃
)𝑐𝑡: Ratio between annual average streamflow [mm/d] and precipitation [mm/d] calculated for the 177 

year t in catchment c; 

𝛼:  Intercept (𝛼 for the fixed effect and 𝛼𝑐 for the catchment specific effect); 

𝐷𝑖 (𝑡)
: Max drought severity in the year t (M: meteorological; SM: soil moisture, HY: hydrological and 180 

NDVI anomalies); 

𝐷𝑖 (𝑡−1)
: Max drought severity (sv) in the previous year (M: meteorological; SM: soil moisture, HY: 

hydrological and NDVI anomalies); 183 

𝛽𝑖: Unique effect of drought i occurred in time t on the streamflow-to-precipitation ratio; 

𝛽𝑖𝑐: Unique effect of drought i occurred in time t on the streamflow-to-precipitation ratio for 

catchment c; 186 

𝛾𝑖: Unique effect of drought i occurred in time t-1 on the streamflow-to-precipitation ratio; 

𝛾𝑖𝑐: Unique effect of drought i occurred in time t-1 on the streamflow-to-precipitation ratio for 

catchment c; 189 

𝜀: Error term.  
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In the second panel data model (Eq. 4, 5), we quantified the same relationship but this time using all 192 

variables as predictors (meteorological, soil moisture, streamflow, surface water extent and total water 

storage and NDVI anomalies), starting from 2002 to encompass the last 14 years. This time span was 

chosen to ensure complete overlap of the total water storage and surface water extent timeseries with 195 

the other variables analysed. 

 

(
𝑄

𝑃
)𝑐𝑡 = (𝛼 + 𝛼𝑐) + ∑ (𝛽𝑧 +  𝛽𝑧𝑐) ∗ 𝐷𝑧(𝑡)

𝑝
𝑧 +  𝜀                                                (4) 198 

∑ 𝐷𝑧(𝑡)

𝑝
𝑧 = 𝐷𝑀𝑠𝑣 (𝑡)

+ 𝐷𝑆𝑀𝑠𝑣  (𝑡) + 𝐷𝑆𝑇𝑅𝑠𝑣  (𝑡)
 + 𝐷𝑆𝑊𝑠𝑣  (𝑡)

+ 𝐷𝑇𝑊𝑆𝑠𝑣  (𝑡)
+  𝐷𝑁𝐷𝑉𝐼𝑠𝑣  (𝑡)

          (5)                                             

 

Where: 201 

c is a catchment index and t is for year; 

(
𝑄

𝑃
)𝑡𝑐: ratio between mean streamflow [mm/d] and precipitation [mm/d] calculated for the year t in 

catchment c; 204 

𝛼:  Intercept (𝛼 for the fixed effect and 𝛼𝑐 for the catchment specific effect); 

𝐷𝑖(𝑡)
: Max drought severity in the year t (M: meteorological; SM: soil moisture; STR: streamflow; SW: 

surface water extent; TWS: total water storage and NDVI anomalies); 207 

𝛽𝑧: Unique effect of drought z occurred in time t on the streamflow-to-precipitation ratio; 

𝛽𝑧𝑐: Unique effect of drought z occurred in time t on the streamflow-to-precipitation ratio for 

catchment c; 210 

𝜀: Error term.  

 

We assessed possible correlations among the predictors using Pearson correlation analysis. In the first 213 

model, the highest correlation (0.16) is observed between soil moisture and hydrological drought (Figure 

S1-e in Supplementary Information). In the second model, the highest correlation (0.18) is found 

between streamflow drought and soil moisture (Figure S1-d in Supplementary Information). Similar 216 

correlation values were obtained using Spearman correlation analysis, which accounts for non-linear 

relationships (Figure S2 in Supplementary Information). These correlations are assumed to not 

significantly influence the estimation of the coefficients.  219 

Autocorrelation in the residuals leads to an incorrect estimation of the variance of the estimated 

regression coefficients, hence a possible overestimation of the test significance (Anderson 1954). 
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Therefore, we applied the Durbin-Watson test (Bartels and Goodhew 1981) to check for possible 222 

autocorrelation between the residuals, obtaining values between 1 and 2, indicating little to no 

autocorrelation.  We also applied the fixed effects panel data model with clustered standard errors 

(Moody, 2017) by catchment to test the robustness of our results. By using clustered standard errors, we 225 

allow for the possibility of correlated errors within each catchment, while assuming that errors are 

independent across different catchments. As the number of clusters grows, the cluster-robust standard 

errors become consistent. In applying the fixed-effects panel data model, we used the same regressions 228 

as in Equation 1 and 4. We first constructed a panel model using all available catchments, which yielded 

results consistent with those of the mixed-effects panel data model. Subsequently, we grouped 

catchments according to climate types - such as arid, snow, warm temperate, and equatorial, aligning 231 

with the Köppen-Geiger climate classification (Rubel and Kottek, 2010) and we applied the model to 

each category. Finally, we categorized the catchments according to climate and soil types, as well as 

climate and land cover types. For the soil-based categorization, we utilized soil classifications derived 234 

from the fractions of sand, silt, and clay within each analysed catchment, as provided by the GSIM 

dataset (Do et al. 2018; Gudmundsson et al. 2018). The land cover types used in the second 

categorization - 'Forest',  'Shrubland',  'Grassland' and 'Agriculture' - were also sourced from the GSIM 237 

dataset, which uses the United Nation Classification System for 2015 (European Space Agency (ESA) 

2017) and assigns the land cover type that occupies more than 50% of the catchment area. The 

application of the fixed-effects panel data model to different clusters allowed us to compare coefficients 240 

across various catchment characteristics, and analyse whether these characteristics might alter the 

drought influence on the Q-P relationship.  

The coefficients associated with the independent variables are dimensionless and indicate the magnitude 243 

of change in the sensitivity of streamflow to precipitation for a one-standard change in each respective 

independent variable, while holding all other variables constant. Finally, we analysed the spread of these 

coefficient values with catchment characteristics: mean annual catchment precipitation, maximum 246 

altitude, population density, and artificial water storage. The mean annual precipitation was computed 

using precipitation time series extracted from the MSWEP dataset, while the other variables were 

obtained from the GSIM dataset (Do et al. 2018), which provides various attributes of catchment 249 

characteristics. 

 

2.4 Trend and step-change analysis for non-stationary Q-P timeseries 252 

To identify shifts in the streamflow response to precipitation from one steady state to another, we carried 

out a trend analysis in 1107 catchments with non-stationary streamflow-to-precipitation (Q-P) ratio 

timeseries. This involved modelling the relationship between the Q-P ratio and year (adapting the 255 

methodology in Berdugo et al. 2022). In detail, we investigated whether the Q-P trends are linear (i.e., 

monotonic trends or no trends), curvilinear (with an acceleration or deceleration that makes the trend 
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nonlinear), or abrupt (characterized by a sudden change maintained until the end of the time period 258 

under analysis). We applied linear and quadratic models to test for linearity and nonlinearity, 

respectively, and also assessed the fit without a trend. Additionally, we used a threshold regression 

approach to detect any abrupt changes in the Q-P relationship. This approach models the relationship 261 

between variables that change at a specific threshold (i.e., change point). When multiple state transitions 

occurred within the analysed period, the method identifies the candidate change point that maximizes 

the goodness-of-fit or minimizes the loss function.  264 

To select the best fitted model for each trend, we compared the Akaike Information Criteria (AIC; 

Wagenmakers and Farrell 2004) values of each fit. AIC is based on the log-likelihood of a given fit. A 

lower value indicates a model that fits the data better, but candidates with AIC differences lower than 267 

two units usually are similarly good.  

To account for potential uncertainty in classifying trends due to their noisy nature and the relatively 

short length of the timeseries, we bootstrapped each timeseries 100 times without replacement and 270 

compared the model results of each bootstrapped iteration. For each bootstrap, we increased the 

probability of selecting the least influential points using the distance-based Mahalanobis method 

(Berdugo et al. 2022; Liu et al. 2018). We then computed the number of times that each model was 273 

selected as best-fit out of the 100 bootstraps, to identify the best fitted shape for each trajectory. We used 

this percentage as a measure of confidence for the best-fit shape of each trajectory (hereafter called 

confidence value).  276 

Given the sensitivity of step regressions to outliers, we implemented three criteria to increase confidence 

in detecting step trends. First, we discarded step trends where the change point fell within the first or 

last three years of the period of analysis. This ensured that abrupt changes were not falsely identified 279 

due to anomalous data points at the start and end of the timeseries and guaranteed that detected abrupt 

changes persisted for at least four years after the change, indicating a certain stability of the change 

detected. 282 

Second, we recorded the change point position (i.e., the year in which the trend is detected to change 

abruptly) for each trajectory classified as ‘step-change’ and calculated the mean and standard deviation 

(SD) of these change points across the 100 bootstrap iterations of each catchment. To determine the 285 

value of the change point SD that is critically influencing anomalous steps, we related the confidence 

value in the bootstrap selection and the SD of change points in all sites. We found that both parameters 

were related: for Q-P ratio timeseries in which the SD of change point was lower than 6 years, there was 288 

a strong negative correlation between the SD of change point and the confidence value in the bootstrap 

selection, whereas higher SDs in change point showed similarly low confidence values (Figure S3 In 

Supplementary Information). Therefore, we only considered step changes with standard deviations 291 

below 6 and confidence values above 80%. 
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Third, we categorized trajectories as step-change only if the Q-P ratios before and after the change point 

significantly differed according to a two-sample Kolmogorov-Smirnov test. This criterion ensured that 294 

the observed change point was sufficiently robust, aligning with the definition of a regime shift, 

characterized by significant differences in functioning or structure between two states. The analysis was 

carried out with a significance level of 0.05. For each of the trajectories classified as step-change, we 297 

identified the direction of the step as positive (increasing trend) or negative (decreasing trend). We then 

continued our analysis only considering the catchments with a step change in the Q-P timeseries.  

For the trends classified as ‘step-change’, we examined drought anomalies occurring during and before 300 

the identified change years. Drought severity was categorized as moderate (between the 15th and 10th 

percentiles), severe (between the 10th and 5th percentiles), and extremely severe (below the 5th 

percentile). 303 

3. Results 

3.1 Drought influence on streamflow sensitivity to precipitation for stationary catchments 

Generally, droughts tend to decrease the sensitivity of streamflow to precipitation (negative coefficient 306 

values in Figure 2a and Tables S2 to S4), with hydrological drought having a more pronounced effect 

compared to other drought types. Soil moisture drought is the second most predominant factor (Figure 

2a). In contrast, negative NDVI anomalies exhibit a slight increase (3%) in streamflow sensitivity to 309 

precipitation. The influence of drought persists into the following year, maintaining the same direction 

(in terms of increased or decreased sensitivity to different drought types) but with a reduced magnitude. 

Further, both drought severity and duration show a similar influence on streamflow sensitivity to 312 

precipitation (Table S2), likely due to the moderate correlation between these two variables. 

While on average we find reduced streamflow sensitivity to precipitation during drought events, spatial 

variations among catchments exist (Figure 2b and Figure 3). In most climate zones, hydrological drought 315 

has the strongest influence on the Q-P relationship (Figure 2b). Arid regions are an exception, with soil 

moisture drought having the strongest influence on the Q-P relationship (a one-standard deviation 

increase in soil moisture drought severity leads to a 30% decrease in the Q-P ratio; Figure 2b). Further, 318 

NDVI anomalies in arid regions lead to a decrease in sensitivity (a one-standard deviation increase in 

NDVI anomalies leads to a 3% decrease in the Q-P ratio) compared to the slight increase (around 5%) 

in sensitivity found in the other climate regions. Catchments located mainly in polar, snow-influenced 321 

and equatorial regions present the lower coefficient values, indicating less changes in streamflow 

sensitivity to precipitation during drought events (Figure 2b  and Table S5). These findings are further 

supported by the random effects model, which identifies catchments with lower coefficient values in the 324 

Apennine region, southwest Canada, northeast United States, and central Brazil (Figure 3 and Figure S4 

of the Supplementary Information).  

 327 
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Figure 2. Bar plots of the panel data models’ coefficient values for each drought type variable (METEO: 

meteorological, SM: soil moisture, HYDRO: hydrological and NDVI anomalies) with and without a lag time of 1 330 

year. (a) Fixed effect coefficients from the mixed-effects panel data model. (b) Fixed effect coefficients from the 

panel data model with clustered standard errors, including all data and data grouped by climate types (refer to 

Table S4). All results are significant with p-values < 0.001, while results marked with asterisks indicate levels of 333 

significance: * p < 0.1 and ** p < 0.01. Missing bars indicate coefficients with p-values > 0.1, which are reported 

as NaN.  

 336 

 

Figure 3. Catchment-specific effects of soil moisture (SM) drought on the Q-P ratio captured with the mixed-

effects panel data model. Results are shown only for soil moisture as it exhibits the largest spatial variation 339 

compared to other drought types, which are reported in Supplementary Figure S3.  

By identifying the dominant drought type, indicated by the highest regression coefficient value in each 

catchment, we determined which drought type primarily influences the Q-P relationship spatially 342 
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(Figure 4a). This analysis also allowed us to assess the degree of catchment resilience to Q-P changes 

during droughts. Hydrological and soil moisture drought emerge as the most influential drought type 

(respectively for 30 and 27% of the catchments and indicated in brown and green in Figure 4), 345 

predominantly dampening the sensitivity of Q to P (Figure 4b). Soil moisture drought dominates in 

catchments  clustered in the southcentral United States, southern Spain, and northeast India. On the other 

hand, anomalies in total water storage and NDVI affect Q-P relationships in 19% of the catchments 348 

each, with total water storage anomalies mainly in snow-influenced regions and northern Australia. 

Catchments with the highest regression coefficients (absolute values above 0.7) and indicating the 

lowest resilience to drought influence on Q-P relationships, are located in north Australia and the south-351 

central/eastern United States and are primarily influenced by soil moisture and groundwater drought. 

The most resilient catchments (absolute coefficient values below 0.2) are found in the Alpine region and 

in southeast Brazil.  354 
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Figure 4.  Highest regression coefficient per catchment, indicating the predominant drought type (among 357 

meteorological (METEO), soil moisture (SM), streamflow (STR), total water storage (TWS), and NDVI) 

influencing streamflow sensitivity to precipitation, as determined by the mixed-effects panel data model with time 

series data spanning the last 14 years (starting from 2002) and using Equation 2. This timeframe enables a full 360 

overlap of GRACE data with other variables. Coefficients of drought anomalies in surface water extent were 

excluded from the analysis due to nonsignificant results (p > 0.1). (a) Spatial distribution of the predominant 

drought type per catchment. Marker size corresponds to the magnitude of the highest coefficient. Circular markers 363 

represent a decrease in sensitivity of streamflow to precipitation, while triangle markers indicate an increase in 

sensitivity. (b) Fraction of catchments with positive and negative coefficients of the predominant drought type per 

climate zone.  366 

Spatial variations in streamflow sensitivity to precipitation due to drought are influenced by both 

topography and climate characteristics, but to different degrees. Altitude variation has a minimal effect 

on the influence of drought on streamflow sensitivity to precipitation (Figure S5 in Supplementary 369 

Information). As maximum catchment altitude increases, the sensitivity of catchment response to 

meteorological and soil moisture drought slightly decreases across all climate regions except arid ones, 

with this effect being particularly noticeable in the Alps, Pyrenees, mountain ranges of Norway, and the 372 

Canadian coastal mountains. In contrast, mean catchment precipitation exhibits a more pronounced 

effect, with a decrease in the drought influence on the Q-P ratio as mean catchment precipitation 

increases (Figure S6 in Supplementary Information). The exception to this is hydrological drought, 375 

whose influence on streamflow sensitivity to precipitation slightly increases when mean catchment 

precipitation increases.   

While climate types primarily influence variations in drought impacts on Q-P relationships across 378 

catchments, predominant land cover also plays a significant role (Supplementary Figure S8). 

Catchments dominated by grasslands and shrublands are more sensitive to Q-P changes induced by soil 

moisture drought, whereas those with forests and agricultural areas exhibit greater fluctuations in Q-P 381 

relationships during hydrological drought (first row of the heatmap in Supplementary Figure S8). These 

differences become more pronounced when catchments are clustered by both climate and land cover 

(Supplementary Figure S8). Specifically, grasslands in arid and equatorial regions exhibit heightened 384 

susceptibility to Q-P changes during drought. In snow-influenced climates, shrublands experience the 

most significant changes, while in warm temperate regions, agricultural and forested areas are the most 

affected. Conversely, negative NDVI anomalies have a minimal effect on the Q-P relationship in 387 

catchments dominated by grasslands. 

Clustering catchments based on soil and climate type reveals that those in both snow-influenced regions 

and with sandy soils (sand fraction >33%) exhibit the least changes in streamflow sensitivity to 390 

precipitation due to drought (Supplementary Figure S9). Q-P ratios in arid and equatorial sandy 

catchments are significantly influenced by soil moisture drought, while hydrological drought plays a 
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key role in warm temperate catchments with both clay and sandy soils.  By clustering the catchments 393 

according to the total storage of the dams within a catchment, we can see that the influence of drought 

on the Q-P relationships slightly increases with an increase of reservoir storage (Supplementary Figure 

S11).  396 

 

3.2 Analysis of step change in Q-P relationship for non-stationary catchments 

The step analysis identified 197 catchments with a step change in the Q-P ratio timeseries, 183 of which 399 

occur during drought conditions. The percentage of catchments showing a step change was similar for 

both undisturbed and human-influenced (presence of reservoirs) catchments, at around 16%. Among the 

human-influenced catchments, 70% showed a negative step, whereas the undisturbed catchments were 402 

nearly evenly split, with about 52% exhibiting a positive step and 48% a negative step. 

Catchment clusters with positive steps in the Q-P relationship (i.e., increased sensitivity of streamflow 

to precipitation) are primarily found in snow-influenced regions but are also present across other climate 405 

regions (Figure 5d). Those catchments are concentrated in the north-central United States, western 

Canada, and northeastern Brazil. Conversely, catchment clusters with negative step are found in southern 

Canada, scattered across Alpine and Scandinavian countries, and central Brazil. By plotting the years in 408 

which the steps occurred, we could identify some notable drought events (Figure 5). For instance, a 

cluster of catchments with negative step trend has the step change during the 2011-2012 drought that 

severely affected north-east Brazil (Rodrigues and McPhaden 2014). Within this cluster, only one 411 

catchment exhibits a positive step change. This catchment shares the same equatorial climate and has 

similar land cover as the others in the cluster (Table S6). The only notable difference is its significantly 

smaller size (hundreds of square kilometers compared to the others which span thousands). 414 
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Figure 5. Global maps (a) of catchments whose Q-P ratio timeseries presents a step trend with a positive (triangle 

markers) or negative (circle markers) step. Marker colours indicate the years in which the step change occurred. 417 

Marker size indicate the magnitude of the shift. b. Occurrence of positive or negative step change in Q-P 

relationship across catchments located in Arid, Warm temperature, Equatorial, Snow and Polar climate regions. 

 420 

Drought events occurring during shifts in the Q-P relationship are typically extremely severe (below the 

5th percentile; Figure 6a and b). This is especially pronounced in meteorological droughts and NDVI 

anomalies for negative shifts, and in soil moisture droughts for positive shifts. Our analysis of drought 423 

preceding the change year reveals longer durations of soil moisture and hydrological drought (>1 year) 

for positive step trends, and longer durations of NDVI and meteorological droughts for negative steps 

(>10 months; Figure 6c and Supplementary Figure S13).  426 

Finally, 96% of drought events detected during the change year had more than one anomaly, with 92% 

including meteorological droughts. Instances where the drought anomaly was solely meteorological 

resulted mainly in a decrease in the Q-P ratio following the step change (19% of catchments, Figure 7a). 429 

Conversely, instances showing positive shifts were mainly related to at last two components of the 

hydrological system experiencing drought anomalies (Figure 7b). Specifically, both positive and 

negative shifts are initiated by precipitation anomalies, but the shift is positive mainly when this anomaly 432 

propagates to soil moisture (88% of catchments, Figure 7b) and then to the hydrological system (75% 

of catchments, Figure 7b). 

 435 
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Figure 6. Analysis of severity and duration of drought events detected during the change years. (a-b) Occurrences 

of different drought types (meteorological (METEO), soil moisture (SM), streamflow (STR), surface water extent 438 

(SW), total water storage (TWS), and NDVI) for negative (a) and positive (b) steps. The fractions of total 

occurrences classified as moderate (10th < x < 15th), severe (5th < x < 10th), or extremely severe (x < 5th) droughts 

are represented by blue, yellow, and brown colours, respectively. (c) Total number of months under anomalies of 441 

consecutive drought years preceding the change year (drought may persist after the change year). 

 

https://doi.org/10.5194/egusphere-2024-2715
Preprint. Discussion started: 5 September 2024
c© Author(s) 2024. CC BY 4.0 License.



17 
 

 444 

Figure 7. Percentage of drought types (co-)occurring during negative (a) and positive (b) shifts, propagating from 

precipitation, soil moisture, and streamflow droughts to further droughts along the drought propagation pathway. 

For example, in panel (b), the blue flow leading to the yellow bar (88%) indicates the co-occurrence of 447 

meteorological and soil moisture droughts, while the blue flow leading to the brown bar (11%) indicates the co-

occurrence of meteorological drought and NDVI anomalies. Flow colours represent the co-occurrence of multiple 

anomalies (e.g., the green flow (75%) represents the co-occurrence of meteorological, soil moisture, and 450 

hydrological droughts). Circular flows (loops returning to the same drought type) represent events where only one 

anomaly was detected, indicating no further propagation of drought within the system. Percentages are calculated 

separately for positive and negative steps, representing the proportion of catchments exhibiting each specific co-453 

occurrence relative to the total number of catchments showing a step change. 

 

4. Discussion 456 

4.1 Drought influence on Q-P relationship in stationary catchments 

The panel data analysis showed that drought in general decreases streamflow sensitivity to precipitation 

in stationary catchments (Figure 2 and Figure 3), aligning with previous research (Liu et al. 2021; 459 

Massari et al. 2022; Maurer et al. 2022; Saft, Peel, Western, Perraud, et al. 2016). This tendency can be 

explained by initial precipitation being used to replenish catchment water storage before streamflow 

responds (Barendrecht et al. 2024; Van Loon and Laaha 2015; Parry et al. 2016), which is further 462 

confirmed by the higher influence of hydrological and soil moisture drought on the Q-P relationship 

compared to meteorological drought and NDVI (Figure 2). On the other hand, negative NDVI anomalies 
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lead to a slight increase of streamflow sensitivity to precipitation (Figure 2). This increase can be 465 

attributed to decreased evapotranspiration and reduced water uptake from dying vegetation (Breshears 

et al. 2005; Zhang et al. 2019). In smaller catchments (hundreds of square kilometers), an increase in Q-

P relationship may also be due to drought-induced soil compaction, which leads to reduced infiltration 468 

and higher runoff (Alaoui et al. 2018; Descroix et al. 2009). 

Despite a predominant tendency of decreasing streamflow sensitivity to precipitation during drought, 

the severity of this influence and the underlying processes differs spatially. Arid regions, for instance, 471 

show less resilience to drought, which significantly influences catchment response to precipitation. This 

finding aligns with earlier studies (Liu et al. 2023; Maurer et al. 2022; Saft et al. 2015), which observed 

higher susceptibility to change in hydrological behaviour during persistent drought in arid catchments. 474 

Our study further reveals that Q-P relationship arid regions are particularly sensitive to soil moisture 

drought (Figure 3). This suggests that decreases in subsurface flow, which affect vegetation cover and 

surface water-groundwater interactions, are primary mechanisms driving reduced streamflow sensitivity 477 

to rainfall. Conversely, snow-influenced and polar regions are more resilient to drought-induced changes 

in the Q-P relationship (Figure 2b) due to their high storage capacity. In these basins, snowmelt during 

drought can replenish subsurface storage, compensating for reduced precipitation inputs and limiting 480 

the dependency of evapotranspiration on deep subsurface storage (Avanzi et al. 2020). In these regions, 

the relationship between precipitation and streamflow is strongly influenced by drought anomalies in 

the total water storage (Figure 4), as confirmed by (Berghuijs and Slater 2023; Carroll et al. 2024; van 483 

Tiel et al. 2024), who highlight the importance of groundwater for mountain streamflow. 

Spatial differences can also be found in the influence of negative NDVI anomalies on the Q-P 

relationship. While the sensitivity of the Q-P relationship generally increases during negative NDVI 486 

anomalies, in arid and semi-arid catchments, this sensitivity decreases (Figure 2b). This decrease could 

be explained by reduced connectivity among bare patches (Urgeghe et al. 2010) and increased soil 

evaporation due to an increase in solar radiation reaching the ground (Guardiola-Claramonte et al. 2011).  489 

Spatial variations are also driven by topographic characteristics and landcover type, although climate 

characteristics appear to be more predominant. In general, soil moisture and meteorological drought 

have a slightly smaller influence on streamflow sensitivity to precipitation at higher altitudes, with this 492 

behaviour accentuated mainly in certain areas such as the Alps and Pyrenees. The same effect was found 

by Maurer et al. (2022) and explained by the resilience of high-elevation runoff to increases in potential 

evapotranspiration due to overall lower temperatures and sparser vegetation (Garreaud et al. 2017), 495 

which help mitigate runoff losses elsewhere in the basin. By analysing land cover, we find that forests 

reduce the influence of meteorological drought on catchment response, likely due to their higher 

hydraulic diversity, which buffers precipitation anomalies (Anderegg et al. 2018). However, when 498 

drought affects the hydrological system, forests present marked changes in catchment response. A 
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similar effect is observed in agricultural and grassland catchments, but specifically in response to soil 

moisture drought.  501 

While the impact of human influence (i.e., reservoirs) on drought-induced changes on the Q-P 

relationship is relatively weak, average catchment wetness—represented by mean annual 

precipitation—appears to have a stronger influence. In detail, we found a substantial decrease of soil 504 

moisture drought influence on the Q-P relationship with an increase in wetness which could be explained 

by the buffering effects of water storage (Liu et al. 2022).  

 507 

4.2 Q-P shifts during drought in non-stationary catchments  

 

The analysis of step changes in the Q-P relationship in non-stationary catchments showed slightly 510 

different patterns in how streamflow sensitivity to precipitation shifts during drought conditions, 

compared to Q-P fluctuations during drought in stationary catchments. While the study of drought 

influence primarily indicated a drought-induced decrease in streamflow sensitivity to precipitation, the 513 

step-change analysis identified both positive and negative shifts (Figure 5). These shifts occurred in 

various climate regions and under different catchment characteristics. This suggests that catchments 

might experience changes in the rainfall-runoff relationship regardless of their predominant climate and 516 

catchment characteristics. 

Although both positive and negative Q-P shifts are found in catchments in different climate regions, 

catchments in snow-influenced regions exhibited a slight tendency toward positive shifts. These 519 

consistent increases in streamflow sensitivity to precipitation for at least four years after the shift can be 

explained by permafrost thaw (Lamontagne-Hallé et al. 2018) and glacial melt (Fountain and Tangborn 

1985; Lutz et al. 2014; Schaner et al. 2012). While these mechanisms can sustain increased streamflow 522 

sensitivity to precipitation, they are ultimately finite resources. As glaciers and permafrost deplete and 

precipitation increasingly falls as rain, streamflow will eventually reduce (Berghuijs, Woods, and 

Hrachowitz 2014). 525 

Contrary to the drought influence on stationary Q-P relationships, the severity and duration of droughts 

play a critical role in shaping these step changes (Figure 6). Our analysis indicates that severe droughts 

especially with longer durations are often linked to positive step changes in the Q-P relationship. For 528 

instance, positive step changes are frequently preceded by extended periods of severe soil moisture and 

hydrological drought, reflecting how persistent drought anomalies in the hydrological system can lead 

to significant adjustments in catchment response. These adjustments can be related to drought-induced 531 

changes in soil hydraulic properties (Alaoui et al. 2018; Descroix et al. 2009), vegetation type (Adams 

et al. 2012), interaction between shallow groundwater tables and soil moisture (Barendrecht et al. 2024). 

Conversely, negative step changes can occur after shorter drought periods, often linked to 534 

meteorological droughts. This suggests that negative step changes might be associated with more abrupt 
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climatic shifts rather than longer-term changes in hydrological processes. This is further confirmed by 

the observation that positive Q-P shifts occur only when anomalies propagate through the hydrological 537 

system, resulting in multiple detected anomalies. In contrast, negative shifts can be recorded with only 

a decline in rainfall (Figure 7). 

While there are no significant differences between catchments with human influence and those that are 540 

undisturbed when analysing drought influence on Q-P fluctuations, more pronounced differences 

emerged when analysing Q-P shifts during drought. Shifts occur in both catchments with reservoirs and 

those that are undisturbed. However, negative shifts are prevalent in catchments with reservoirs. This 543 

trend may be attributed to changes in reservoir operational rules aimed at drought mitigation (Di 

Baldassarre et al. 2017). Since a shift in our analysis must persist for at least four years to be considered 

significant, this suggests that drought events have a lasting impact on reservoir operational strategies. 546 

These findings indicate that drought not only alters the Q-P relationships due to changes in the 

hydrological system but also through changes in risk perception and adaptation responses.  

 549 

4.3 Limitations and challenges 

The methodology and data employed in this study comes with a few limitations and challenges.  

Firstly, the precision of estimates in mixed-effects panel data models improves with longer time series, 552 

as they enable more accurate modelling of random effects and mitigate the influence of short-term noise. 

Similarly, trend analysis benefits from extended time series. However, increasing the length of the time 

series can reduce spatial coverage by excluding some catchments. To balance long-term coverage with 555 

spatial representation, we opted for a minimum time span of 25 years for streamflow and precipitation 

data. This decision, coupled with strict data quality checks (detailed in Matanó et al., 2024), resulted in 

underrepresentation of regions such as Asia, Australia, northern and central Africa, and the western 558 

United States in our analysis. 

Another significant challenge was the absence of GRACE measurements before 2002, which resulted 

in missing total water storage (TWS) anomalies for earlier years. Additionally, the surface water extent 561 

time series began in 1984, three years later than other variables. This led to a trade-off between 

maximizing the length of the time series in the panel data model and ensuring full overlap of all 

variables. To address this, we computed a new variable, the hydrological anomaly, summarising the 564 

anomalies in streamflow, surface water extent, and TWS to ensure a consistent time span with the other 

variables. Additionally, we ran the panel data models using the last 18 years of data to guarantee full 

overlap of the variables without aggregation.  567 

Finally, another challenge lies in bridging the 'scale gap' between drought events, which occur on an 

event time scale, and the streamflow-precipitation ratios, which are computed on an annual time scale. 
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To mitigate this, we calculated various metrics to represent the characteristics of drought events on a 570 

yearly basis, attempting to reconcile these different temporal scales within our analysis. 

 

5. Conclusion 573 

This study used panel data models to examine the effects of drought type, duration, and severity on 

streamflow sensitivity to precipitation, accounting for variations in climate types, altitudes, land cover 

and average precipitation levels. Our analysis generally revealed a decrease in streamflow sensitivity 576 

during droughts in stationary catchments, except in cases of negative NDVI anomalies, which slightly 

increased sensitivity. Spatial variability was evident, with arid and semi-arid regions showing lower 

resilience to drought-induced changes in the Q-P relationship, while wet catchments, such as those in 579 

snow-influenced climates, showed greater resilience due to their water-buffering mechanisms. This 

trend of reduced sensitivity intensified with longer and more severe droughts, though the effects of 

duration and severity were similar in magnitude. Further analyses based on step-change methods in non-582 

stationary catchments revealed both positive and negative shifts in sensitivity. Specifically, longer and 

more severe droughts related to soil moisture and hydrology often resulted in positive shifts in 

sensitivity, whereas shorter, more abrupt meteorological droughts were associated with negative shifts. 585 

These findings underscore the complexity of drought impacts on the Q-P relationship and highlight the 

importance of considering both drought characteristics and regional differences when evaluating 

streamflow responses. Understanding these sensitivities is crucial for assessing the resilience and 588 

adaptability of catchments to drought, given its distinct roles in influencing flow regimes. 

 

Data and code availability 591 

All data used in this study come from secondary datasets which are publicly available at the time of 

publication. Data regarding streamflow data are available through the GSIM dataset at 

https://doi.pangaea.de/10.1594/PANGAEA.887477 (Do et al. 2018; Gudmundsson et al. 2018). 594 
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drought events are openly available at the following URL/DOI: 
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