
Response to reviewers 

  
Drought decreases streamflow response to precipitation especially in arid regions 

 

Reviewer 3 

I found this is an interesting article. I have a few comments detailed below. Minor revision is 
requested. 

• We thank the reviewer for taking time to read our manuscript and we are very pleased that 
they found the manuscript interesting. The reviewer provides constructive feedback and 
suggestions, which we will address in the revised manuscript. Below, we summarize the 
changes we will make in response to these comments. Our responses are shown in blue, 
the revised text is shown in italics, and line numbers mentioned in this response refer to 
the current version of the manuscript and they are indicated within brackets [xx]. 

 

1. Title: I wonder whether the article title chosen by the authors is clear enough. I found it very 
general and therefore not really convincing on the original results it brings. For example 
should the annual scale of the analysis be mentioned. 

• We thank the reviewer for the suggestion and we agreed about the importance of adding 
the temporal scale of the analysis in the title: Drought decreases yearly streamflow 
response to precipitation especially in arid regions 

2. Abstract: Are the 2%-3% evolutions significant given all the other uncertainties in data? 

• If the reviewer is questioning the relevance of the findings showing 2–3% influence of 
NDVI anomalies and drought events from the previous year on the Q-P ratio, we argue 
that the broader conclusion remains valid despite uncertainties in the data. A relatively 
small influence suggests that this specific drought type has minimal impact on 
catchment response. In contrast to the 20–30% changes observed for other drought 
types, this lower effect may indicate that these catchments are more resilient to 
changes associated with NDVI. Furthermore, this indicates that the influence of 
preceding drought events appears to have minimal impact on the yearly Q-P ratio. 
We will further specify this in the abstract: 

[23-27] Our analysis shows that generally droughts with streamflow or soil moisture 
anomalies below the 15th percentile lead to around 20% decrease in streamflow 
sensitivity to precipitation during drought compared to the historical norm. However, 
this decrease is reduced to only about 2% one year after the drought, highlighting the 
generally low influence of preceding drought conditions. These effects are more 
pronounced when droughts are longer and more severe. 

3. Introduction: The runoff-to-precipitation ratio was heavily analysed in studies based on the 
Budyko approach. I find it may be useful to more explicitly make a link with the studies which 



analysed the sensitivity/elasticity of this approach to various variables and discuss how the 
proposed study can be linked to these previous works (e.g. Xue et al., 2020) 

 

• We thank the reviewer for this suggestion and for highlighting the work by Xue et al. (2020). 
In line also with the other reviewers’ comments, we agree on the need to better define the 
yearly Q-P ratio and compare it to other metrics used in the literature (e.g. elasticity). We 
will add the text below and further check for possible links with the elasticity metric 
computed through the Budyko Framework by (Creed et al., 2014; Helman et al., 2017; Xue 
et al., 2020).  
 

[109] We then computed yearly streamflow-to-precipitation (Q-P) ratio 
timeseries for each catchment. This measure represents the annual runoff ratio 
and is dynamically influenced by climatic and hydrological conditions. By 
considering an annual timescale, the ratio inherently accounts for 
evapotranspiration and storage processes within the catchment. However, it is 
important to note that, first, since the ratio is a lumped representation of these 
processes, it does not separate individual contributions. Second,  in some 
catchments, storage processes extend beyond a single year, which may 
influence the annual runoff ratio. This metric differs from other metrics such as 
elasticity (Anderson et al., 2023; Sankarasubramanian et al., 2001; Zhang et al., 
2022). While the annual runoff ratio provides an average measure of how much 
precipitation contributes to streamflow in a given year, elasticity tells us how 
streamflow reacts to changes in precipitation (Schaake, 1990).  

 

 

4. Section 2.1: I liked the fact that a large data set was used in this study. However I missed a 
discussion on data quality and possible dependency of results to the type of data used. For 
example, satellite products are known to be subject to large biases, which are not uniform 
whatever the regions or conditions. Besides they often show non stationary behaviour over 
time due to changes in algorithms or data. How these uncertainties may impact results 
shown in this study? A more detailed description of data used on these aspects would be 
useful. 

• We agree with the reviewer about the inhomogeneous spatial and temporal 
performance of global satellite data. In accordance with this, we explored below 
possible spatial and temporal differences in biases and accordingly we will add 
these as limitations in the revised manuscript. In particular, we will focus on 
MSWEP, GRACE and NOAA-NDVI, as these are satellite-based products. In 
contrast, GSIM relies on observations, and GLEAM soil moisture is modelled data. 
The limitations of these latter datasets are discussed in Matanó et al. (2024), and 
we have linked these discussions to our manuscript: 
[97] These datasets and their post-processing are explained in more detail in Table 
S1 of the Supplementary Information and in Matanó et al. (2024). 
 



According to studies that compared satellite precipitation datasets 
(Gebrechorkos et al., 2024; Mazzoleni et al., 2019), there is no single best-
performing precipitation dataset for all regions, and the performance is sensitive 
to basin characteristics. However, several studies (e.g., (Beck et al., 2017; Satgé 
et al., 2019) have showed MSWEP’s strong spatial performance compared to 
other datasets, such as ERA5 and CHIRPS, across various global regions. That 
said, MSWEP tends to perform better in the US, South America, Australia and 
Europe (Beck et al., 2017, 2019) while exhibiting lower accuracy in Africa (Beck 
et al., 2017). However, in our study, only a small fraction of stations in Africa 
passed the quality check, making their contribution to the total dataset minimal. 
Therefore, spatial biases from MSWEP’s performance are likely negligible in the 
context of our global analysis.  
 
Concerning GRACE: validating the spatial and temporal quality of GRACE data is 
challenging due to the limited global coverage and the insufficient density of in 
situ measurements across all hydrological reservoirs (as discussed inSchmidt et 
al., 2008). However, some studies have attempted regional validation. For 
example, in South America, GRACE has demonstrated good performance in 
distinguishing hydrological signals from various reservoirs (Schmidt et al., 2008). 
Similarly, GRACE have shown strong agreement with local observations in 
reproducing groundwater storage anomalies at the basin scale in India (Bhanja et 
al., 2016) and in north America (Wang et al., 2022). In contrast, its performance in 
Europe has been reported to be lower (Van Loon et al., 2017).  
 
Regarding the transition from GRACE to GRACE Follow-On (GRACE-FO), we note 
that this did not impact our analysis, as our study covers the period between 1980 
and 2016, while GRACE-FO commenced in 2018. 
 
Regarding NOAA-NDVI, we found only regional or country-level studies that 
validated its spatial reliability. For instance, studies in Australia (Holm et al., 2003) 
and East Africa (Nicholson et al., 1990) have shown significant performance of the 
NDVI dataset in capturing vegetation dynamics. 
 
In the manuscript, we will acknowledge the potential uncertainties associated 
with satellite-derived data: 

[567] In addition to differences in temporal scale, satellite datasets also exhibit 
varying spatial performance. For instance, GRACE has been shown to perform 
well in North America and India but demonstrates lower accuracy in Europe. 
Similarly, MSWEP tends to perform better in the U.S. (Beck et al., 2019), Europe, 
South America and Australia (Beck et al., 2017) while exhibiting lower accuracy in 
Africa (Beck et al., 2017). However, since our analysis includes only a small 
fraction of catchments from Africa, potential errors due to lower performance in 
that region have a limited impact on our global assessment. 



5. Section 2.1: I found that Table S1 would be better placed in the main text of the article. This 
table is important to understand the variety between data used, e.g. in terms of periods 
available. I was also wondering which quality checks were done on the data used and how 
gaps in series were processed and accounted for in the models. If all catchments were 
plotted on a Budyko-type plot, could some specific/outlier behaviours be detected? 
 

• We agree with the reviewer’s suggestion and will move Table S1 to the main text. 
Regarding quality checks, we provided additional clarification in Matano et al. 
(2024) and Supplementary Note 1 of that paper but we will also add some of these 
clarifications in the main text. Specifically: 
- For streamflow data, we only included stations with high delineation quality 

for their catchments. 
- We analysed only stations with no missing months within a year and a 

minimum of 30 years of data. 
- For step-change analysis, stations with more than two years of gaps were 

excluded. 

 

[97] These datasets and their post-processing are explained in more detail in Table 
1 and in Matanó et al. (2024). For instance, for streamflow data, we included only 
GSIM stations with high delineation quality of their catchments, no missing 
months within a given year, and a minimum record length of 30 years. 

[253] To identify shifts in the streamflow response to precipitation from one 
steady state to another, we carried out a trend analysis in 1107 catchments with 
non-stationary streamflow-to-precipitation (Q-P) ratio timeseries. These 
catchments also have no more than two years of gaps in their streamflow 
timeseries. 

 

Overall, fewer than 2% of the stations analysed had more than three years of total 
gaps in their time series. The strict criteria applied for data quality resulted in 
limited data coverage in regions like Asia, Australia, northern and central Africa, 
and the western United States, as also acknowledge in line 557 of the manuscript.  

Regarding the Budyko-type plot, we also conducted this analysis for some 
catchments. Specifically, we applied the Budyko framework to analyse the 
catchments that exhibited a step change in the yearly Q-P ratio. We computed the 
ratio of actual evapotranspiration to precipitation, and the ratio of potential 
evapotranspiration to precipitation, both before (in black) and after (in red) the 
change year (see figure below). However, we decided to not include it in this 
manuscript. Adding this analysis would introduce another layer of results to a 
study that already implements two methodologies: the mixed-effect panel data 
model and the step-change analysis. So we decided to leave out this analysis and 
use it for a follow-up work / future paper.  



 

6. Section 2.1: Could there be any influence of year-splitting on results, especially on the 
memory to drought conditions? The use of hydrological years make sense, but it will likely 
split drought events in two parts, i.e. straddling two years. I was also wondering if the 
hydrological year was determined catchment by catchment or if an homogeneity was 
sought between catchments in a same region or under similar climate type. 

• We acknowledge the reviewer’s concern that splitting drought events across 
water years could influence the results. While we recognize that drought events 
are continuous phenomena, we partially addressed this by considering the 
influence of drought conditions from the preceding year. Aggregating drought 
events into longer time periods could have reduced the number of events 
available for analysis, which would have further limited the robustness of our 
results. Further we have identified water years for each catchment as the 12-
month period beginning in the month of the lowest average monthly streamflow 
(as reported in line 102 of the manuscript). In line with this, we will add to the text: 

[568] Although drought is a continuum with temporal connectivity between 
events (Van Loon et al., 2024), our analysis treats droughts as independent 
events, summarizing their characteristics at a yearly scale to facilitate 
comparison with the yearly ratio of Q to P. We only partially accounted for 
drought connectivity by incorporating drought characteristics from the preceding 
year into our analysis. However, their influence was minimal (less than 5%), with 
meteorological drought showing a slightly higher influence compared to other 
drought types. 

7. Section 2.1: Which exponent values were used in the Box-Cox transformation? 
 

• For the Box-Cox transformation, we used the Python function scipy.stats.boxcox. 
The exponent value for the transformation, defined as lambda (λ), determines the 
nature of the transformation. In our case, we set lambda to None, allowing the 
function to automatically estimate the optimal value of λ that maximizes the log-
likelihood function. 



8. Section 4: I was not really convinced by several points in the discussion were the authors try 
to find explanations to the results found. These explanations remain hypotheses and should 
more clearly be presented as such. 
 

We agree with this point which was also raised by the second reviewer. In the discussion 
section, our intention was to assess whether our results align with findings from other 
studies and to explore how these findings have been explained in terms of underlying 
processes. Upon revisiting the references, we acknowledge that the use of Urgeghe et 
al., 2010, may indeed be an overextension in this context. As well as the use of Garreaud 
et al., 2017, so we will delete it. In agreement with the reviewer’s comment, we will 
modify the discussion as following:  

 
[485] Spatial differences can also be found in the influence of negative NDVI 
anomalies on the Q-P relationship, though the overall influence remains small 
(less than 5%). While the response of the Q-P relationship generally increases 
during negative NDVI anomalies, in arid and semi-arid catchments, this 
response slightly decreases (Figure 2b). This decrease could partially be 
explained by reduced hydrological connectivity among bare patches (Jaeger et 
al., 2014) and increased soil evaporation (Guardiola-Claramonte et al. 2011). 
However, these processes are highly dependent on the type, timing, and 
duration of drought, as well as catchment-specific characteristics (Goodwell et 
al., 2018; Liu et al., 2024), making generalizations challenging. Furthermore, we 
acknowledge that reduced transpiration, typically associated with negative NDVI 
anomalies, may also take place (Johnson et al., 2009). The interplay between 
these processes likely drives the observed variability, underscoring the need for 
caution when interpreting these results. 

 
9. Section 4: The catchment memory to past conditions is heavily dependent on geology. 

Could the authors find a link between their results and geological characteristics? 
 

• We agree with the reviewer about the important role of geological characteristics in 
influencing changes in catchment responses to precipitation due to meteorological 
and hydrological anomalies. In this study, we specifically investigated soil type 
characteristics, as detailed in lines [233–236] of the manuscript. The results of this 
analysis are presented in Figure S9 of the Supplementary Information and discussed 
in lines [389–393]. Our findings indicate for instance that catchment response to 
precipitation in arid and equatorial sandy catchments is significantly influenced by 
soil moisture drought, while hydrological drought plays a key role in warm temperate 
catchments with both clay and sandy soils.  
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