

- Mixing state, spatial distribution, sources and
 photochemical enhancement to sulfate formation of black
- **3 carbon particles in the Arctic Ocean during summer**
- 4
- 5 Longquan Wang^{1,2}, Jinpei Yan³, Afeng Chen^{1,4}, Bei Jiang^{1,5}, Fange Yue¹, Xiawei Yu¹,
- 6 Zhouqing Xie^{1,6*}
- 7
- 8 ¹Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science
- 9 and Engineering, University of Science and Technology of China, Hefei 230026, China.
- 10 ²Department of Carbon Neutral Science and Engineering, Anhui University of Science and Technology,
- 11 Hefei 230026, China.
- 12 ³Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
- 13 ⁴Engineering and Technological Research Centre of National Disaster Relief Equipment, Army Logistics
- 14 Academy, Chongqing, 401331, China.
- 15 ⁵College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China.
- 16 ⁶State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026,
- 17 China.
- 18 Correspondence to: Zhouqing Xie (zqxie@ustc.edu.cn)

19	Abstract. Black carbon heats the atmosphere by absorbing solar radiation and regulates the radiation
20	balance of the Earth. Specifically in the Arctic region, black carbon accelerates Arctic warming by
21	simultaneously altering surface albedo. Nonetheless, assessing the climatic impacts of black carbon
22	aerosols in the Arctic is challenging due to their considerable variability in temporal and spatial
23	distribution, sources, and chemical composition. Black carbon particles (0.2-2 μ m) in the Arctic Ocean
24	were investigated using a ship-based single particle aerosol mass spectrometer from July to August 2017.
25	In the central Arctic Ocean, near the Norwegian Sea-Iceland and the North Atlantic, biomass combustion
26	is the predominant source of black carbon particles, constituting over 50%, with a particularly high
27	contribution exceeding 70% in the central Arctic Ocean. Within the Chukchi Sea region, terrestrial
28	transport from mid and low latitudes emerges as the primary source of black carbon particles,
29	representing over 50%, with biomass combustion and anthropogenic pollution sources each contributing
30	around 25%. Near Svalbard, biomass combustion sources and terrigenous transport stand out as the
31	primary sources of black carbon particles, with their contributions being comparable. Furthermore, the
32	ratio of sulfate to nitrate in black carbon particles was notably higher compared to that in sea salt particles.
33	This ratio increased with elevated black carbon content and sunlight intensity, suggesting that Arctic
34	black carbon particles substantially facilitated sulfate formation through photochemical processes. Such
35	interactions could potentially modify the mixing state of Arctic black carbon particles and their radiative
36	impacts.

37

38 1 Introduction

39 Black carbon, an amorphous form of carbon produced by the incomplete combustion of carbon-40 containing fuels or biomass, plays a crucial role in atmospheric physical chemistry by absorbing solar 41 radiation and influencing Earth's radiation balance. Additionally, the warming effect of black carbon 42 modifies the vertical stability of the atmosphere and alters cloud distribution, which further impacts the 43 radiation balance (Ramanathan & Carmichael, 2008). The deposition of black carbon on ice and snow surfaces significantly reduces their albedo, accelerating the melting process. This is particularly 44 pronounced in the Arctic region, where black carbon contributes to warming not only by heating the 45 46 atmosphere but also by changing the surface albedo and through other direct and indirect radiative effects 47 (Flanner et al., 2007; Serreze & Barry, 2011). Arctic black carbon aerosol, characterized as a transportable

48	species with various potential sources, exhibits distinct spatial and seasonal distribution patterns (Matsui
49	et al., 2022). These variations are critical for assessing its impact on radiative forcing. Furthermore, the
50	mixing state of particles containing black carbon significantly influences their radiative effects (Jacobson,
51	2001), making detailed observations and analyses essential.
52	The mass concentration of black carbon aerosols in the Arctic near-surface atmosphere exhibits
53	significant seasonal variability, typically higher in winter and spring, and lower in summer and autumn
54	(Qi et al., 2017; Sharma et al., 2006; Sharma et al., 2004; Sharma et al., 2019). Influenced by atmospheric
55	transport patterns, the sources and vertical structures of black carbon aerosols also vary seasonally.
56	During winter and spring, the Arctic near-surface atmosphere is predominantly affected by transport from
57	higher latitudes, facilitating the movement of black carbon from Siberia and Europe through low-altitude
58	pathways to the bottom of the Arctic troposphere. Conversely, black carbon from mid-latitudes reaches
59	the middle and upper troposphere of the Arctic via long-distance transport. In summer, increased
60	precipitation in middle and high latitudes, which impedes long-distance transport, shifts the primary
61	source of atmospheric black carbon to biomass burning within the Arctic and neighboring regions such
62	as Siberia and Alaska (Evangeliou et al., 2016; Matsui et al., 2022; Wang et al., 2014). Although
63	atmospheric concentrations of black carbon are lower in summer than in winter, the higher frequency of
64	summer precipitation leads to quicker removal rates and higher deposition fluxes of atmospheric black
65	carbon (Willis et al., 2018). Observational data on atmospheric black carbon aerosol concentrations in
66	the Arctic also demonstrate notable spatiotemporal variations. Long-term continuous measurements at
67	Barrow and Alert stations in the Arctic revealed that the average concentration of black carbon aerosols
68	from 1980 to 2003 was approximately 25 ng/m³ (Sharma et al., 2004). Meanwhile, the average annual
69	concentration measured at Zeppelin Station from 1998 to 2007 was 39 ng/m³ (Eleftheriadis et al., 2009),
70	significantly higher than the former. Additionally, the spatial distribution of black carbon in Arctic ice
71	and snow varies, with concentrations decreasing from the Russian Arctic, through the Canadian and
72	Alaskan Arctic, to the Arctic Ocean and Greenland, highlighting a significant decline from the Arctic
73	coastal regions to the central Arctic Ocean (Dou & Xiao, 2016). These temporal and spatial discrepancies
74	in Arctic black carbon aerosols underline the importance of long-term, multi-regional observations in the
75	Arctic.

76

Evaluating the climatic impact of black carbon aerosols in the atmosphere and on snow cover is

77	crucial for understanding Arctic climate change. Unlike greenhouse gases such as carbon dioxide and
78	methane, black carbon aerosols possess a broader absorption spectrum, capable of absorbing radiation
79	across infrared to ultraviolet wavelengths (Bond & Bergstrom, 2006). In the IPCC 5th Assessment Report,
80	the direct radiative forcing of black carbon aerosols was estimated at 0.4 W/m^2, with a range of 0.05 to
81	0.8 W/m^2. The effective radiative forcing, which includes direct radiative impacts along with climate
82	feedbacks and rapid adjustments, was initially estimated at -0.45 \pm 0.5 W/m^2. This estimate has since
83	been revised to 0.063 W/m^2, ranging from -0.28 to 0.42 W/m^2, reflecting a deeper understanding of
84	black carbon's effects on clouds and water vapor. Research indicates that the direct radiative forcing from
85	black carbon aerosols originating from fossil fuels is comparable to 78% of that from carbon dioxide,
86	while those from biomass burning equate to about 58% of carbon dioxide's effect (Hansen et al., 2005).
87	Considering indirect effects like changes in ice and snow albedo and cloud properties, the black and
88	organic carbon components from fossil fuel soot exert a net positive global radiative forcing. In contrast,
89	those from biomass combustion have a net negative global radiative forcing (Hansen et al., 2005). In the
90	Arctic, black carbon aerosols starkly contrast with the bright ice and snow surfaces, enhancing their solar
91	radiation absorption and leading to higher direct radiative forcing. Studies suggest that in the Arctic, the
92	warming effect of black carbon aerosols surpasses the cooling effect of reflective aerosols, making them
93	a potent warming agent in the region (Quinn et al., 2007). Beyond atmospheric warming, black carbon
94	in snow can intensify climate change by modifying the albedo feedback of snow and ice. The deposition
95	of black carbon on snow surfaces not only increases heat absorption but also, due to near-surface
96	temperature inversions that restrict energy dispersal in the Arctic, this absorbed heat further warms the
97	near-surface atmosphere. This process accelerates ice and snow melt and alters surface albedo, thereby
98	amplifying Arctic warming through the ice-albedo feedback mechanism, a significant factor in Arctic
99	amplification (Clarke & Noone, 1985; Dou & Xiao, 2016). The estimated annual mean radiative forcing
100	of black carbon aerosols from various sources on Arctic ice and snow is approximately $0.17W/m^{\rm 2}$ (Dou
101	& Xiao, 2016).

102 In the Arctic region, the mixing state of black carbon aerosols from different sources significantly 103 influences their radiative effects (Jacobson, 2001; Matsui et al., 2022). The internal mixing of black 104 carbon aerosols with scattering aerosols such as sulfate and organic carbon can substantially alter the 105 optical properties of black carbon, increasing its positive radiative forcing (Chung & Seinfeld, 2002). It

106	has been observed that anthropogenic black carbon aerosols from Asia generally have a thicker coating
107	compared to those from Europe, Siberia, and North America. This thicker coating is attributed to the
108	rapid aging of Asian aerosols upon emission, often accompanied by condensable gases. Moreover, Asian
109	anthropogenic black carbon typically travels at higher altitudes and over longer distances, resulting in a
110	longer residence time and more thorough aging process (Matsui et al., 2022). Black carbon aerosols of
111	different origins within the same region also exhibit variations in their mixing state. For instance, black
112	carbon aerosols from biomass combustion in Siberia and North America tend to have a larger proportion
113	and thicker coatings compared to those from anthropogenic sources in these areas. This difference is
114	largely due to the transport of biomass combustion-derived black carbon to the Arctic occurring primarily
115	in summer, which facilitates a faster aging rate than in winter (Matsui et al., 2022). Anthropogenic black
116	carbon from Asia and biomass-burning-derived black carbon aerosols from Siberia and North America
117	exhibit stronger positive radiative effects (Matsui et al., 2022). Additionally, the mixing state of black
118	carbon aerosols affects nucleation and wet clearance processes, thereby indirectly influencing their
119	radiative effects (Ching et al., 2012; Ching et al., 2018). These findings highlight that the source and
120	mixing state of Arctic black carbon aerosols represent key uncertainties in assessing their radiative
121	impacts, and that field observations are crucial for accurately evaluating their climate effects.

122 The condensation of secondary species like sulfate, nitrate, and organic matter on the surfaces of 123 black carbon particles significantly alters their mixing state (Ault et al., 2010). Despite this, few studies 124 have explored the secondary processes occurring on black carbon aerosol surfaces. Black carbon is 125 known to actively participate in some of these secondary processes. Recent laboratory research indicates 126 that black carbon may catalyze the formation of sulfate, significantly contributing to the growth of 127 secondary inorganic components in urban haze in China (Zhang et al., 2020). Research has also 128 demonstrated that black carbon aerosols are photoactive, capable of releasing reactive oxygen species, 129 including excited oxygen molecules and hydroxyl radicals, into the atmosphere. These species potentially 130 facilitate the formation of sulfate and organic matter (Gehling & Dellinger, 2013; Li et al., 2019). Further 131 studies have confirmed that black carbon aerosols engage in photochemical processes that enhance 132 sulfate generation in urban settings (Zhang et al., 2021). However, such studies have not yet been extended to the Arctic region. Given the Arctic's sensitivity to climate changes influenced by aerosol 133 134 species like black carbon and sulfate, this potential photochemical process could introduce significant

135 uncertainties in assessing the local aerosol physicochemical properties and their radiative effects.

- 136
- 137 2 Materials and Methods

138 2.1 Research region and instruments

139 Observations were conducted aboard the R/V "Xuelong" during the 8th Chinese Arctic Expedition 140 Research Cruise, which traversed a significant portion of the Arctic Ocean, spanning from 56.2° to 84.6°N latitude and 169.4° to 46.9°W longitude. The cruise took place from July 30 to August 27, 2017, 141 and was segmented into five distinct phases as described in Wang et al. (2022) for detailed analysis based 142 143 on the ship's location, as depicted in Figure 1, and the specific sampling times and locations for each 144 phase are detailed in Table S1 and summarized as follows: Chukchi Sea section, denoted as Leg I, spans 145 from 22:00 on July 30th, 2017, to 19:00 on August 1st, 2017, covering latitudes from 66.0°N to 74.8°N 146 and longitudes from 169.4°W to 159.2°W. The high Arctic section, marked as Leg II, extends from 20:00 147 on August 10th to 5:00 on August 12th, 2017, ranging from 83.7°N to 84.6°N and from 132.0°E to 148 110.4°E. Svalbard Islands section, identified as Leg III, is from 2:00 on August 17th to 11:00 on August 149 19th, 2017, with latitudes from 82.6°N to 74.3°N and longitudes from 25.4°E to 2.1°E. Norwegian Sea 150 and Iceland section, referred to as Leg IV, occurs from 14:00 on August 23rd to 14:00 on August 25th, 151 2017, spanning from 67.0°N to 61.2°N and from 2.1°W to 25.8°W. Atlantic Ocean section, labeled as 152 Leg V, ranging from 14:00 on August 25th to 17:00 on August 27th, 2017, covers from 61.1°N to 56.2°N 153 and from 25.9°W to 46.9°W. The methodology for particle detection utilized the onboard Single Particle 154 Aerosol Mass Spectrometer (SPAMS), consistent with the techniques described by Li et al. (2011). Prior 155 to analysis, sampled particles were dried using a Nafion dryer to remove moisture. A PM2.5 collector was 156 employed to filter out particles larger than 2.5 µm. The fine particles were then drawn into the vacuum 157 system through a critical orifice, accelerated, and focused to form a narrow particle beam. These particles 158 were subsequently exposed to two continuous Nd:YAG diode lasers (532 nm) to determine their 159 aerodynamic diameter based on their velocity. Each particle was then ionized by an Nd:YAG laser (266 160 nm) to generate positive and negative fragment ions. The ionization laser maintained a power density of 161 1.55×10^{8} W/cm². The resulting fragment ions were detected using a bipolar time-of-flight mass 162 spectrometer. For calibration of the SPAMS, polystyrene latex spheres (PSL Nanosphere Size Standards, 163 Duke Scientific Corp., Palo Alto) with diameters ranging from 0.2 to 2.0 µm were used. Additionally,

164	PbNO ₃ particles with a diameter of 0.35 μ m, generated by an aerosol generation and monitoring system
165	(AGM-1500, MSP Corporation, USA), were utilized for mass spectrum calibration. The sampling inlet,
166	connected to the monitoring instruments, was positioned on a mast 20 meters above the sea surface at
167	the bow of the vessel to minimize the influence of ship emissions. Sampling was conducted only while
168	the ship was in motion. A specific peak threshold was set at five units, allowing the instrument to record
169	a peak signal that surpassed this threshold, thus distinguishing it from background noise (<1 unit) in the
170	mass spectra (Zhang et al., 2021). The same instrument and samples were successfully used by Wang et
171	al. (2022) to investigate the mixing state, distribution, and photochemistry of iodine-containing particles
172	through specific identification conditions. In this study, we adopt a new perspective, focusing on black
173	carbon particles from the same samples, examining their sources, distribution, and relationships to sulfate
174	formation under distinct identification conditions, as described in detail in Section 2.2.

175 2.2 Data processing of SPAMS data

176 Particle size and mass spectra were analyzed using the YAADA software toolkit 177 (http://www.yaada.org/) and MATLAB (http://www.mathworks.com). Throughout the entire cruise, over 178 2,000,000 particles were sampled and sized using two continuous Nd:YAG diode lasers (532 nm). Nearly 179 290,000 particles were ionized using an Nd:YAG laser (266 nm), generating both positive and negative 180 ion mass spectrometry data during the cruise. Black carbon particles are known to produce a series of 181 characteristic signal peaks at integer multiples of 12 for the mass-to-charge ratio (m/z = $\pm 12, \pm 24, \pm 36, \pm 12, \pm 1$ 182 ±48, ±60, etc.) in the spectra (Kollner et al., 2021; Qin & Prather, 2006; Roth et al., 2016; Schmidt et al., 183 2017; Sierau et al., 2014). Therefore, the presence of several of these signal peaks concurrently in the 184 anionic or cationic mass spectrum of a particle suggests the presence of black carbon. In this study, we 185 established specific criteria to identify black carbon particles among all ionized particles (Beddows et al., 186 2004). A particle is determined to contain black carbon if it meets one of the following conditions: 187 (1) The signal peaks of m/z = 12, 24, and 36 appear simultaneously in the cationic mass spectrum. 188

(2) The signal peaks of m/z = -24, -36, and -48 appear simultaneously in the anionic mass spectrum.
Using the specified method, approximately 80,000 particles were identified as containing black
carbon. The average spectrum of black carbon particles is displayed in Figure S1. The figure reveals that,
in addition to the peak for carbon signals, there are prominent peaks for ³⁹K⁺ and ⁴⁰Ca⁺ in the cation
spectrum, as well as ²⁶CN^{-/42}CNO⁻ and ⁹⁷HSO₄⁻ in the anion spectrum. To categorize these particles into

193	distinct groups based on the presence and intensity of ion peaks in their mass spectra, we employed the
194	Adaptive Resonance Theory neural network algorithm (ART-2a) (Song et al., 1999). The parameters set
195	for ART-2a included a vigilance factor of 0.6, a learning rate of 0.05, and a limit of 20 iterations. This
196	clustering approach is designed to include more than 95% of the total particles when used for
197	classification purposes. For the descriptive statistical analysis of the data, SPSS version 20 (IBM Inc.,
198	USA) was utilized.
199	2.3 Satellite data acquisition
200	In this study, the intensity of solar radiation was derived using the surface incoming shortwave flux
201	(SWGDN, in watts per square meter, W/m^2) with a 1-hour time resolution. This data was sourced from
202	the NASA Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/)
203	for the specific times and locations relevant to our research.
204	
205	3 Results and Discussion
206	3.1 Mixing state of black carbon particles
207	Numerous studies have established a clear link between the mixing state of black carbon particles
208	and their radiative impacts in the Arctic atmosphere. Black carbon aerosols, originating from various
209	sources, each distinctly influence their mixing states and consequently their effects on radiation. (Chung
210	& Seinfeld, 2002; Matsui et al., 2022). Utilizing the ART-2a algorithm, black carbon particles were
211	classified based on the position and intensity of characteristic peaks in their mass spectra. These particles
212	were categorized into seven main types across the entire route, as detailed in Figure 2, which includes
213	the average spectra for each type:
214	(1) Potassium-Cyanide (K-CN): Displayed in Figure 2a, these particles show a dominant ${}^{39}K^+$
215	signal in the cationic mass spectrum, with a relative peak area exceeding 0.8. Although
216	carbonaceous cations (${}^{12}C^+$, ${}^{24}C_2^+$, ${}^{36}C_3^+$) are less pronounced, significant cyanide peaks (${}^{42}CN^-$
217	and ${}^{46}\mathrm{CNO^{-}}$) along with inorganic and organic carbon peaks are evident in the anionic mass
218	spectrum. Accounting for 51.8% of all black carbon particles, these strong signals suggest a
219	biomass combustion origin (Silva et al., 1999).
220	(2) Calcium-Nitrate (Ca-NO ₃): Figure 2b shows that these particles primarily feature a strong
221	$^{40}\mathrm{Ca^{+}}$ signal in the cationic mass spectrum, with a significant nitrate signal ($^{46}\mathrm{NO_{2}^{-}})$ and

222	additional carbon peaks in the anionic mass spectrum. Comprising 23.7% of the particles, this
223	type is associated with continental dust transport, possibly from mid to low-latitude dust
224	reaching the Arctic during summer (Willis et al., 2018).
225	(3) Potassium-Nickel-Sulfate (K-Ni-SO4): As seen in Figure 2c, these particles exhibit
226	prominent $^{39}\mathrm{K}^{\scriptscriptstyle +}$ and carbonaceous cation signals in the cation mass spectrum, with notable
227	$^{59}\mathrm{Ni^{+}}$ and intense sulfate peaks ($^{97}\mathrm{HSO_{4}^{-}})$ in the anionic mass spectrum. Making up 15.9% of
228	the particles, their nickel content typically points to petroleum product combustion and other
229	anthropogenic activities (Shevchenko et al., 2003; Zhan et al., 2014).
230	(4) Sulfate (SO₄): Figure 2d illustrates these particles with strong sulfate signal peaks ($^{97}HSO_4^{-}$)
231	in the anionic mass spectrum and a significant presence of inorganic carbon cations,
232	constituting 7.6% of the total. Correlations (Figure S2a, r=0.41, p<0.01) observed between the
233	SO4 and K-Ni-SO4 black carbon particles indicate a common source of anthropogenic origin.
234	(5) Potassium-Sulfate (K-SO ₄): Shown in Figure 2e, these particles, which account for only
235	0.6%, are characterized by strong 39 K ⁺ signals in the cationic mass spectrum and sulfate peaks
236	$({}^{97}\mathrm{HSO}_4)$ alongside inorganic carbon peaks in the anionic mass spectrum. Compared to SO4,
237	the K-SO4 and K-Ni-SO4 black carbon particles exhibit a stronger correlation (Figure S2b,
238	r=0.82, p<0.01), suggesting that they also originate from similar human activities.
239	(6) Potassium-L-Glucan (K-lev): Figure 2f depicts these particles with ${}^{39}K^+$ and organic matter
240	signals in the cationic mass spectrum and characteristic L-glucan peaks (m/z = -45, -59, -71, -
241	73) in the anionic mass spectrum, indicative of biomass combustion and comprising 0.5% of
242	the particles (Simoneit et al., 1999).
243	Previous research has differentiated the sources of Arctic black carbon, identifying fossil fuels as
244	the primary winter source and biomass burning as the predominant summer source, with an annual
245	average biomass combustion contribution of $39\pm10\%$ to atmospheric black carbon (Winiger et al., 2019).
246	Further studies have shown that biomass combustion contributes over 90% to Arctic ice and snow black
247	carbon (Hegg et al., 2009). This study's cluster analysis quantitatively estimated that biomass combustion
248	is the main summer source, accounting for 52.3% of black carbon aerosols, with specific mixed types
249	including K-CN and K-lev. Anthropogenic and transported sources from mid and low latitudes account
250	for 24.0% and 23.7%, respectively, with specific mixed types including K-Ni-SO ₄ , SO ₄ , K-SO ₄ , and Ca-

251 NO₃.

252 3.2 Spatial distribution of black carbon particles

253 As illustrated in Figure S3, the hourly concentration of black carbon particles along the surveyed 254 route varied substantially, ranging from 0 to 3000 particles per hour. In the initial three segments, the 255 concentration remained relatively low, with the highest value not surpassing 1500 particles per hour. 256 Conversely, in Leg IV, the concentration of black carbon particles was markedly higher, reaching a peak 257 near 3000/h, and Leg V also recorded a significant concentration of 2500/h. The proportion of black 258 carbon particles varied from 0% to 60% across the route. Unlike the number concentration, the 259 distribution of the proportion of black carbon particles was more uniform throughout the voyage. Figure 3 displays the hourly number and proportion of black carbon particles by box plots. The mean 260 261 concentrations of black carbon particles in Legs I-V were 198/h, 148/h, 255/h, 757/h, and 345/h, 262 respectively. The corresponding average proportions were 19.8 (±10.7) %, 24.4 (±16.2) %, 26.6 263 (±13.6) %, 26.1 (±10.9) %, and 26.5 (±10.5) %. Although the average concentration of black carbon 264 particles varied significantly among the different segments, the proportion of black carbon particles 265 relative to all particles remained relatively consistent, particularly in the last three segments where the 266 average proportion showed minimal variation. This consistency suggests that black carbon particles are 267 prevalent in the Arctic summer ocean boundary layer and constitute a significant and uniformly 268 distributed component of the atmospheric aerosol. The overall average proportion of black carbon 269 particles for all segments was 24.7 (±13.6) %.

270 While the average proportion of black carbon particles remained relatively consistent across 271 different segments, spatial variations in the proportions of black carbon particle types were observed 272 (Figure 4), suggesting diverse sources of black carbon aerosols in different regions. In Leg I, the 273 predominant black carbon types were Ca-NO₃, which accounted for about 50% of the particles, followed 274 by K-CN at approximately 25%, and K-Ni-SO₄ and SO₄ each at about 10%. K-SO₄ and K-lev were nearly 275 absent. In Leg II, K-CN was the most significant, comprising about 70% of particles, with Ca-NO3 at 276 around 15%, K-Ni-SO4 and K-lev each at about 5%, SO4 less than 5%, and K-SO4 almost nonexistent. 277 Leg III saw a dominance of K-CN and Ca-NO₃, each making up about 50%, with other types collectively 278 less than 5%. Leg IV featured K-CN as the most prevalent, at about 60%, with K-Ni-SO₄ and Ca-NO₃ 279 each contributing around 20%, SO4 at about 5%, and negligible amounts of K-SO4 and K-lev. Leg V had

280	a similar composition to Leg IV, but with a reduced proportion of Ca-NO3 at about 10% and an increased
281	proportion of SO_4 to about 15%. The distribution of mixed types of black carbon particles helped to
282	elucidate the source contributions in different regions. In the central Arctic Ocean, the Norwegian Sea-
283	Iceland, and the North Atlantic Ocean, biomass combustion was the primary source of black carbon,
284	accounting for more than 50% of particles, particularly in the central Arctic Ocean where it exceeded
285	70%. In the Chukchi Sea region, terrestrial transport from mid and low latitudes was the dominant source,
286	also accounting for more than 50% of particles, with biomass combustion and anthropogenic pollution
287	sources each contributing about 25%. Near Svalbard, biomass combustion sources and terrestrial
288	transport were the main contributors and were roughly equal in proportion. Previous studies have
289	indicated that black carbon aerosols from different sources possess varying thicknesses of coatings,
290	thereby affecting their radiative impacts differently (Matsui et al., 2022). In our study, the sources of
291	black carbon aerosols in different regions were quantitatively estimated, which is crucial for a more
292	accurate assessment of the climate effects of Arctic black carbon aerosols.

293 3.3 Photochemical processes of Arctic black carbon aerosols

294 In urban environments, it has been established that black carbon particles are photoactive, capable 295 of releasing reactive oxygen species such as excited oxygen molecules ($^{1}O_{2}$) and hydroxyl radicals. These 296 species participate in atmospheric chemical processes, including the catalytic formation of sulfate 297 (Gehling & Dellinger, 2013; Li et al., 2018; Li et al., 2019; Zhang et al., 2020; Zhang et al., 2021). In the 298 Arctic Ocean boundary layer, the release of dimethyl sulfur by marine organisms and its subsequent 299 oxidation to sulfate is known to have significant environmental and climatic impacts (Bates et al., 1987; 300 Charlson et al., 1987; Rap et al., 2013). However, the potential role of black carbon particles in enhancing 301 this sulfate formation process remains unclear, a topic we explore in this section. Although black carbon 302 particles facilitate the catalysis of sulfate formation, they do not appear to significantly promote nitrate 303 formation (Zhang et al., 2021). Consequently, this leads to a relative enrichment of sulfate compared to 304 nitrate in particles containing black carbon, increasing the sulfate to nitrate mass concentration ratio 305 (SNR). In this study, we utilized the ratio of the relative peak areas of sulfate (97HSO4-) to nitrate (46NO2-) 306 to describe SNR, specifically denote the relative enrichment of sulfate in black carbon particles. The 307 SNR for black carbon particles varied widely, ranging from 0 to 1000, with an average value of 32.25 308 and a median value of 8.14. This contrasts with measurements from a previous single-particle study of

309	urban black carbon during summer, which reported SNR values ranging from 0 to 5 and a median value
310	of about 2 (Zhang et al., 2021). The notably higher SNR in the Arctic summer suggests that emissions of
311	sulfur-containing gases by marine organisms in the ocean boundary layer may provide a substantial
312	number of precursors for sulfate generation. Additionally, we calculated the SNR for the most common
313	sea salt particles in the ocean boundary layer, which ranged from 0 to 6, with an average of 0.34 and a
314	median of 0.15. This comparison shows that the SNR of black carbon particles is significantly higher
315	than that of sea salt particles, indicating substantial sulfate enrichment in black carbon particles.
316	Moreover, we used the cumulative relative peak area values (R_{BC}) of inorganic carbonaceous anions ($^{12}\mathrm{C}^+,$
317	$^{24}C^{\pm},^{36}C^{\pm},^{48}C^{\text{-}})$ in black carbon-containing particles to indicate the content of black carbon components
318	within the particles. As illustrated in Figure 5, the SNR value increased with the rising content of black
319	carbon, displaying a moderate correlation (r = 0.37, p < 0.01). This trend suggests that higher black
320	carbon content in particles tends to enhance sulfate enrichment over nitrate, indicating that black carbon
321	components can promote sulfate formation in the Arctic region.

322 The observed phenomenon of elevated SNR in black carbon particles can be attributed to several 323 factors: (1) Common Source for Black Carbon and Sulfate Precursors: Black carbon and sulfate, along 324 with their precursors, possibly share common sources, contributing to the increased SNR in black carbon 325 particles. Predominantly, black carbon aerosols originate from biomass combustion, which accounts for 326 over half of these emissions, supplemented by anthropogenic sources and transport from mid to low 327 latitudes in this study. In the ocean boundary layer, sulfur-containing gases emitted by marine biogenic 328 sources are primary precursors for sulfate (Becagli et al., 2016; Gondwe et al., 2003; Jarnikova et al., 329 2018). However, anthropogenic black carbon aerosols, such as those from ship-based emissions, may 330 also emit significant amounts of SO2 (Davis et al., 2001; Krause et al., 2021; Winther et al., 2014). After 331 excluding these anthropogenic sources, the average SNR for black carbon particles from biomass 332 combustion sources was calculated at 7.85, significantly higher than in sea salt particles. Although higher 333 SO2 concentrations are noted in biomass combustion air masses, an increase in nitrogen oxides (Leino et 334 al., 2014) suggests a limited impact on the SNR; (2) Catalysis by Transition Metal Elements: Transition 335 metals such as iron and vanadium found in black carbon particles can catalyze the formation of sulfate 336 (Ault et al., 2010; Zhang et al., 2019). These metals typically originate from anthropogenic activities, 337 including ship-based emissions, and are consequently enriched in anthropogenic black carbon aerosols.

338	As the concentration of black carbon in the particles increases, so too does the concentration of these
339	catalytic metals, enhancing their effect on sulfate formation. Despite this, even after accounting for
340	sources that might skew data, such as those rich in transition metals, black carbon particles still exhibit
341	a higher enrichment of sulfate compared to sea salt particles. After ruling out these factors, it is evident
342	that black carbon itself contributes to the enhancement of sulfate formation, aligning with observations
343	in urban environments (Zhang et al., 2021). To further explore the potential involvement of
344	photochemical processes in this enhancement, black carbon particles were categorized based on varying
345	levels of sunlight intensity. The SWGDN served as an indicator of sunlight intensity changes. Black
346	carbon particles were segmented into five groups based on their SWGDN values, spanning from 0-100,
347	100-200, 200-300, 300-400, and over 400 W/m^2. As depicted in Figure 6, the SNR values are lower
348	when the SWGDN value is below 200 W/m^2. However, as the SWGDN value increases, there is a
349	corresponding rise in SNR values. The average SNR values for black carbon particles across these groups
350	were 25.2, 21.4, 44.3, 63.1, and 174.4, respectively. These findings underscore a significant impact of
351	sunlight intensity on the concentration of sulfate in black carbon particles, suggesting that light-driven
352	photochemical reactions may play a crucial role in this process.
353	The formation of sulfate and nitrate is intrinsically linked to the presence of oxidizing agents such
354	as hydroxyl radicals and active halogens, which are often involved in photochemical processes (Chen et
355	al., 2017; Liu et al., 2021; Shao et al., 2019). Additionally, conditions of strong light are thought to
356	facilitate the degradation of nitrate, potentially leading to an increased SNR in black carbon particles
357	(Zhang et al., 2021). These factors may significantly contribute to the observed light intensity-dependent
358	enrichment of sulfate in black carbon particles. To evaluate this possibility, the SNR values of sea salt
359	particles under varying lighting conditions, as shown in Figure 6, do not mirror the changes observed in
360	black carbon particles. The average SNR values for sea salt particles across the five groups-ranging
361	from low to high sunlight intensities—were 0.33, 0.28, 0.53, 0.52, and 0.33, respectively. Notably, while
362	there is a slight increase in SNR values for sea salt particles within the 200-400 W/m² range of SWGDN,

 $\label{eq:solution} 363 \qquad \text{the values decrease again when SWGDN exceeds 400 W/m^2, aligning with the lower values observed}$

364 under less intense light conditions. This disparity suggests that while sunlight intensity influences the

365 photoactivity of black carbon, leading to the release of reactive oxygen species and subsequent sulfate

366 formation, it does not significantly impact the SNR in sea salt particles. This indicates a unique

367	photochemical sensitivity in black carbon particles that enhances sulfate formation under higher sunlight
368	conditions-a process consistent with photochemistry observed in urban environments, rather than being
369	caused by degradation of nitrate (Zhang et al., 2020; Zhang et al., 2021). Furthermore, the interaction of
370	sulfate and organic carbon with black carbon aerosols can significantly alter the optical properties of
371	these particles, thereby increasing their positive radiative forcing (Chung & Seinfeld, 2002). This
372	photochemical facilitation not only affects the chemical composition of the aerosols but also their
373	radiative properties, which could have profound implications for the Arctic climate. Such interactions
374	and their climatic effects underscore the importance of incorporating this photochemistry into future
375	climate models to accurately predict and mitigate the impacts of black carbon in polar regions.

376

377 4 Summary and Implications

378 In this research, we focused on extracting and analyzing black carbon-containing particles from 379 collected atmospheric samples to understand their mixing states, sources, spatial distribution variations, 380 and their role in enhancing sulfate formation through photochemical processes. The black carbon 381 particles were categorized into six distinct groups based on their mixing states: K-CN, Ca-NO₃, K-Ni-382 SO₄, SO₄, K-SO₄, and K-lev. Our findings indicate that K-CN and K-lev, which are primarily products 383 of biomass combustion, represent 52.3% of the sampled particles. Ca-NO₃, linked to terrestrial sources, 384 accounted for 23.7% of the particles. The remaining categories-K-Ni-SO₄, SO₄, and K-SO₄-are 385 predominantly derived from anthropogenic activities, such as emissions from ships, contributing to 24.0% 386 of the particles. Spatial analysis revealed that the distribution of black carbon-containing particles is 387 relatively stable across the Arctic regions, suggesting their pervasive presence in the Arctic summer 388 ocean boundary layer as a significant component of atmospheric aerosols. However, the source 389 contributions of these particles vary spatially. In the central Arctic Ocean and areas near the Norwegian 390 Sea-Iceland and the North Atlantic Ocean, more than 50% of the black carbon particles originate from 391 biomass combustion, with the figure rising above 70% in the central Arctic Ocean. In contrast, in the 392 Chukchi Sea region, terrestrial transport from middle and low latitudes is the dominant source, 393 accounting for more than 50% of the black carbon particles, while biomass combustion and 394 anthropogenic pollution each contribute approximately 25%. Near Svalbard, biomass combustion 395 sources and terrestrial transport are equally significant contributors to the presence of black carbon

- 396 particles. Moreover, our study confirms that black carbon particles in the Arctic Ocean boundary layer 397 significantly enhance sulfate formation through their involvement in photochemical reactions. This 398 interaction not only alters the mixing state of the black carbon aerosols but also affects their radiative 399 properties, potentially influencing the climate. This underscores the importance of understanding the 400 complex photochemistry of black carbon in Arctic aerosols for future climate modeling and assessment
- 401 strategies.
- 402

403 Acknowledgments

- 404 This work was supported by the National Natural Science Foundation of China (NSFC) (41941014).
- 405 We thank China Arctic and Antarctic Administration for fieldwork support.
- 406

407 Data availability

 408
 Access to the raw data and products is available at DOI:10.5281/zenodo.13883324 or by contacting

 409
 either the corresponding author, Zhouqing Xie, at zqxie@ustc.edu.cn, or the first author, Longquan Wang,

 410
 at wlq1995@mail.ustc.edu.cn. The SWGDN data featured in this publication can be accessed publicly

 411
 through the NASA Goddard Earth Sciences Data and Information Services Center at

 412
 https://disc.gsfc.nasa.gov/.

413

414 Declaration of competing interests

- 415 The authors declare that they have no known competing financial interests or personal relationships
- 416 that cloud have appeared to influence the work reported in this paper.

- 417 Author contribution:
- 418 Conceptualization: Zhouqing Xie
- 419 Data curation: Longquan Wang, Jinpei Yan
- 420 Investigation: Longquan Wang, Jinpei Yan
- 421 Formal analysis: Longquan Wang, Afeng Chen, Bei Jiang, Fange Yue, Xiawei Yu, Zhouqing Xie
- 422 Visualization: Longquan Wang
- 423 Funding acquisition: Zhouqing Xie
- 424 Supervision: Zhouqing Xie
- 425 Writing original draft: Longquan Wang
- 426 Writing review & editing: Longquan Wang, Zhouqing Xie

427	Reference
428	Ault, A. P., Gaston, C. J., Wang, Y., Dominguez, G., Thiemens, M. H., & Prather, K. A. (2010) .
429	Characterization of the Single Particle Mixing State of Individual Ship Plume Events Measured
430	at the Port of Los Angeles. Environmental Science & Technology, 44 (6), 1954-1961.
431	doi:10.1021/es902985h
432	Bates, T. S., Charlson, R. J., & Gammon, R. H. (1987) . EVIDENCE FOR THE CLIMATIC ROLE
433	OF MARINE BIOGENIC SULFUR. Nature, 329 (6137), 319-321. doi:10.1038/329319a0
434	Becagli, S., Lazzara, L., Marchese, C., Dayan, U., Ascanius, S. E., Cacciani, M., Udisti, R. (2016) .
435	Relationships linking primary production, sea ice melting, and biogenic aerosol in the Arctic.
436	Atmospheric Environment, 136, 1-15. doi:10.1016/j.atmosenv.2016.04.002
437	Beddows, D. C., Donovan, R. J., Harrison, R. M., Heal, M. R., Kinnersley, R. P., King, M. D.,
438	Thompson, K. C. (2004) . Correlations in the chemical composition of rural background
439	atmospheric aerosol in the UK determined in real time using time-of-flight mass spectrometry.
440	J Environ Monit, 6 (2) , 124-133. doi:10.1039/b311209h
441	Bond, T. C., & Bergstrom, R. W. (2006) . Light absorption by carbonaceous particles: An investigative
442	review. Aerosol Science and Technology, 40 (1) , 27-67. doi:10.1080/02786820500421521
443	Charlson, R. J., Lovelock, J. E., Andreae, M. O., & Warren, S. G. (1987) . OCEANIC
444	PHYTOPLANKTON, ATMOSPHERIC SULFUR, CLOUD ALBEDO AND CLIMATE.
445	Nature, 326 (6114), 655-661. doi:10.1038/326655a0
446	Chen, Q., Schmidt, J. A., Shah, V., Jaeglé, L., Sherwen, T., & Alexander, B. (2017) . Sulfate production
447	by reactive bromine: Implications for the global sulfur and reactive bromine budgets.
448	Geophysical Research Letters, 44 (13), 7069-7078. doi:10.1002/2017gl073812
449	Ching, J., Riemer, N., & West, M. (2012) . Impacts of black carbon mixing state on black carbon
450	nucleation scavenging: Insights from a particle-resolved model. Journal of Geophysical
451	Research-Atmospheres, 117. doi:10.1029/2012jd018269
452	Ching, J., West, M., & Riemer, N. (2018) . Quantifying Impacts of Aerosol Mixing State on Nucleation-
453	Scavenging of Black Carbon Aerosol Particles. Atmosphere, 9 (1) . doi:10.3390/atmos9010017
454	Chung, S. H., & Seinfeld, J. H. (2002). Global distribution and climate forcing of carbonaceous aerosols.

455 Journal of Geophysical Research-Atmospheres, 107 (D19) . doi:10.1029/2001jd001397

17 / 30

456	Clarke, A. D., & Noone, K. J. (1985) . SOOT IN THE ARCTIC SNOWPACK - A CAUSE FOR
457	PERTURBATIONS IN RADIATIVE-TRANSFER. Atmospheric Environment, 19 (12), 2045-
458	2053. doi:10.1016/0004-6981 (85) 90113-1
459	Davis, D. D., Grodzinsky, G., Kasibhatla, P., Crawford, J., Chen, G., Liu, S., Sandholm, S. (2001) .
460	Impact of ship emissions on marine boundary layer NOx and SO2 distributions over the Pacific
461	basin. Geophysical Research Letters, 28 (2), 235-238. doi:10.1029/2000gl012013
462	Dou, TF., & Xiao, CD. (2016) . An overview of black carbon deposition and its radiative forcing
463	over the Arctic. Advances in Climate Change Research, 7 (3), 115-122.
464	doi:10.1016/j.accre.2016.10.003
465	Eleftheriadis, K., Vratolis, S., & Nyeki, S. (2009) . Aerosol black carbon in the European Arctic:
466	Measurements at Zeppelin station, Ny-Alesund, Svalbard from 1998-2007. Geophysical
467	Research Letters, 36. doi:10.1029/2008gl035741
468	Evangeliou, N., Balkanski, Y., Hao, W. M., Petkov, A., Silverstein, R. P., Corley, R., Skov, H. (2016).
469	Wildfires in northern Eurasia affect the budget of black carbon in the Arctic - a 12-year
470	retrospective synopsis (2002-2013) . Atmospheric Chemistry and Physics, 16 (12) , 7587-
471	7604. doi:10.5194/acp-16-7587-2016
472	Flanner, M. G., Zender, C. S., Randerson, J. T., & Rasch, P. J. (2007) . Present-day climate forcing and
473	response from black carbon in snow. Journal of Geophysical Research-Atmospheres, 112 (D11).
474	doi:10.1029/2006jd008003
475	Gehling, W., & Dellinger, B. (2013) . Environmentally Persistent Free Radicals and Their Lifetimes
476	in PM2.5. Environmental Science & Technology, 47 (15), 8172-8178. doi:10.1021/es401767m
477	Gondwe,M.,Krol,M.,Gieskes,W.,Klaassen,W.,&deBaar,H.~~(2003)~~.~The~contribution~of~ocean-structure and the structure and the
478	leaving DMS to the global atmospheric burdens of DMS, MSA, SO2, and NSS SO4=. Global
479	Biogeochemical Cycles, 17 (2) . doi:10.1029/2002gb001937
480	Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Zhang, S. (2005) .
481	Efficacy of climate forcings. Journal of Geophysical Research-Atmospheres, 110 (D18) .
482	doi:10.1029/2005jd005776
483	Hegg, D. A., Warren, S. G., Grenfell, T. C., Doherty, S. J., Larson, T. V., & Clarke, A. D. (2009) .

484 Source Attribution of Black Carbon in Arctic Snow. *Environmental Science & Technology, 43*

485	(11) , 4016-4021. doi:10.1021/es803623f
486	$Jacobson, M. Z. (2001) \ . \ Strong \ radiative \ heating \ due \ to \ the \ mixing \ state \ of \ black \ carbon \ in \ atmospheric$
487	aerosols. Nature, 409 (6821), 695-697. doi:10.1038/35055518
488	$Jarnikova, T., Dacey, J., Lizotte, M., Levasseur, M., \& \ Tortell, P. \ (2018) \ . \ The \ distribution \ of \ methylated$
489	sulfur compounds, DMS and DMSP, in Canadian subarctic and Arctic marine waters during
490	summer 2015. Biogeosciences, 15 (8), 2449-2465. doi:10.5194/bg-15-2449-2018
491	Kollner, F., Schneider, J., Willis, M. D., Schulz, H., Kunkel, D., Bozem, H., Borrmann, S. (2021) .
492	Chemical composition and source attribution of sub-micrometre aerosol particles in the
493	summertime Arctic lower troposphere. Atmospheric Chemistry and Physics, 21 (8), 6509-6539.
494	doi:10.5194/acp-21-6509-2021
495	Krause, K., Wittrock, F., Richter, A., Schmitt, S., Pohler, D., Weigelt, A., & Burrows, J. P. (2021) .
496	Estimation of ship emission rates at a major shipping lane by long-path DOAS measurements.
497	Atmospheric Measurement Techniques, 14 (8), 5791-5807. doi:10.5194/amt-14-5791-2021
498	Leino, K., Riuttanen, L., Nieminen, T., Dal Maso, M., Vaananen, R., Pohja, T., Kulmala, M. (2014) .
499	Biomass-burning smoke episodes in Finland from eastern European wildfires. Boreal
500	Environment Research, 19, 275-292.
501	Li, L., Huang, Z. X., Dong, J. G., Li, M., Gao, W., Nian, H. Q., Zhou, Z. (2011) . Real time bipolar
502	time-of-flight mass spectrometer for analyzing single aerosol particles. International Journal of
503	Mass Spectrometry, 303 (2-3) , 118-124. doi:10.1016/j.ijms.2011.01.017
504	Li, M., Bao, F. X., Zhang, Y., Sheng, H., Chen, C. C., & Zhao, J. C. (2019) . Photochemical Aging of
505	Soot in the Aqueous Phase: Release of Dissolved Black Carbon and the Formation of O-1 (2) .
506	Environmental Science & Technology, 53 (21), 12311-12319. doi:10.1021/acs.est.9b02773
507	Li, M., Bao, F. X., Zhang, Y., Song, W. J., Chen, C. C., & Zhao, J. C. (2018) . Role of elemental carbon
508	in the photochemical aging of soot. Proceedings of the National Academy of Sciences of the
509	United States of America, 115 (30), 7717-7722. doi:10.1073/pnas.1804481115
510	Liu, T. Y., Chan, A. W. H., & Abbatt, J. P. D. (2021) . Multiphase Oxidation of Sulfur Dioxide in
511	Aerosol Particles: Implications for Sulfate Formation in Polluted Environments. Environmental
512	Science & Technology, 55 (8) , 4227-4242. doi:10.1021/acs.est.0c06496

513 Matsui, H., Mori, T., Ohata, S., Moteki, N., Oshima, N., Goto-Azuma, K., . . . Kondo, Y. (2022) .

514	Contrasting source contributions of Arctic black carbon to atmospheric concentrations,
515	deposition flux, and atmospheric and snow radiative effects. Atmospheric Chemistry and
516	Physics, 22 (13), 8989-9009. doi:10.5194/acp-22-8989-2022
517	Qi, L., Li, Q. B., Li, Y. R., & He, C. L. (2017) . Factors controlling black carbon distribution in the
518	Arctic. Atmospheric Chemistry and Physics, 17 (2), 1037-1059. doi:10.5194/acp-17-1037-
519	2017
520	Qin, X. Y., & Prather, K. A. (2006) . Impact of biomass emissions on particle chemistry during the
521	California Regional Particulate Air Quality Study. International Journal of Mass Spectrometry,
522	258 (1-3), 142-150. doi:10.1016/j.ijms.2006.09.004
523	Quinn, P. K., Shaw, G., Andrews, E., Dutton, E. G., Ruoho-Airola, T., & Gong, S. L. (2007) . Arctic
524	haze: current trends and knowledge gaps. Tellus Series B-Chemical and Physical Meteorology,
525	59 (1) , 99-114. doi:10.1111/j.1600-0889.2006.00236.x
526	Ramanathan, V., & Carmichael, G. (2008) . Global and regional climate changes due to black carbon.
527	Nature Geoscience, 1 (4) , 221-227. doi:10.1038/ngco156
528	Rap, A., Scott, C. E., Spracklen, D. V., Bellouin, N., Forster, P. M., Carslaw, K. S., Mann, G. (2013) .
529	Natural aerosol direct and indirect radiative effects. Geophysical Research Letters, 40 (12),
530	3297-3301. doi:10.1002/grl.50441
531	Roth, A., Schneider, J., Klimach, T., Mertes, S., van Pinxteren, D., Herrmann, H., & Borrmann, S.
532	(2016) . Aerosol properties, source identification, and cloud processing in orographic clouds
533	measured by single particle mass spectrometry on a central European mountain site during
534	HCCT-2010. Atmospheric Chemistry and Physics, 16 (2), 505-524. doi:10.5194/acp-16-505-
535	2016
536	Schmidt, S., Schneider, J., Klimach, T., Mertes, S., Schenk, L. P., Kupiszewski, P., Borrmann, S.
537	(2017) . Online single particle analysis of ice particle residuals from mountain-top mixed-
538	phase clouds using laboratory derived particle type assignment. Atmospheric Chemistry and
539	Physics, 17 (1) , 575-594. doi:10.5194/acp-17-575-2017
540	Serreze, M. C., & Barry, R. G. (2011) . Processes and impacts of Arctic amplification: A research
541	synthesis. Global and Planetary Change, 77 (1-2), 85-96. doi:10.1016/j.gloplacha.2011.03.004
542	Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Alexander, B. (2019) . Heterogeneous sulfate

543	aerosol formation mechanisms during wintertime Chinese haze events: air quality model
544	assessment using observations of sulfate oxygen isotopes in Beijing. Atmospheric Chemistry
545	and Physics, 19 (9), 6107-6123. doi:10.5194/acp-19-6107-2019
546	Sharma, S., Andrews, E., Barrie, L. A., Ogren, J. A., & Lavoue, D. (2006) . Variations and sources of
547	the equivalent black carbon in the high Arctic revealed by long-term observations at Alert and
548	Barrow: 1989-2003. Journal of Geophysical Research-Atmospheres, 111 (D14) .
549	doi:10.1029/2005jd006581
550	Sharma, S., Barrie, L. A., Magnusson, E., Brattstrom, G., Leaitch, W. R., Steffen, A., & Landsberger, S.
551	(2019) . A Factor and Trends Analysis of Multidecadal Lower Tropospheric Observations of
552	Arctic Aerosol Composition, Black Carbon, Ozone, and Mercury at Alert, Canada. Journal of
553	Geophysical Research-Atmospheres, 124 (24) , 14133-14161. doi:10.1029/2019jd030844
554	Sharma, S., Lavoue, D., Cachier, H., Barrie, L. A., & Gong, S. L. (2004) . Long-term trends of the
555	black carbon concentrations in the Canadian Arctic. Journal of Geophysical Research-
556	Atmospheres, 109 (D15) . doi:10.1029/2003jd004331
557	Shevchenko, V., Lisitzin, A., Vinogradova, A., & Stein, R. (2003) . Heavy metals in aerosols over the
558	seas of the Russian Arctic. Science of the Total Environment, 306 (1-3), 11-25.
559	doi:10.1016/s0048-9697 (02) 00481-3
560	Sierau, B., Chang, R. Y. W., Leck, C., Paatero, J., & Lohmann, U. (2014) . Single-particle
561	characterization of the high-Arctic summertime aerosol. Atmospheric Chemistry and Physics,
562	14 (14) , 7409-7430. doi:10.5194/acp-14-7409-2014
563	Silva, P. J., Liu, D. Y., Noble, C. A., & Prather, K. A. (1999) . Size and chemical characterization of
564	individual particles resulting from biomass burning of local Southern California species.
565	Environmental Science & Technology, 33 (18), 3068-3076. doi:10.1021/es980544p
566	Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Cass, G. R.
567	(1999) . Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles.
568	Atmospheric Environment, 33 (2) , 173-182. doi:10.1016/s1352-2310 (98) 00145-9
569	Song, X. H., Hopke, P. K., Fergenson, D. P., & Prather, K. A. (1999) . Classification of single particles
570	analyzed by ATOFMS using an artificial neural network, ART-2A. Analytical Chemistry, 71 (4),
571	860-865. doi:10.1021/ac9809682

21 / 30

572	Wang, H. L., Rasch, P. J., Easter, R. C., Singh, B., Zhang, R. D., Ma, P. L., Beagley, N. (2014) .
573	Using an explicit emission tagging method in global modeling of source-receptor relationships
574	for black carbon in the Arctic: Variations, sources, and transport pathways. Journal of
575	Geophysical Research-Atmospheres, 119 (22), 12888-12909. doi:10.1002/2014jd022297
576	Wang, L., Yan, J., Saiz-Lopez, A., Jiang, B., Yue, F., Yu, X., & Xie, Z. (2022) . Mixing state and
577	distribution of iodine-containing particles in Arctic Ocean during summertime. Science of the
578	Total Environment, 834. doi:10.1016/j.scitotenv.2022.155030
579	Willis, M. D., Leaitch, W. R., & Abbatt, J. P. D. (2018) . Processes Controlling the Composition and
580	Abundance of Arctic Aerosol. Reviews of Geophysics, 56 (4), 621-671.
581	doi:10.1029/2018rg000602
582	Winiger, P., Barrett, T. E., Sheesley, R. J., Huang, L., Sharma, S., Barrie, L. A., Gustafsson, O. (2019).
583	Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling.
584	Science Advances, 5 (2) . doi:10.1126/sciadv.aau8052
585	Winther, M., Christensen, J. H., Plejdrup, M. S., Ravn, E. S., Eriksson, O. F., & Kristensen, H. O. (2014).
586	Emission inventories for ships in the arctic based on satellite sampled AIS data. Atmospheric
587	Environment, 91, 1-14. doi:10.1016/j.atmosenv.2014.03.006
588	Zhang, F., Wang, Y., Peng, J. F., Chen, L., Sun, Y. L., Duan, L., Zhang, R. Y. (2020) . An unexpected
589	catalyst dominates formation and radiative forcing of regional haze. Proceedings of the National
590	Academy of Sciences of the United States of America, 117 (8), 3960-3966.
591	doi:10.1073/pnas.1919343117
592	Zhang, G. H., Fu, Y. Z., Peng, X. C., Sun, W., Shi, Z. B., Song, W., Bi, X. H. (2021) . Black Carbon
593	Involved Photochemistry Enhances the Formation of Sulfate in the Ambient Atmosphere:
594	Evidence From In Situ Individual Particle Investigation. Journal of Geophysical Research-
595	Atmospheres, 126 (19) . doi:10.1029/2021jd035226
596	Zhan, J. Q., Gao, Y., Li, W., Chen, L. Q., Lin, H. M., & Lin, Q. (2014) . Effects of ship emissions on
597	summertime aerosols at Ny-Alesund in the Arctic. Atmospheric Pollution Research, 5 (3),
598	500-510. doi:10.5094/apr.2014.059

599 Figure Captions

600	Figure 1. Sampling locations from open water to the high Arctic are indicated by a blue line. The
601	expedition is divided into five segments, each outlined by dashed red boxes: Chukchi Sea section,
602	denoted as Leg I, spans from 22:00 on July 30th, 2017, to 19:00 on August 1st, 2017, covering latitudes
603	from 66.0°N to 74.8°N and longitudes from 169.4°W to 159.2°W. The high Arctic section, marked as
604	Leg II, extends from 20:00 on August 10th to 5:00 on August 12th, 2017, ranging from $83.7^{\circ}N$ to $84.6^{\circ}N$
605	and from 132.0°E to 110.4°E. Svalbard Islands section, identified as Leg III, is from 2:00 on August 17th
606	to 11:00 on August 19th, 2017, with latitudes from 82.6°N to 74.3°N and longitudes from 25.4°E to 2.1°E.
607	Norwegian Sea and Iceland section, referred to as Leg IV, occurs from 14:00 on August 23rd to 14:00 on
608	August 25th, 2017, spanning from 67.0°N to 61.2°N and from 2.1°W to 25.8°W. Atlantic Ocean section,
609	labeled as Leg V, spanning from 14:00 on August 25th to 17:00 on August 27th, 2017, covers from
610	61.1°N to 56.2°N and from 25.9°W to 46.9°W.
611	Figure 2. Spectra of various types of black carbon particles with peaks displaying strong signals
612	highlighted in blue. The X-axis represents the mass-to-charge ratio (m/z), and the Y-axis shows the
613	relative peak area. The cation spectrum is presented in the upper half of each map, while the anion
614	spectrum is depicted in the lower half. (a) Spectra of K-CN black carbon particles; (b) Spectra of Ca-
615	NO_3 black carbon particles; (c) Spectra of $\mathrm{K}\text{-}\mathrm{Ni}\text{-}\mathrm{SO}_4$ black carbon particles; (d) Spectra of SO_4 black
616	carbon particles; (e) Spectra of $\mathrm{K}\operatorname{-SO_4}$ black carbon particles; (f) Spectra of $\mathrm{K}\operatorname{-lev}$ black carbon particles.
617	Figure 3. Box plots of hourly counts (in red) and fractions (in blue) of black carbon particles from Leg
618	I to Leg V. The tops and bottoms of the boxes indicate the upper and lower quartile values, respectively.
619	Horizontal lines within the boxes denote median values. Hollow squares and dotted black lines represent
620	mean values. Vertical whiskers extend to scattered values above and below the boxes, with caps on the
621	whiskers indicating maximum and minimum values. Cross symbols mark the 99th and 1st percentile
622	values, respectively.
623	Figure 4. Fraction of each type of black carbon particles from Leg I to Leg V. Different colors represent
624	various types of black carbon particles: blue for K-CN, green for Ca-NO ₃ , orange for K-Ni-SO ₄ , magenta
625	for SO ₄ , cyan for K-SO ₄ , and red for K-lev.
626	Figure 5. Correlation of SNR and R_{BC} in black carbon particles. A red dashed line indicates the linear fit

627 curve, with the correlation coefficient (r) and significance level (p) provided.

23 / 30

- 628 Figure 6. Box plots of SNR for sea salt particles (in red) and black carbon particles (in blue), grouped
- 629 by SWGDN. The upper and lower parts of the boxes indicate the quartile values, while the horizontal
- 630 lines within the boxes denote the median values. Hollow squares and black dotted lines show the mean
- 631 values. Vertical whiskers extend to capture scattered values above and below the boxes, with caps on the
- 632 whiskers indicating the maximum and minimum values. Cross symbols mark the 99th and 1st percentile
- 633 values, respectively.

634

635 Figure 1. Sampling locations from open water to the high Arctic are indicated by a blue line. The 636 expedition is divided into five segments, each outlined by dashed red boxes: Chukchi Sea section, denoted as Leg I, spans from 22:00 on July 30th, 2017, to 19:00 on August 1st, 2017, covering latitudes 637 638 from 66.0°N to 74.8°N and longitudes from 169.4°W to 159.2°W. The high Arctic section, marked as 639 Leg II, extends from 20:00 on August 10th to 5:00 on August 12th, 2017, ranging from 83.7°N to 84.6°N 640 and from 132.0°E to 110.4°E. Svalbard Islands section, identified as Leg III, is from 2:00 on August 17th 641 to 11:00 on August 19th, 2017, with latitudes from 82.6°N to 74.3°N and longitudes from 25.4°E to 2.1°E. 642 Norwegian Sea and Iceland section, referred to as Leg IV, occurs from 14:00 on August 23rd to 14:00 on 643 August 25th, 2017, spanning from 67.0°N to 61.2°N and from 2.1°W to 25.8°W. Atlantic Ocean section, 644 labeled as Leg V, spanning from 14:00 on August 25th to 17:00 on August 27th, 2017, covers from $61.1^\circ N$ to $56.2^\circ N$ and from $25.9^\circ W$ to $46.9^\circ W.$ 645

Figure 2. Spectra of various types of black carbon particles with peaks displaying strong signals highlighted in blue. The X-axis represents the mass-to-charge ratio (m/z), and the Y-axis shows the relative peak area. The cation spectrum is presented in the upper half of each map, while the anion spectrum is depicted in the lower half. (a) Spectra of K-CN black carbon particles; (b) Spectra of Ca-NO₃ black carbon particles; (c) Spectra of K-Ni-SO₄ black carbon particles; (d) Spectra of SO₄ black carbon particles; (e) Spectra of K-SO₄ black carbon particles; (f) Spectra of K-lev black carbon particles.

Figure 3. Box plots of hourly counts (in red) and fractions (in blue) of black carbon particles from Leg
I to Leg V. The tops and bottoms of the boxes indicate the upper and lower quartile values, respectively.
Horizontal lines within the boxes denote median values. Hollow squares and dotted black lines represent
mean values. Vertical whiskers extend to scattered values above and below the boxes, with caps on the
whiskers indicating maximum and minimum values. Cross symbols mark the 99th and 1st percentile
values, respectively.

660

- 661 Figure 4. Fraction of each type of black carbon particles from Leg I to Leg V. Different colors represent
- 662 various types of black carbon particles: blue for K-CN, green for Ca-NO₃, orange for K-Ni-SO₄, magenta
- 663 for SO₄, cyan for K-SO₄, and red for K-lev.

664

665 Figure 5. Correlation of SNR and R_{BC} in black carbon particles. A red dashed line indicates the linear fit

666 curve, with the correlation coefficient (r) and significance level (p) provided.

667

Figure 6. Box plots of SNR for sea salt particles (in red) and black carbon particles (in blue), grouped by SWGDN. The upper and lower parts of the boxes indicate the quartile values, while the horizontal lines within the boxes denote the median values. Hollow squares and black dotted lines show the mean values. Vertical whiskers extend to capture scattered values above and below the boxes, with caps on the whiskers indicating the maximum and minimum values. Cross symbols mark the 99th and 1st percentile values, respectively.