Linking extreme rain-wind and wave-wind compounds to Mediterranean cyclones Supplementary Material

Alice Portal¹, Shira Raveh-Rubin², Jennifer L Catto³, Yonatan Givon², and Olivia Martius¹

¹Institute of Geography, Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland ²Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel ³Department of Mathematics and Statistics, University of Exeter, Exeter, United Kingdom

Correspondence: Alice Portal (alice.portal@unibe.ch)

List of material

5

- Threshold maps for extreme-event identification (Fig. SM1);
- Frequency maps of uni-variate extremes (Fig. SM2);
- Frequency maps of compound RAW extremes, with uni-variate extremes defined based on the 95th percentile threshold
- (Fig. SM3) instead of the 98th percentile threshold used to produce Fig. 4 in the main manuscript;
- Maps showing the ratio of compound over uni-variate extremes, i.e., the compounding ratio (Figs SM4, SM5);
- Frequency maps of the cyclone features used in the analyses of Figs 6, 8 in the main manuscript (Fig. SM6);
- Maps of the first, second and third dominant cyclone cluster in terms of absolute impact-area frequency (Fig. SM7).

Figure SM1. Thresholds used for the identification of (a) Rain, (b) Windgust and (c) Swell-Wave height moderate extremes. These are defined as the 98th percentile of the variable distribution at each grid point, provided it exceeds a minimum value of 2 mm, 10 m s⁻¹ and 2 m, respectively

Frequency of (a-c) Rain6h, (d-f) Windgust6h and (g-i) SWheight6h extremes

Figure SM2. Frequency of (a-c) Rain, (d-f) Windgust and (g-i) Swell-Wave height moderate extremes, computed as the number of extreme occurrences over the total number of 6-hourly time steps

Figure SM3. As Fig. 4 in the main manuscript, but with extremes defined based on a local 95th percentile threshold. (a-c) The frequency of $R \wedge W$ compound conditional to the presence of a cyclone, (d-f) the ratio of $R \wedge W$ compound frequency during cyclone occurrence over the $R \wedge W$ compound frequency during times when cyclones do not occur, (g-i) the cyclone frequency conditional to the presence of $R \wedge W$ compounds. Seasonal results for autumn - SON, winter - DJF and spring - MAM are displayed on the left, centre and right panels, respectively. Grid points displaying less than four ($R \wedge W$ IIA01) events are masked out

Figure SM4. Ratio of $R \land W$ over $R \lor W$ (shading), computed as the number of compound extreme occurrences over the number of uni-variate or compound extreme events

Figure SM5. As in Fig. SM4 for WAW compound (note difference in colour scale)

Figure SM6. Frequency of the cyclone features corresponding to cold fronts (a-c, CF-IA), regions of warm conveyor belt inflow (d-f, WCBin-IA) and ascent (g-i, WCBas-IA), dry intrusions (j-l, DI-IA), and the 1000 km radius around the cyclone centre after removal of the aforementioned dynamical features' masks (m-o, IA-noDF), computed as the number of occurrences over the total number of 6-hourly time steps

Figure SM7. The first, second and third cyclone cluster for frequency in (a,d,g) autumn - SON, (b,e,h) winter - DJF and (c,f,i) spring - MAM. Note that grid points simultaneously within the IA01 of multiple cyclones contribute to the frequencies of all the relevant clusters

Figure SM8. Frequency of (a-c) CFs, (d-f) WCBs and (g-i) DIs conditional to $W \land W$ compound occurrence. Magenta contours and slanted white hatching identify regions where more than 90% of the selected dynamical features are associated with cyclones, according to the definitions of cyclone impact area in Section 3 of the main manuscript