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Abstract. Seismic data inversion for estimating elastic properties is a crucial technique for characterizing reservoir properties 

post-drilling. The choice of inversion method significantly impacts results. Markov chain Monte Carlo (MCMC) algorithms 

enable Bayesian inference, incorporating seismic data uncertainty and expert information via prior distribution. This study 

compares the performance of four inversion methods—Metropolis-Hastings (MH), Hamiltonian Monte Carlo (HMC), and two 

Lagrangian Diffusion variants (MALA and Lip-MALA)—in prestack seismic inversion, using synthetic and real-world data 15 

from an eastern Venezuelan hydrocarbon reservoir. All four methods show acceptable performance but differ in specific 

strengths and weaknesses. Gradient-based methods (HMC, MALA, and Lip-MALA) outperform MH in velocity estimation. 

Density estimation is more challenging; MH and HMC yield unsatisfactory results, whereas MALA and Lip-MALA show 

promise. Execution time varies significantly: MH and MALA are substantially faster than HMC and Lip-MALA. Therefore, 

both accuracy and computational efficiency should be considered when choosing a method. The study evaluates the mean 20 

values and standard deviations of the subsequent parameters: P-wave (𝑉𝑃), S-wave velocity (𝑉𝑆) and density (ρ). The quality 

of the MCMC sample is checked using correlations, objective function plots, seismic trace and Root Mean Square Error 

(RMSE) estimation. Acceptance rate and execution time assessments reveal HMC has the lowest acceptance rate, and MH the 

shortest execution time. Future research aims to extract additional elastic parameters and reservoir properties, enhancing 

subsurface understanding. Integrating well log conditioning into the model could improve vertical resolution near wells and 25 

align the model with well data at drilling locations. 

1 Introduction 

The accurate characterization of hydrocarbon reservoirs is crucial for effective reservoir management. This process 

necessitates the integration of two distinct information sets: general reservoir knowledge and reservoir-specific observations. 

General reservoir knowledge encompasses insights gleaned from analogous reservoir studies, coupled with established 30 
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principles in seismic and rock physics. In contrast, reservoir-specific observations include direct measurements of the reservoir 

under study, including well data, seismic surveys, and historical production data. 

Seismic data play an important role in reservoir characterization due to their wide spatial coverage. Unlike well logs, which 

are limited to individual well locations, seismic surveys provide a comprehensive picture of the entire reservoir... To leverage 

this information for reservoir characterization, we require methods to transform seismic amplitudes into rock properties 35 

relevant for reservoir description. Seismic inversion stands as a prominent technique for extracting this elastic and/or 

petrophysical properties from seismic data. 

Seismic inversion is a geophysical inverse problem. It aims to indirectly extract information about the subsurface medium 

(elastic properties, lithology, etc.) from observed seismic data. This necessitates a robust mathematical framework, typically 

represented by an equation or system of equations, that accurately describes the physical relationship between the medium 40 

(geological model) properties and the recorded seismic response. The process of mapping the parameters of a geological model 

to quantities in the data space is known as forward modeling, generally of the type (Tarantola, 2005): 

𝑑𝑜𝑏𝑠 = 𝐹(𝑚) + ϵ,                                                                                                                                                                                            (1) 

where 𝑑𝑜𝑏𝑠 is the observed data, 𝐹 is the function that relates the parameters of the medium 𝑚 with the observed data and ϵ 

represents noise due to data and/or modelling errors. For the particular case of amplitude versus offset (AVO) prestack seismic 45 

inversion (Helland-Hansen et al., 1997; Ma, 2002; Buland and Omre, 2003) is an ill-posed problem (Landa and Treitel, 2016), 

there is usually inconsistency, and the solution is extremely sensitive and unstable to measurement errors. The most important 

physical parameters for seismic inversion are P-wave (VP) and S-wave velocity (VS) and density (ρ). These parameters can be 

used to derive Lame parameters, which are sensitive to fluid and saturation in rocks (Clochard et al., 2009). Petrophysical 

parameters, such as porosity, sand/shale ratio, and gas saturation, can then be estimated from the inverted Lame parameters 50 

(Goodway, 2001). Petrophysical parameters are very important in the interpretation of seismic data, which is a crucial process 

in oil exploration and production projects. By understanding the petrophysical properties of the earth's surface, geologists and 

engineers can better identify potential reserves of oil and gas. 

The approach of this work is based on computer statistics, which allows to include uncertainty in seismic data, prior knowledge 

of model parameters and, through the application of Monte Carlo methods, to generate samples that allow to estimate the 55 

posterior distribution. (solution of the inverse problem). Bayesian inference take into account a likelihood of the seismic data, 

a prior distribution containing rock property information, combined these two sources of information for later applies Bayes' 

Theorem (or Bayes' Rule) to approximate the solution. 

There is an extensive literature related to Markov chain Monte Carlo (MCMC) that explore spaces in high dimensions. The 

Metropolis-Hastings (MH) algorithm was popularized by Metropolis et al., (1953) and Hastings, (1970), initially it was used 60 

to simulate the distribution of states of a system of idealized molecules. The MH is a method that facilitates the construction 

of a stationary Markov chain that converges to a posterior distribution. A more general algorithm is the Hamiltonian Monte 

Carlo (HMC) is another approach to molecular simulation introduced by Alder and Wainwright, (1959) and Duane et al., 

(1987) and popularized by Neal, (2012) and Betancourt, (2018). The HMC is applied in many disciplines such as: Neural 
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Networks and Machine Learning, (Bishop, 2006); in molecular simulations, (Dubbeldam et al., 2016). In inverse geophysics 65 

problems, Bosch et al., (2007) solve an inverse problem following the MCMC methodology, where they quantify the 

uncertainties of geophysical data and petrophysical properties, combining seismic information with powerful computational 

methods, establishing a relationship between porosity and acoustic impedance in reservoir areas. In Wu et al., (2019) propose 

a MCMC method to reduce the sampling range and improve the efficiency and resolution of impedance inversion, using a 

Gaussian MH algorithm with data handling for the sampling function (Gaussian MH sampling with data driving (GMHDD) 70 

approach). In Gebraad et al., (2020) developed a Bayesian inversion methodology to treat the full elastic waveform, their 

proposal is based on HMC sampling of the posterior distribution, use adjoint techniques, and compute the mass matrix 

considering different sensitivities of seismic velocities and densities. In Izzatullah et al., (2021) studied the seismic inversion 

problem under a Bayesian approach, implement a MCMC algorithm inspired by Langevin dynamics, and propose a rule for 

determining the adaptive step size in MCMC algorithm that replaces the MH acceptance step. In Fichtner and Simuté, (2018) 75 

developed a model of probabilistic inversion that considers the heterogeneous 3D structure of the earth, the method is based 

on numerical simulations of wave fields in complex media and on HMC sampling. In de Lima et al., (2023) used a full 

waveform inversion (FWI) method, the proposed technique is of high resolution and is used in geophysics to evaluate the 

physical parameters and build subsurface models in a noisy scenario and with limited data, proposed a new way to adjust the 

mass matrix based on the seismic survey acquisition geometry, and demonstrate significant improvements of the ability of the 80 

HMC method in reconstructing reasonable seismic models with manageable computational costs. 

This article studies the impact of the choice of the inversion method on the results of the inversion. We compare the 

performance of four algorithms: MH, HMC, MALA and Lip-MALA for prestack seismic inversion. We validate the algorithms 

with synthetic data and measure the quality of the samples generated by the MCMC algorithms through diagnostic methods. 

This article is structured by first reviewing the theory of seismic inversion, then we review the theory of the 4 methods used 85 

and the AVO theory, in the results part we show what was obtained for synthetic data and real data and finally we have the 

discussion and conclusions. 

2 The seismic inversion problem 

Seismic inversion is a way to use seismic waves to understand about the subsurface 𝑚 ∈ 𝑅𝑁𝑚 , such as seismic velocities and 

densities from the observed seismic data dobs ∈ RND, where Nm and ND are the dimensions of the model parameters and the 90 

observed seismic data. This can be solved using a Bayesian framework that treats the inversion problem as a statistical 

inference problem. 

In Bayesian inference, we start from the prior probability distribution of the parameters of the subsurface models. This prior 

distribution represents our knowledge of the ground before seeing the seismic data. We then update this prior distribution with 

the seismic data using Bayes' theorem to obtain the posterior probability distribution of the subsurface model parameters. 95 
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The posterior probability distribution encodes the degree of confidence in our subsurface model parameter estimate. This 

distribution allows us to quantify the uncertainty of the underground parameters, considering the seismic data, the prior data 

and the forward model. 

To fully characterize the posterior probability distribution, we usually need to estimate several samples in the parameter space 

of the model. This can be computationally expensive. 100 

In this section, we develop a general approach to seismic Bayesian inference. This framework can be used to make Bayesian 

inference more practical in real-world applications. 

2.1 Bayesian inference framework for seismic data 

Interest for Bayesian statistics methods for high-dimensional models has recently received very attention motivated by machine 

learning application. Bayesian methods attempt to sample the full posterior distribution over the parameters and possibly latent 105 

variables which provides a way to assert uncertainty in the model. 

Under the statistical approach of Bayesian inversion, the objective is to find the posterior distribution of the latent states 

(unknown parameters) m given the observed data dobs. To solve Bayesian seismic inversion, we need to know about the prior 

probability density ρ(m) and the likelihood function L(m). The prior probability density tells us how confident we are in our 

knowledge of the subsurface model parameters, before we look at the seismic data. The likelihood function tells us how likely 110 

it is that a particular set of subsurface model parameters would produce the seismic data that we actually observed (Izzatullah 

et al., 2021). 

Bayes' theorem combines the prior probability density and the likelihood function to give us the posterior probability density 

σ(m). The posterior probability density tells us how confident we are in our knowledge of the subsurface model parameters, 

after we have looked at the seismic data (Bosch, 2004). 115 

σ(m) = cL(m)ρ(m)                                                                                                                                                                                       (2) 

where σ(m) is posterior probability density, c is a normalization constant, L(m) is likelihood and ρ(m) prior probability 

density. In other words, the prior probability density tells us what we think we know about the subsurface before we look at 

the data. The likelihood function tells us how much the data changes our mind about the subsurface. And the posterior 

probability density tells us what we think we know about the subsurface after we have looked at the data. In this paper, we will 120 

focus on the posterior probability distribution, which can be expressed mathematically as 

σ(m) = c exp(−S),                                                                                                                                                                                        (3) 

with the half-sum of squares S being: 

S =
1

2
(dobs − g(m))

T
Cd

−1(dobs − g(m)) +
1

2
(m − mprior)

T
Cm

−1(m − mprior),                                                                           (4)  

with g: m → dobs, being the function solving the seismic forward problem, Cd being the data covariance matrix that describes 125 

second-order statistics on the data uncertainties, Cm an appropriate covariance matrix describing variability and correlation 

between parameters of the medium and mprior is a prior model. 
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Usually the equation given in (3) is analytically intractable, but it can be approximated numerically by using the simulated 

samples m ∼ σ(m),  using Markov chain Monte Carlo (MCMC) computational algorithms, (Metropolis et al., 1953; Hastings, 

1970; Estévez et al., 2012; Sanchez et al., 2016). 130 

3 Theoretical Background for Metropolis-Hastings, Hamiltonian Monte Carlo and Langevin Diffusion 

3.1 Metropolis-Hastings (MH) 

The Metropolis-Hastings algorithm, which was proposed by Metropolis et al., (1953) and later generalized by Hastings, (1970).  

In MH, a candidate configuration is produced from a source sampling distribution, which is not the target distribution. The 

source sampling distribution can be anything, but it is desirable for the efficiency of the algorithm that it is somehow close to 135 

the target distribution, which is to be sampled. The algorithm is based on comparing the candidate configuration and the current 

configuration, to decide whether the candidate is accepted as the next step of the chain or if it is rejected, repeating the current 

configuration as the new link. 

In order to establish this comparison, it is necessary to calculate the multivariate density for both configurations, or the ratio 

between them. Consider a source density, ρ(m), and a likelihood function, L(m), where m is a point in the sample space. We 140 

will assume that we have a chain that converges to the source distribution. Starting from any configuration in the parameter 

space, and with the chain in the configuration corresponding to the nth step, mn, the Metropolis algorithm defines a chain that 

converges to the target density. The configuration for the new step mn+1 according to the Metropolis transition rule is as 

follows: 

1. Generate a candidate configuration m̃ from the transition rule of the convergent chain to the source probability 145 

density. 

2. Calculate the value of L(m̃). 

3. Accept the candidate by setting m = m̃ with probability, 

        paccept = min (1,
L(m̃)

L(m)
)                                                                                                                                                                        (5) 

4. If m̃ is better than the m, make  m = m̃. Otherwise, keep the current model as-is. Then, repeat this process returning 150 

to 1. 

Iteratively repeating the MH rule generates a chain that converges to a sample of the target probability density. 

The MH algorithm has some advantages and disadvantages allows sampling from arbitrary objective distributions, it is not 

necessary to determine the marginals, it is simple to implement, and it has a better acceptance and rejection rate in high-

dimensional spaces than other competing algorithms. In addition, it can have a poor convergence rate when samples are 155 

correlated, it has problem when the target distribution is multimodal, and it is sensitive to the step size between draws, choosing 

too large or small a step can affect the convergence of the parameters. 
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3.2 Hamiltonian Monte Carlo (HMC) 

Hamiltonian Monte Carlo (HMC) is a sampling algorithm that was originally developed for molecular dynamics (Duane et al., 

1987). It is now commonly used for sampling problems where the gradients of the posterior probability distribution p(𝒎|𝒅𝒐𝒃𝒔) 160 

with respect to the model parameters m are easy to compute. HMC is more efficient than standard Metropolis-Hastings for 

high-dimensional problems. However, the cost of generating independent samples with HMC grows faster than the cost of 

generating samples with Metropolis-Hastings. Specifically, the cost of generating independent samples with HMC grows as 

𝒪(n5/4) (Neal, 2012), where n is the dimension of the model parameter space. The cost of generating independent samples 

with Metropolis-Hastings grows as 𝒪(n2) (Creutz, 1988). 165 

Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) algorithm that uses classical Hamiltonian 

mechanics (Landau and Lifshitz, 1976) to sample from an arbitrary n-dimensional probability density function (PDF) p(m) =

σ(m). HMC regards the current state m of the Markov chain as the location of a physical particle in n-dimensional space M. 

The particle moves under the influence of a potential energy, U, which is defined as the negative logarithm of the PDF (Gebraad 

et al., 2020): 170 

U(m) = − ln p (m)                                                                                                                                                                                         (6) 

If the probability density function p of the subsurface model parameters is Gaussian, then the potential energy U of the system 

is equal to the least squares misfit S(m), up to an additive constant. To make the system physically complete, we need to add 

momentum variables p and mass matrices for each dimension of the model parameter space. The momentum variables 

represent the velocity of the Markov chain as it moves through the parameter space, and the mass matrix M of dimension 175 

𝑛 × 𝑛 represents the resistance to change. The kinetic energy of the system is defined by the momenta and the mass matrix as 

K(p) =
1

2
pTM−1p                                                                                                                                                                                           (7) 

The HMC algorithm uses a random momentum p, drawn from a multivariate Gaussian distribution with covariance matrix M. 

The potential energy of the system depends on the location, and the kinetic energy depends on the momentum. The total energy 

of the system, also known as the Hamiltonian, is the sum of the potential and kinetic energies, 180 

H(m, p) = U(m) + K(p)                                                                                                                                                                               (8) 

Hamilton's equations 

dm

dτ
=

∂H

∂p
,  

dp

dτ
= −

∂H

∂m
                                                                                                                                                                              (9) 

We want to find how the particle's position changes over time, as represented by the artificial time variable τ. Hamilton's 

equations tell us how the position and momentum of a particle change over time, but they can be complicated. We can simplify 185 

them by using the fact that the kinetic energy of a particle depends only on its momentum and its potential energy depends 

only on its position., 
dm

dτ
= M−1p,  

dp

dτ
= −

∂U

∂m
                                                                                                                                                                       (10) 
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In HMC, the model parameters m and their moment p are represented as a state. It then evolves the state (m, p) over time τ 

using Hamiltonian dynamics. This generates a distribution of the possible states of the system with new position 𝐦̃, momentum 190 

𝐩, potential energy Ũ, and kinetic energy K̃, which is a sample of the joint momentum and model space. Since we are only 

interested in the model parameters, we marginalize over the momenta to obtain a sample of the posterior distribution of the 

model parameters. This results in samples from the posterior distribution. 

p(m) = exp(−U(m))                                                                                                                                                                                 (11) 

 195 

If we could solve Hamilton's equations exactly, we could generate an infinite number of valid samples of the posterior 

probability distribution of the subsurface model parameters p(m). However, Hamilton's equations cannot be solved analytically 

for nonlinear forward models, so we must use numerical integration. Suitable integrators for numerical integration are 

symplectic, which means that they preserve time reversibility, phase space partitioning, and volume (Neal, 2012; Fichtner and 

Zunino, 2019). However, explicit time stepping schemes do not exactly preserve the Hamiltonian. In this work, we use the 200 

leapfrog method for numerical integration, as described in (Neal, 2012). Since the Hamiltonian is not preserved exactly, the 

leapfrog method introduces a small error into the samples of p(m). The Metropolis-Hastings correction step is a way to "fine-

tune" the results of numerical integration to make sure that they are as accurate as possible. 

To summarize, samples of the model parameters are generated by starting with a random model m and then following these 

steps (Gebraad et al., 2020): 205 

1. Generate random momenta m values from a Gaussian distribution with mean 0 and covariance matrix M. 

2. Evaluate the Hamiltonian H of model m, using its momenta p. 

3. Given the current values of the model parameters m and p, and a time step τ, use a numerical integrator to calculate 

the updated values of m and p, m̃ and p̃, after a time period of τ. 

4. Calculate the Hamiltonian H̃ of the model m̃ with momenta p̃. 210 

5. Permit the suggested change from m to m̃ to occur with probability. 

        paccept = min(1, exp(H − H̃)),                                                                                                                                                       (12) 

6. If the new state is better than the current state, accept 𝑚̃ and change it to the current state. Otherwise, keep the current 

state. Then go back to step 1... 

The acceptance rate of the leapfrog integration algorithm is largely influenced by how well it conserves energy in the trajectory. 215 

If the time steps are too large or the gradients of the fitting function are incorrectly calculated, the algorithm will save less 

energy, and the acceptance rate will decrease. Simply put, the leapfrog integration algorithm works by bouncing model 

parameters back and forth across the simulated energy landscape. The acceptance rate determines how often the algorithm 

accepts a new proposed model parameter. If the time steps are too large or the gradients are calculated incorrectly, the algorithm 
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cannot follow the energy landscape accurately and will likely reject the proposed model parameters. This results in lower 220 

acceptance. 

3.3 The Langevin dynamics 

Langevin dynamics are a mathematical model of Brownian motion, named after the French physicist Paul Langevin (Lemons 

and Gythiel, 1997) who developed them in 1908. Langevin dynamics is a simplification of Albert Einstein's approach to 

Brownian motion, which is based on Newton's second law of motion. The Langevin dynamics for target distribution 225 

p(mt|dobs), is a continuous-time stochastic process (mt)t≥0 in Rn that evolves following the stochastic differential equation 

(Roberts and Stramer, 2002; Nemeth et al., 2016; Izzatullah et al., 2021) and (Infante et al., 2019), 

dmt = −Σ∇ log p (mt|dobs)dt + √2 Σ−
1
2dWt                                                                                                                                        (13) 

where (Wt)t≥0 is a standard n-dimensional Brownian motion, Σ is a symmetric positive definite matrix, ∇ log p (mt|dobs) is 

the drift term of the Brownian particle mt and p(.) is a stationary posterior distribution. 230 

3.3.1 Metropolis-adjusted Langevin algorithm (MALA) 

In the practice, a standard approach is to discretise the equation (13) using the  Euler-Maruyama discretisation (Stuart et al., 

2004) and we obtained the Unadjusted Langevin algorithm (ULA) given by 

m = m̃ − τtΣ∇ log p (m̃|dobs) + √2τtϵt,  ϵt ∼ N(0, In×n)                                                                                                              (14) 

where τ is the step-length for each iteration. 235 

The procedure consists of constructing a Markov chain at each step t, given m̃, a new observation   

m is generated from the candidate density ρ(m). The candidate value is accepted with probability, 

paccept = min (1,
L(m̃)

L(m)
)                                                                                                                                                                            (15) 

Combining the MH and ULA algorithms, the MALA MCMC algorithm is obtained and the general steps for MALA MCMC 

is presented below: 240 

1. Choose an initial solution mprior and the discretization step-length τ.    

2. Draw ϵt ∼ N(0, In×n) and simulate a new sample from the Langivin diffussion: 

𝐦 = 𝐦̃ − 𝜏𝑡Σ∇ log 𝑝 (𝐦̃|𝐝𝐨𝐛𝐬) + √2𝜏𝑡𝜖𝑡 ,                                                                                                                              (16) 

3. Compute the accept-reject probability 

paccept = min (1,
L(m̃)

L(m)
)                                                                                                                                                              (17)     245 

4. If the proposed subsurface model, m̃, is better than the current subsurface model, m, then replace m with m̃. 

Otherwise, keep the current model as-is. Then, repeat this process until convergence. 
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The main advantage of the MALA algorithm is that high-dimensional density samples are obtained using the gradient of the 

logarithm of the posterior distribution. The MALA algorithm is a MCMC method that uses simulations from the discretization 

by the Euler-Maruyama algorithm of an SDE whose target density has a stationary distribution. The algorithm is inspired by 250 

stochastic models of molecular dynamics and is a multivariate extension of a Metropolis random walk, including partial 

derivatives to improve the mixing rate. It is general purpose, has good theoretical properties, in particular, it can scale better 

to high-dimensional problems than standard MCMC algorithms, geometric convergence is well established, has an acceptance 

rate between 40-80%. One drawback is that it requires calculating a gradient at each iteration and successively evaluating the 

objective function. 255 

3.3.2 MALA with locally Lipschitz adaptive step size 

In the MALA algorithm, it is required to calibrate the step-size τ, because τ must decrease with dimension, n. then τ can be 

turned such that the MCMC achieve better mixing performance.  An extension of ULA and similar in spirit with Stochastic 

Gradient Langevin Dynamics algorithm proposed by Welling and Teh, (2011) by suppressing the MH acceptance steps. In 

(Izzatullah et al., 2021) propose ULA with the step-length τ based on the Lipschitz condition, 260 

τ𝑡 =
1

2

|𝑚𝑡+1 − 𝑚𝑡|2

|∇ log 𝑝 (𝑚𝑡|𝑑𝑜𝑏𝑠) − ∇ log 𝑝 (𝑚𝑡|𝑑𝑜𝑏𝑠)|2

                                                                                                                                  (18) 

The general steps for MALA MCMC with locally Lipschitz adaptive step size are: 

1. Choose an initial solution mprior, the discretization step-length τ, β0 = +∞ and 𝐿𝑐 = 𝑁𝒎
−1/3

.  

2. Draw ϵt ∼ N(0, In×n) and simulate a new sample from the Langevin diffussion: 

𝐦 = 𝐦̃ − 𝜏𝑡Σ∇ log 𝑝 (𝐦̃|𝐝𝐨𝐛𝐬) + √2𝜏𝑡𝜖𝑡 ,                                                                                                                              (19) 265 

5. Compute the accept-reject probability 

paccept = min (1,
L(m̃)

L(m)
)                                                                                                                                                              (20)     

6. If the proposed subsurface model, 𝐦̃, is better than the current subsurface model, m, then replace m with 𝐦̃ and 

update. 

𝜏𝑡 = min{√1 + 𝛽𝑡−1𝜏𝑡−1, 𝐿𝑐

‖𝐦𝐭 − 𝐦𝐭−𝟏‖

|Σ∇ log 𝑝 (𝐦𝐭|𝐝𝐨𝐛𝐬) − Σ∇ log 𝑝 (𝐦𝐭−𝟏|𝐝𝐨𝐛𝐬)|
}                                                                 (21) 270 

𝛽𝑡 =
𝜏𝑡

𝜏𝑡−1

                                                                                                                                                                                       (22) 

7. Otherwise, keep the current model as-is. Then, repeat this process until convergence. 
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4 The AVO method 

The AVO method was created in the early 1980s to analyze the amplitudes of seismic CMP gathers as a function of angle to 

find hydrocarbons. The Aki-Richards equation (Aki and Richards, 2002 is the foundation of AVO analysis. The original form 275 

of the equation can be rewritten for a weak-contrast interface to give (Buland and Omre, 2003; Niu et al., 2020): 

Rpp(θ) = c1(θ)
ΔVp

Vp
̅̅ ̅

+ c2(θ)
ΔVs

Vs̅

+ c3(θ)
Δρ

ρ̅
,                                                                                                                                       (23) 

where 

c1(θ) =
1

2
(1 + tan2 θ),                                                                                                                                                                               (24) 

c2(θ) = −4
Vs̅

Vp
̅̅ ̅

sin2 θ,                                                                                                                                                                                  (25) 280 

𝑐3(θ) =
1

2
(1 − 4

𝑉𝑠̅

𝑉𝑝̅

sin2 θ),                                                                                                                                                                     (26) 

In equations (23 - 26), the incident angle θ is the angle at which a wave hits a surface. Vp, Vs and ρ represent the velocities of 

P-waves, S-waves, and the density of a material, respectively. ΔVp, ΔVs  and Δρ  are the changes in 𝑉𝑝 , 𝑉𝑠  and 𝜌  across a 

reflective interface. Vp
̅̅ ̅, Vs̅ and ρ̅ are the average values of 𝑉𝑝, 𝑉𝑠 and 𝜌, respectively. 

To obtain the seismic trace for a certain theta angle we can use the approximation for small reflectivity (Russell et al., 2006), 285 

T(θ) =
1

2
c1W(θ)DLVp

+
1

2
c2W(θ)DLVs

+
1

2
c3W(θ)DLρ,                                                                                                                (27) 

where LVp
= ln(Vp), LVs

= ln(Vs), Lρ = ln(ρ), W is the wavelet matrix and D is the derivative matrix. Equation 27 can be 

implemented in matrix form as 

[

𝑇(𝜃1)

𝑇(𝜃2)
⋮

𝑇(𝜃𝑛)

] =
1

2
[

𝑐1𝑊(𝜃1)𝐷  

𝑐1𝑊(𝜃2)𝐷  
⋮

𝑐1𝑊(𝜃𝑛)𝐷  

𝑐2𝑊(𝜃1)𝐷   

𝑐2𝑊(𝜃2)𝐷   
⋮

𝑐2𝑊(𝜃𝑛)𝐷  

𝑐3𝑊(𝜃1)𝐷

𝑐3𝑊(𝜃2)𝐷
⋮

𝑐3𝑊(𝜃𝑛)𝐷

] [

𝐿𝑉𝑝

𝐿𝑉𝑠

𝐿𝜌

]                                                                                                                 (28)  

A practical approach to solve equation 28 is to initialize the solution to, [𝐿𝑉𝑝
𝐿𝑉𝑠

𝐿𝜌]
𝑇

=  [𝐿𝑉𝑝0
𝐿𝑉𝑠0

𝐿𝜌0]
𝑇

where 290 

LVp0
, LVs0

 and Lρ0
 is the prior model for P-wave and S-wave velocities and bulk density respectively, and then to iterate 

towards a solution using in our case MH, HMC, MALA and Lip-MALA. 
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5 Results 

5.1 Synthetic test 

We test our algorithms with synthetic traces that were obtained from real data of 𝑉𝑝, 𝑉𝑠 and 𝜌 for which synthetic seismic traces 295 

were generated from the equation 28 for the angles θ1 = 9o, θ2 = 18.5o and θ3 = 27.5o and these synthetic seismic traces 

will be our observed data. We ran the sampling algorithms described in section 3, producing a large chain of realizations, 

starting from a prior model configuration corresponding to a low frequency model of 𝑉𝑝 , 𝑉𝑠 and 𝜌. 

Figure 1 shows the objective function variation curves for the different sampling algorithms. Each iteration involves randomly 

perturbing the velocities and density of a subset of layers and recalculation of seismic traces. The vertical axis represents the 300 

objective function calculated using Equation 4. The horizontal axis shows the number of steps in the Markov chain, each 

associated with an accepted or rejected perturbation of the velocity and density configuration. The first stage of the chain, 

associated with the initial configuration and large residues, is called the burn stage. After subtracting the residuals, the model 

realizations of velocities and densities satisfactorily explain the seismic data within the data errors. This is called the sampling 

phase. Realizations produced during the sampling phase are treated as samples from the probability density. 305 

 

Figure 1: Progress with iterations in the MH (blue line), HMC (red line), MALA (green line) and Lip-MALA (black line) sampling 

algorithms for synthetic test. 
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The model settings were modified during the sampling phase, but remain within the probability function, as shown in Figure 

2. Figure 3 shows all realizations taken (gray area) in the chain sampling phase for the different algorithms tested in this work, 310 

all adjusting the observed seismic data and within the uncertainties of the data. These realizations indicate the features and 

variability of the velocities and density. Table 1 shows the statistical parameters of mean and standard deviation (Sd) which 

we will compare then with the data obtained from the inference in the different algorithms used. 

Parameter Mean Sd 

𝑽𝒑 (m/s) 3068.21 278.29 

𝑽𝒔 (m/s) 1553.81 240.60 

𝝆 (Kg/m3) 2263.57 54.68 

Table 1: Mean and Standard deviation of elastic parameters used in the synthetic test. 
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 315 

Figure 2: True data (black line), prior model (red line) and accepted realizations (gray) for the synthetic test. 
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Figure 3: Observed data (black line) and accepted realizations (gray) for the synthetic test. 
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Figure 4: Marginal cumulative probability distributions (color map), true data (black line) and result of seismic inversion (red line) 320 
for the synthetic test. 
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Our chain sampling phase yielded 10,000 realizations. From these realizations, we calculated the expected values and marginal 

probabilities of P-wave and S-wave velocities and density as a function of two-way reflection time. These calculations were 

based on averaging the model performances over the sampling phase. Figure 4 presents the marginal cumulative probability 

distributions for P and S wave velocities and density, as estimated by the inversion, along with the actual P and S wave 325 

velocities and density of the synthetic test. The figure demonstrates the successful prediction of the actual values for all tested 

algorithms, accurately identifying the main stratification characterized by high and low velocities and the corresponding high 

and low density. 

Table 2 summarizes the performance of the different algorithms tested in predicting P-wave and S-wave velocities and density. 

The mean, Standard Deviation (Sd), correlation, and Root Mean Squared Error (RMSE) are presented for each parameter. 330 

The mean and standard deviation values indicate that the predicted values are closely aligned with the true values. Regarding 

correlation, MH exhibits the lowest correlation for velocity prediction, while HMC achieves the highest. For density prediction, 

MH and HMC show correlations below 0.29, while MALA and Lip-MALA achieve correlations above 0.60. 

In terms of RMSE, MH demonstrates the highest error for velocity prediction, while HMC achieves the lowest. For density 

prediction, MH and HMC exhibit errors above 75.75, while MALA and Lip-MALA maintain errors below 51.04. 335 

Parameter Mean Sd Corr RMSE 

MH 

𝑽𝒑 (m/s) 3058.90 394.79 0.64 302.96 

𝑽𝒔 (m/s) 1577.99 359.38 0.64 277.26 

𝝆 (Kg/m3) 2278.00 112.32 0.29 110.39 

HMC 

𝑽𝒑 (m/s) 3075.62 312.57 0.90 135.23 

𝑽𝒔 (m/s) 1566.98 271.01 0.90 118.15 

𝝆 (Kg/m3) 2256.42 61.61 0.16 75.75 

MALA 

𝑽𝒑 (m/s) 3051.93 326.28 0.85 174.52 

𝑽𝒔 (m/s) 1544.13 277.40 0.80 165.30 

𝝆 (Kg/m3) 2262.27 29.39 0.68 40.64 

Lip-MALA 

𝑽𝒑 (m/s) 3062.09 265.42 0.91 112.94 

𝑽𝒔 (m/s) 1552.04 217.04 0.89 110.60 

𝝆 (Kg/m3) 2266.78 59.00 0.60 51.04 

Table 2: Statistical parameters for the results obtained for algorithms tested for the synthetic test. 
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Table 3 presents various performance parameters, including acceptance rate and total execution time. Lip-MALA exhibits the 

highest acceptance rate, while HMC exhibits the lowest. Conversely, MH boasts the lowest total execution time, while HMC 

demonstrates the highest. 340 

 

Method Acceptance rate (%) Total execution time (s) 

MH 36.50 24.12 

HMC 17.53 9356.99 

MALA 25.28 694.54 

Lip-MALA 38.49 3337.02 

Table 3: Other parameters for synthetic test. 

Finally, the convergence of the samples was analyzed a posteriori of the unknown parameters (seismic data parameters) m 

obtained from the different algorithms used. The multivariate effective sample size (mESS) statistic was used. The mESS is a 

measure that determines the size of an independent and identically distributed sample with the same covariance structure as 345 

the sample obtained from an MCMC method for the multivariate case- If we want to know if the chain converges by we can 

calculate minimum effective sample size (minESS) so that if mESS>minESS we say that the chain converges, if the reader is 

recommended to review Vats et al. (2019) to delve deeper into the convergence test used in this work. Table 4 shows the 

summary of mESS and minESS obtained for each method. 

Method mESS minESS 

MH 8150.89 7458 

HMC 8561.10 7458 

MALA 7472.03 7458 

Lip-MALA 8119.88 7458 

Table 4: Convergence test for synthetic data. 350 

5.2 Application to real data 

To demonstrate the effectiveness of the algorithms, we applied them to a real dataset of an oil field in eastern Venezuela. The 

site is located in a formation dominated by clastic rocks, a type of sedimentary rock characterized by alternating layers of sand 

and shale. The fluids in the pore spaces of these rocks are brine water and oil, without gas. As a preliminary step, we upscaled 

the P-wave and S-wave velocities obtained from well log data to the corresponding seismic scale using a bandpass filter. This 355 

process ensures that the velocity data is consistent with the frequency range of seismic waves. Table 5 presents the descriptive 

statistics, including mean and standard deviation (Sd), for the real data. These values will serve as a baseline for comparison 

with the results obtained from the inference procedures employed by the various algorithms under consideration. 
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Parameter Mean Sd 

𝑽𝒑 (m/s) 2642.92 249.40 

𝑽𝒔 (m/s) 1289.86 205.84 

𝝆 (Kg/m3) 2180.06 111.89 

Table 5: Mean and Standard deviation of elastic parameters used for real data. 

The seismic traces were obtained from partial stacks for the angles θ1 = 19o, 𝜃2 = 24o, and 𝜃3 = 29o. Utilizing 𝑉𝑝 , 𝑉𝑠 and 𝜌 logs 360 

in seismic scale and wavelets were extracted from the partial stacked seismic data using the frequency content of the data, the 

synthetic trace was generated using equation 28. The synthetic trace obtained was correlated with observed traces for seismic 

well tie. The sampling algorithms described in section 3 were implemented, generating a large chain of realizations starting 

from a prior model configuration corresponding to a low-frequency model of 𝑉𝑝 , 𝑉𝑠 and 𝜌. 

As depicted in figure 5, the objective function variation curves for each sampling algorithm are presented. During each 365 

iteration, a subset of layers undergoes a random perturbation of their velocities and density, followed by a recalculation of the 

seismic trace. The objective function, calculated using equation 4, is represented on the vertical axis, while the horizontal axis 

represents the number of steps in the Markov chain. Each step corresponds to an accepted or rejected perturbation of the 

velocities and density configuration. 

 370 

Figure 5: Progress with iterations in the MH (blue line), HMC (red line), MALA (green line) and Lip-MALA (black line) sampling 

algorithms for real data. 
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Figure 6: True data (black line), prior model (red line) and accepted realizations (gray) for real data. 
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 375 

Figure 7: Observed data (black line) and accepted realizations (gray) for real data. 
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Figure 8: Marginal cumulative probability distributions (color map), true data (black line) and result of seismic inversion (red line) 

for real data. 
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The model settings were adjusted during the sampling phase, ensuring they remained within the probability function (Figure 380 

6). Figure 7 illustrates all realizations sampled (gray area) in the chain sampling phase for the various algorithms tested in this 

study, all of which align with the observed seismic data and fall within the data's uncertainty bounds. These realizations 

highlight the characteristics and variability of the velocities and density. 

Employing a chain sampling scheme, we generated 9,000 realizations from which we extracted the expected values and 

marginal probabilities of P-wave and S-wave velocities and density, all as functions of two-way reflection time. These 385 

calculations were derived by averaging the model performances across the sampling phase. Figure 8 depicts the marginal 

cumulative probability distributions for P and S wave velocities and density, as inferred from the inversion process, alongside 

the actual P and S wave velocities and density of the synthetic test. 

Table 6 summarizes the performance of the tested algorithms in predicting P-wave and S-wave velocities and density. The 

mean, Standard Deviation (Sd), correlation, and Root Mean Squared Error (RMSE) are presented for each parameter. The 390 

predicted values closely align with the true values as evidenced by the mean and standard deviation values. MH exhibits the 

lowest correlation for velocity prediction, while Lip-MALA achieves the highest. For density prediction, MH and HMC show 

correlations below 0.28, while MALA and Lip-MALA achieve correlations above 0.48. MH demonstrates the highest error 

for velocity prediction, while Lip-MALA  achieves the lowest. For density prediction, MH and HMC exhibit errors above 

151.41, while MALA and Lip-MALA maintain errors below 122.22. 395 

Parameter Mean Sd Corr RMSE 

MH 

𝑽𝒑 (m/s) 2634.66 255.65 0.64 215.01 

𝑽𝒔 (m/s) 1327.43 241.58 0.51 224.74 

𝝆 (Kg/m3) 2197.22 170.73 0.35 168.44 

HMC 

𝑽𝒑 (m/s) 2640.91 199.32 0.69 182.23 

𝑽𝒔 (m/s) 1307.19 218.66 0.52 207.86 

𝝆 (Kg/m3) 2186.65 138.72 0.28 151.41 

MALA 

𝑽𝒑 (m/s) 2634.50 217.55 0.65 196.22 

𝑽𝒔 (m/s) 1283.90 202.36 0.55 193.84 

𝝆 (Kg/m3) 2177.61 72.40 0.65 84.42 

Lip-MALA 

𝑽𝒑 (m/s) 2642.07 223.19 0.79 155.40 

𝑽𝒔 (m/s) 1295.25 175.54 0.75 138.46 
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𝝆 (Kg/m3) 2194.84 125.50 0.48 122.22 

Table 6: Statistical parameters for the results obtained for algorithms tested for real data. 

Table 7 presents various performance parameters, including acceptance rate and total execution time. Lip-MALA exhibits the 

highest acceptance rate, while HMC exhibits the lowest. Conversely, MH boasts the lowest total execution time, while HMC 

demonstrates the highest. 

Method Acceptance rate (%) Total execution time (s) 

MH 32.66 15.48 

HMC 3.94 3970.74 

MALA 7.38 292.83 

Lip-MALA 37.89 1215.87 

Table 7: Other parameters for real data. 400 

And a final step, as in the synthetic data, was to test the convergence of the chains, this study employed a posteriori analysis 

to assess the convergence of samples obtained for the unknown seismic data parameters (denoted by m) using various 

algorithms. The multivariate effective sample size (mESS) statistic served as the convergence metric. The mESS quantifies 

the equivalent size of an independent and identically distributed (iid) sample possessing the same covariance structure as the 

sample generated by a Markov Chain Monte Carlo (MCMC) method in the multivariate case. 405 

To formally determine chain convergence, a minimum effective sample size (minESS) threshold can be established. If the 

mESS value surpasses the minESS threshold, convergence is achieved. For a more in-depth exploration of the convergence 

test employed in this work, readers are referred to Vats et al. (2019). Table 8 summarizes the mESS and minESS values 

obtained for each method. 

Method mESS minESS 

MH 7936.83 7555 

HMC 10405.54 7555 

MALA 10146.90 7555 

Lip-MALA 7979.45 7555 

Table 8: Convergence test for real data. 410 

6 Discussion 

This study presents a comparative analysis of Markov Chain Monte Carlo (MCMC) methods for estimating elastic properties 

from seismic amplitudes. We demonstrate the application of these methods in a field case, employing the following 

assumptions: (1) a one-dimensional reservoir model represented by stacked seismic traces, (2) seismic data simulation using 

the small reflectivity approximation, and (3) the Aki-Richards equation for weak contrast to establish the relationship between 415 

https://doi.org/10.5194/egusphere-2024-2694
Preprint. Discussion started: 21 October 2024
c© Author(s) 2024. CC BY 4.0 License.



24 

 

seismic data and elastic parameters. Notably, the proposed general formulation transcends these assumptions, allowing for the 

integration of more sophisticated seismic simulation techniques and comprehensive petrophysical models within a similar 

framework. 

The four methods studied demonstrate acceptable performance, but in-depth analysis reveals notable differences: 

• Velocity estimation: In both the synthetic and real-world scenarios, methods that incorporate gradient calculations 420 

(HMC, MALA, and Lip-MALA) outperform MH in estimating velocities. 

• Density estimation: Density estimation proves to be the most challenging parameter, with MH and HMC exhibiting 

unsatisfactory results. However, MALA and Lip-MALA showcase more promising performance. 

• Execution time: A significant difference emerges in execution time between methods. MH and MALA exhibit shorter 

execution times compared to HMC and Lip-MALA, which are considerably more time-consuming. 425 

A natural progression of this research would be to invert prestack seismic data to extract additional elastic parameters and 

reservoir properties, revealing a more comprehensive subsurface understanding. Similarly, incorporating well log conditioning 

into the model holds promise, as it could enhance vertical resolution near wells and guarantee that the model aligns with well 

data at drilling locations. 

7 Conclusions 430 

This study compares various pre-stack inversion methods under an MCMC framework for the estimation of elastic parameters. 

We invert pre-stacked seismic data to infer velocities (Vp, Vs) and density (ρ), which are linked to the seismic data via the Aki-

Richards equation. All methods employed effectively handle the inherent uncertainties associated with seismic and elastic 

data. 

The proposed algorithms allow estimating several important aspects of the posterior distribution, such as the means and 435 

standard deviations of the posterior parameters. We rigorously validated the algorithms by measuring the quality of the MCMC 

sample through correlations, plotting the objective function, seismic traces and estimating the RMSE.  

The four methods evaluated in this study exhibit acceptable performance overall, but a closer examination reveals notable 

differences in their specific capabilities. Velocity estimation: In both the simulated and real-world scenarios, methods that 

leverage gradient calculations (HMC, MALA, and Lip-MALA) demonstrate superior performance in estimating velocities 440 

compared to MH. Density estimation: Density estimation poses the most significant challenge, with MH and HMC exhibiting 

unsatisfactory results. However, MALA and Lip-MALA demonstrate more promising performance in this area. Execution 

time: A clear distinction emerges in execution time between the methods. MH and MALA exhibit significantly shorter 

execution times compared to HMC and Lip-MALA, which are considerably more time-consuming. 
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