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Abstract. The frequency domain electromagnetic induction (FDEM) method is a widely used tool for geophysical 

soil exploration. Field surveys using FDEM provide apparent electrical conductivity (ECa), which is typically used 

for qualitative interpretations. Quantitative estimations of soil properties remain challenging, especially in 

heterogeneous fields. Quantitative approaches are either based on deterministic or stochastic modeling. While the 15 

deterministic approach faces limitations related to instrumental drift, data calibration, inversion, and pedophysical 

modeling, the stochastic approach requires developing a local model, which involves extensive field sampling.  

This study aims to evaluate the effectiveness of the FDEM modelling based on either a deterministic or stochastic 

approach, identify its limitations, and search for optimal field protocols. We provide practical guidelines for end-users 

to quantitatively predict soil water content, bulk density, clay content, cation exchange capacity, and water EC in 20 

heterogeneous fields. 

Two field surveys were conducted in Belgium, where FDEM data was collected using Dualem-421S and Dualem-

21HS sensors, along with data taken from electrical resistivity tomography (ERT) measurements and an impedance 

moisture probe, and soil sampling. 

A comprehensive sensitivity analysis revealed that deterministic modeling procedures could not predict water content 25 

more accurately than a mean value approximation  (negative R2). This analysis also highlighted the sensitivity of the 

minimization method used in FDEM data inversion and the applied pedophysical model. Stochastic modeling, which 

does not require FDEM data calibration or inversion, outperformed the deterministic approach. However, its 

prediction accuracy is limited, particularly if soil sample depth is not considered. 

 30 

1 Introduction 

Frequency domain electromagnetic induction (FDEM) tools are widely applied in geophysical soil surveys (Boaga, 

2017). These instruments often serve to qualitatively determine spatiotemporal changes in the apparent electrical 

conductivity (𝐸𝐶𝑎), reflecting the influence of soil characteristics within the measured soil volume (Doolittle and 
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Brevik, 2014). As the relationship between electrical conductivity (𝐸𝐶) and several of such soil attributes has been 35 

investigated extensively, FDEM is also capable of their quantitative assessment. Specifically, the soil water content is 

a preferred target because of its central role in soil-plant interaction, groundwater assessment, soil ecological 

functioning, and climate regulation.   

Despite these applications, a broader practical implementation of FDEM remains mainly limited to academic settings 

(Altdorff et al., 2017; Huang et al., 2007). Two major challenges hinder wider adoption. Firstly, the FDEM 40 

methodology itself faces issues such as instrumental drift, approximations to translate raw FDEM data to 𝐸𝐶𝑎, 

calibration difficulties (Hanssens et al., 2020; Minsley et al., 2012), and the necessity for data inversion of ECa to true 

EC before quantitative assessments can be made. This reality persists even though – particularly for research purposes 

– adaptive correction procedures and open-source inversion codes have become available. Secondly, a significant 

obstacle in translating soil 𝐸𝐶 data into a target soil property lies in the current limitations of pedophysical models. 45 

These models are deterministic and link geophysical variables with soil properties (see e.g., Glover, 2015; Romero-

Ruiz et al., 2018), but often suffer from a lack of precision and are difficult to generalize. This is exacerbated by the 

variability in soil types, spatial heterogeneity, temperature conditions, the electromagnetic frequency of measurements 

(Moghadas and Badorreck, 2019), and the difference between the laboratory-analyzed and FDEM-measured soil 

volumes. As an alternative to pedophysical models, field-specific stochastic relationships can be composed at the cost 50 

of obtaining significant amounts of calibration data (Corwin and Lesch, 2003). Despite stochastic modelling is 

inherently limited to the conditions represented by the dataset the model has been trained for, exhaustive assessments 

of this method demonstrated useful predictions of various soil properties across agricultural fields (Boaga, 2017; 

Rentschler et al., 2020).  

Here, we evaluate how FDEM data can serve to quantitatively predict spatial variations in volumetric soil water 55 

content (𝜃), bulk density (𝜌𝑏), clay content, cation exchange capacity (𝐶𝐸𝐶), and water 𝐸𝐶 (𝐸𝐶𝑤) in a practical, 

straightforward manner on two heterogeneous test sites. In search for optimal field protocols, we evaluate to which 

extent considering instrumental limitations and different procedures of FDEM data correction and processing 

influence the accuracy of the predicted soil attributes, and what the trade-off between deploying a physics-driven 

deterministic versus field-specific data-driven model implies. Finally, we propose field and modelling strategies for 60 

optimal soil characterization with FDEM surveys.  

 

2 Methodology 

 

2.1 FDEM functioning 65 
 

FDEM devices function by transmitting an alternating current through a transmitter coil, creating a primary 

electromagnetic field that varies over time. This primary field interacts with the subsurface, inducing eddy currents 

which subsequently produce a secondary electromagnetic field. Both fields are detected by the receiver coil and are 

quantified as a complex number, consisting of an in-phase component (IP) and a quadrature component (QP). The 70 

ratio of these fields, reflecting both the device setup and the conditions of the subsurface, is typically measured. 
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The field ratio (in ppm) can be converted to the actual 𝐸𝐶𝑎 by using the linear model developed by McNeill (1980) 

assuming a homogeneous subsurface electrical conductivity. This model assumes a uniform subsurface EC and is 

known as the low induction number (LIN) approximation. It is valid when the induction number (β) is low (β ≪ 1). 

The LIN approximation proposed by McNeill (1980) is given by: 75 

𝐸𝐶𝑎 = 𝑄𝑃
4

𝜇0𝜔𝑠2 when 𝛽 = 𝑠√𝜇0𝜔𝐸𝐶
2⁄ ≪  1 

Equation 1 

where 𝜔 is the angular frequency, 𝜇0 is the magnetic permeability of free space (1.257 10−8 H/m) and 𝑠 is the coil 

separation. It can be seen from this equation that large frequencies and higher 𝐸𝐶 soils will violate the β ≪ 1 

specification. It is important to note that the LIN approximation also assumes that the FDEM device is operated at 80 

ground level above a homogeneous, poorly conductive subsurface (Callegary et al., 2007; McNeill, 1980). 

 

2.2 Data collection 

 

Two heterogeneous agricultural fields were examined in this study. Site 1, located in Middelkerke, Belgium, is shown 85 

in Figure 1A. Belgian soil map data (Van Ranst & Sys, 2000) indicate that the field is affected by saline groundwater 

and exhibits a soil texture varying from loam (26% clay, 34% sand) to silt loam (10% clay, 40% sand) (USDA 

textures), with clay layers starting at depths greater than 0.50 m. In contrast, Site 2, located in Bottelare, Belgium 

(Figure 1B), is characterized by fresh groundwater. The soil texture at this location ranges from sandy loam (13% 

clay, 76% sand) to clay (64% clay, 5% sand). 90 

Field surveys at both sites involved collecting FDEM data using different sensors, all operating at 9 kHz: the Dualem-

421S at Site 1 with a 3 m crossline sampling density, and the Dualem-21HS at Site 2 with a 1 m crossline sampling 

density, both with a distance above ground of 0.165 m. Driving speed was approximately 10 km/h with a measurement 

sampling rate of 10 Hz. The crossline density was decided based on the time to survey each field, being Site 1 bigger. 

The surveys at both sites provided in-phase (IP) and quadrature phase (QP) data with an in-line sampling density of 95 

approximately 0.3 m in horizontal co-planar (HCP) and perpendicular (PRP) configuration. For both sites, transmitter-

receiver separations of 1.0 m (HCP1.0), 1.1 m (PRP1.1), 2.0 m (HCP2.0), and 2.1 m (PRP2.1) were used. Additionally, 

4.0 m HCP (HCP4.0) and 4.1 m PRP data (PRP4.1) were collected at Site 1, and 0.5 m HCP (HCP0.5) and 0.6 m PRP 

data (PRP0.6) at Site 2. Electrical resistivity tomography (ERT, Syscal Pro, Iris Instruments) was performed with 0.5 

m electrode spacing, during the FDEM surveys (Figure 1). The ERT transects were located based on previous surveys 100 

to include the largest 𝐸𝐶𝑎 range across the field. 

In addition to geophysical surveys, soil sampling was carried out at 15 predetermined locations at each site. These 

locations were strategically selected using the Latin Hypercube Sampling method (Minasny & McBratney, 2006), and 

were based on insights from previously collected FDEM data. Undisturbed soil samples were extracted from two 

depths, 0.10 m (topsoil) and 0.50 m (subsoil) below the surface, in stainless steel 100-cm3 cores using an auger. In 105 

total 30 samples per site were analyzed in the laboratory to obtain soil texture (after sieving at 2 mm), 𝐶𝐸𝐶 (CoHex 

method (Ciesielski et al., 1997a, 1997b)), 𝜃 and 𝜌𝑏 (gravimetric method with convective oven drying at 105 °C).  
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To accurately determine in-situ 𝐸𝐶, 𝐸𝐶𝑤, and temperature within the soil sampling volume (100-cm3), measurements 

were taken at each sampling location using a HydraProbe soil probe (HydraProbe, Stevens Water Monitoring Systems, 

2008). The correction proposed by Logsdon et al. (2010) was applied to improve the quality of these 𝐸𝐶 readings. 110 

 

 

Figure 1 Site 1 in Middelkerke [A] and Site 2 in Bottelare [B] (Belgium), with the position of the ERT transects and 15 soil 

sampling locations per site, selected via conditioned Latin Hypercube Sampling based on previously obtained FDEM LIN 

𝑬𝑪𝒂 data. The mapped data is ERT-calibrated robust 𝑬𝑪𝒂 HCP1.0.  115 

 

2.3 Data processing 

The general processing workflow of the FDEM survey follows Hanssens et al. (2020), and is described in Figure 2. 

The methodology aims at processing the FDEM data to obtain reliable 𝐸𝐶 data at sampling locations and then predict 

soil properties. For this process, a meaningful physical modeling sequence was followed. For instance, no inversion 120 

was implemented on uncalibrated FDEM data. This involved four key steps: ERT inversion, FDEM data calibration, 

FDEM data inversion, and pedophysical modeling (Hanssens et al., 2020). All computer code used is open-source, 

and default parameters were prioritized, ensuring reproducibility of methodology and results. All developed codes for 

this section are available at Mendoza Veirana (2024b), and collected data at Mendoza Veirana (2024a). 
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Figure 2 Workflow of geophysical data process including prediction of soil properties. Ellipses represent observations that 

exist independently of all data processes. Rectangles represent data over all the field and/or soil sampling locations. 

Parallelograms represent data over the ERT profiles. The square represents an external model. Colors represent modelling 

processes: light blue for ERT inversion (Jupyter Notebook ‘00_inv-ERT’), green for FDEM data calibration (Jupyter 

Notebook ‘01_QP_cal’), orange for FDEM data inversion (Jupyter Notebook ‘02_EC_invert’), and red for soil properties 130 
modelling (Jupyter Notebook ‘03_Soil_properties_modelling’).  

 

2.3.1 ERT inversion 

The measured ERT data was inverted using the ResIPy (v3.5.4) open-software (Blanchy et al., 2020) which is based 

on the R2 codes (Binley & Kemna, 2005) (see full code in the Jupyter Notebook ‘00_inv-ERT’). A standard inversion 135 

using a triangular mesh was implemented, converging after three iterations. After inversion, extraction of ERT profiles  

was done by averaging the 𝐸𝐶 in a neighborhood of 0.5 m around each electrode. Alternatively, to obtain smoother 

profiles an extraction window of 2.5 m was also used. 

 

2.3.2 FDEM data calibration 140 

Calibrating raw FDEM data is required for obtaining reliable 𝐸𝐶 data at sampling locations, and such calibration was 

done by combining ERT and FDEM data (Lavoué et al., 2010; van der Kruk et al., 2018). On the one hand, the raw 

uncalibrated FDEM data in parts per thousand (ppt) was transformed to 𝐸𝐶𝑎 data following the low induction number 

(LIN) approximation. On the other hand, the inverted ERT 𝐸𝐶 data was firstly grouped by profiles and shortened by 

removing the profiles at the beginning and end of the transect that do not reach a minimum depth of 4 m due to lower 145 

sensitivity on the edge of the transect. After this, 100 profiles remained for Site 1 and 40 profiles for Site 2. 

Subsequently, the inverted ERT profiles were forward modeled to the theoretical FDEM LIN 𝐸𝐶𝑎 measured by the 

Dualem instrument over the ERT transect (Lavoué et al., 2010). The forward model implements a 1D full solution of 

Maxwell’s equations considering an electromagnetic field, which after FDEM instrument reading, is composed by IP 

and QP signals.  150 

Once both FDEM LIN 𝐸𝐶𝑎 data were calculated over the ERT profiles, they were matched by spatial proximity with 

the closes FDEM datapoint, and a linear regression was fitted for the six coil configurations (see Figure 3). Then, this 

linear calibration was applied to the entire FDEM survey data.  

 

https://doi.org/10.5194/egusphere-2024-2693
Preprint. Discussion started: 10 October 2024
c© Author(s) 2024. CC BY 4.0 License.



7 
 

 155 

Figure 3 Calibration of FDEM QP data. A linear regression is fit between the FDEM LIN 𝑬𝑪𝒂 data collected on the field 

(X-axis) over the ERT transect and the FDEM response that was forward modelled from the inverted ERT data (Y-axis). 

This is shown for the three different QP coil configurations across the three subplot columns, and for both sites displayed 

in the top and bottom rows. 

 160 

Lastly, the calibrated FDEM QP data was transformed to robust 𝐸𝐶𝑎 (𝑟𝐸𝐶𝑎) values to provide reliability beyond LIN 

constraints (Hanssens et al., 2019), such as high salinity and clay content levels. A visual comparison of the forwarded 

FDEM 𝐸𝐶𝑎, uncalibrated, calibrated LIN and 𝑟𝐸𝐶𝑎 FDEM data over the ERT transect is shown in Figure 4.  
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Figure 4. Comparison of HCP1.0 QP 𝑬𝑪𝒂 data along the ERT transect for Site 1 (top plot) and Site 2 (subplot). This includes 165 
calibrated and uncalibrated FDEM (LIN) 𝑬𝑪𝒂, and calibrated robust (r𝑬𝑪𝒂) data. Also, the forward modelled ERT (LIN) 

𝑬𝑪𝒂 data is shown.  

 

2.3.3 FDEM data inversion 

To assess the impact of the different modelling steps, we provide the parameters used and alternatives for comparison. 170 

To obtain top- and subsoil 𝐸𝐶, 1D data inversion was performed with EMagPy (v1.2.2) (McLachlan et al., 2021) using 

the full Maxwell-based forward model (Wait, 1982). For both sites and based on borehole observations, a five-layer 

subsurface discretisation was maintained, with fixed interfaces at 0.3 m, 0.6 m, 1.0 m and 2.0 m. Another option for 

layer interfaces definition consists in using a logarithmic scale from 0.15 m to 2.0 m. The closest FDEM observation 

to each sampling location was selected as the reference, in contrast to averaging FDEM observations within a radius 175 
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(2 m for Site 1, and 1 m for Site 2) around the sampling location. Additional parameters of the inversion problem 

include an optimization method (Gauss-Newton) (Virtanen et al., 2020) or Robust Parameter Estimation (ROPE) 

(Bárdossy & Singh, 2008), a vertical smoothing parameter (α, default = 0.07), and L2 norm objective function. 

Moreover, inversion data was composed by all the coil configurations. Removing HCP2.0 and PRP2.1 for Site 1 and 

HCP0.5 and PRP0.6 for Site 2 could lead to lower inversion errors. The starting model for inversion was set to the 180 

average of the ERT profiles using the given subsurface layers, alternatively, one particular reference ERT profile can 

be used. Inversions with a negative R2 error were discarded and not analysed further. Finally, 𝐸𝐶 limits (constraints) 

were applied to 𝑟𝐸𝐶𝑎 FDEM data at sampling locations during its inversion process (just for ROPE solver). These 

were defined as the minimum and maximum 𝐸𝐶 values of the inverted ERT profiles. 

Once the 𝐸𝐶  data was obtained by inversion of the 𝑟𝐸𝐶𝑎 FDEM data for each sample location, it was used to calculate 185 

the soil properties of interest. 

 

2.3.4 Soil properties calculation 

 

Linking 𝐸𝐶 data to soil properties at sampling locations can follow two basic modelling strategies: stochastic and 190 

deterministic modelling.  

Stochastic modelling enables to empirically predict several soil properties across the surveyed field, at expenses of 

collecting and analyzing soil samples to build a training dataset. This modelling consists of fitting functions to the 

training dataset and predicting at targeted locations. Traditionally, polynomial functions have been used for this task 

(Rentschler et al., 2020), but in recent years machine learning algorithms (such as artificial neural networks and 195 

random forest) have performed better (Moghadas & Badorreck, 2019; Rentschler et al., 2020; Terry et al., 2023). 

However, using machine learning requires a large amount of training data that may not be obtainable for practical 

FDEM applications. Thus, we stick to polynomial functions for stochastic modelling. 

In our case, for both sites the original soil analysis dataset (n=30) was randomly split into a training dataset (n = 20), 

while the remaining was used as test dataset (n=10); this process was repeated 100 times. The optimal polynomial 200 

degree was chosen as the one that maximizes the median R2 errors on all the 100 test sets.  

Three distinct approaches to polynomial development were utilized. The "Layers Together" for stochastic approach 

(ST-LT) merged data from different soil depths, treating topsoil and subsoil samples as indistinguishable. In contrast, 

the "Layers Separate" (ST-LS) approach developed a separate polynomial for each soil layer, using the same number 

of samples and applying the same polynomial degree to both topsoil and subsoil data. Finally, the ST-LS2 approach 205 

was like ST-LS but permitted different polynomial degrees for the models of each layer. 

Model training features included calibrated (LIN and robust) and uncalibrated (LIN) 𝐸𝐶𝑎 data from the six FDEM 

coils, and the inverted 𝐸𝐶 data at soil sampling locations, while independent targeted soil properties were 𝜃, CEC, 

clay content, 𝜌𝑏, and 𝐸𝐶𝑤. 

Deterministic modelling uses general pedophysical 𝐸𝐶 − 𝜃 relationships that have been validated across a wide range 210 

of soil conditions (e.g., models presented by Rhoades et al., 1976). Such modelling does not require calibration data, 

avoiding the cost of field sampling and laboratory analysis. However, such pedophysical models may fall short in 
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representing extreme scenarios outside the tested soil characteristics ranges. Additionally, soil data (such as porosity, 

𝐸𝐶𝑤, and texture) must be available to adequately populate the model and predict the target property. Lastly, soil data 

also requires corrections of temperature and electromagnetic frequency (Moghadas and Badorreck, 2019). Because 215 

the relationship of 𝐸𝐶 with soil properties is most straightforward for 𝜃, predicting other targets, such as soil texture 

or salinity, is generally not feasible under deterministic modelling.  

To compare performances between deterministic and stochastic modelling strategies, we tested the pedophysical 

models on the same test datasets used for stochastic modeling. Three different approaches were employed to populate 

the pedophysical model. The deterministic approach for layers together (DT-LT) consisted of averaging soil properties 220 

data from all samples regardless of their depth. The layers separate approach (DT-LS) utilized averaged soil properties 

data from samples at the same layers. The last approach termed the 'ideal' (DT-ID) scenario, used the actual soil 

properties data from each specific location. Hereby, ideal 𝐸𝐶 refers to the 𝐸𝐶 at each sampling location that would 

result in a perfect 𝜃 prediction after pedophysical modelling. 

Predicting 𝜃 via pedophysical modelling followed three steps. First the inverted 𝐸𝐶 data at 9 kHz were transformed 225 

to direct current (DC) 𝐸𝐶 using the model proposed by Longmire and Smith (1975), which was further validated by 

Cavka et al. (2014). Then, the resultant DC 𝐸𝐶 was temperature corrected using the model proposed by (Sheets & 

Hendrickx, 1995). Lastly, the 𝐸𝐶 data was converted to 𝜃 based on (Fu et al., 2021):  

𝐸𝐶 = 𝐸𝐶𝑤𝜃2 + 𝜃∅ (0.654
𝑐𝑙𝑎𝑦

100−𝑐𝑙𝑎𝑦
+ 0.018) + (1 − ∅)𝐸𝐶𝑠, 

Equation 2 230 

with the solid phase conductivity 𝐸𝐶𝑠 (considered negligible), and porosity ∅ = 1 − 𝜌𝑏/𝜌𝑝, where 𝜌𝑝 is the soil 

particle density (= 2.65 g/cm3). All steps were implemented automatically by using Pedophysics open-source 

software. The pedophysical model of Equation 2 has been validated for samples with 0 to 33% clay content, 𝜌𝑏 from 

1.05 to 1.83 g/cm3, 𝐸𝐶𝑤 from 0.03 to 5.6 S/m, and 𝜃 up to 50 %. 

Evaluating the deterministic modelling goodness in comparison with previous studies is not possible because the 235 

performance of the FDEM technique is site dependent (Boaga, 2017). Therefore, error indicators (R2 and RMSE)  are 

compared between deterministic and stochastic modelling approaches. Additionally, to assess the limitations of the 

deterministic modelling, the inverted FDEM 𝐸𝐶 and ideal 𝐸𝐶data are compared to the in-site 𝐸𝐶 measured with the 

impedance probe, along with their associated water content. 

 240 

2.4 Sensitivity analysis 

In order to develop practical recommendations for FDEM end users and understand the impact of a given parameter 

(Pannell, 1997), we performed a sensitivity analysis for the most relevant parameters described above. This analysis 

aimed at finding the impact of alternative choices made during the whole FDEM data processing workflow for 

deterministic estimation of water content in the soil samples.  The one-at-a-time method, which is the most widely-245 

used sensitivity analysis in environmental sciences (Saltelli & Annoni, 2010) was employed.  It consists of altering 
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one parameter in a stepwise manner and calculating the outcome while fixing other influencing parameters to a 

predefined origin. Although the one-at-a-time method is practical and easy to implement, it does not give clear 

information about the effect of all parameters (Saltelli  & Annoni, 2010), as the combined effect of two or more 

parameters is not evaluated. This was solved by deploying the elementary effects method (Saltelli & Annoni, 2010), 250 

which consists of changing one parameter at a time, but without returning to an origin. Then by using elementary 

effects all combinations of parameter´s values were evaluated. 

In this study, we defined the origin (𝑋0, see Table 1) as the standard set of parameters used for the whole data process 

(𝐹) that correspond to a standard inversion and subsequent solution (𝑌0), which is the standard solution for volumetric 

water content (𝜃0): 255 

𝐹(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎, 𝑋0) = 𝑌0 = 𝜃0  

Equation 3 

Parameter 𝑿𝟎 (standard values) Alternatives 

Profile extraction distance (m) 0.5 2.5 

Sample locations Closest Mean 

Interfaces Observed Log-defined 

Forward model FSeq (Full Solution with equivalent 

EC) 

FSlin (Full Solution with LIN 

approximation), CS (Cumulative 

Sensitivity) 

Minimization method Gauss-Newton ROPE 

Smoothing parameter (α) 0.07 0.02, 0.2 

Remove coils False True 

Starting model average True False 

Constrain layers EC False True 

Deterministic approach Ideal Layers separate, Layers together 

Table 1. List of model parameters used across all the data workflows. Standard values for each parameter are 

presented in the second column (𝑿𝟎), and alternatives to these values in the third column. 

 260 

3 Results and discussion 

 

3.1 Comparing EC data 

 

A comparison of 𝐸𝐶 data obtained by the soil probe observations, standard FDEM inversion (using 𝑋0 parameter 265 

values), and ideal 𝐸𝐶 for both sites is shown in Figure 5 alongside the water and clay content of associated samples. 

The observed water content has mean values of 0.34 and 0.29, and variance of 0.003 and 0.008 for Site 1 and Site 2, 

respectively. 
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 270 

Figure 5 Comparison between 𝑬𝑪 obtained with the soil probe (left column), FDEM standard inversion 

(center), and ideal (right column) versus water content, and clay content as additional dimension. All the 𝑬𝑪 

data is corrected for electromagnetic frequency and temperature (direct current 𝑬𝑪 at 25 Celsius).   

 

Considering the 𝐸𝐶 measured by the soil probe as the reference for actual data, the inverted 𝐸𝐶 significantly deviates 275 

from this reality. Furthermore, while the ideal and soil probe 𝐸𝐶 display a similar trend, this trend is noticeably 

stretched (compare first and third column in Figure 5). It is also noteworthy that as the difference between ideal and 

soil probe EC (for both sites) increases, so does the clay content, with a Pearson correlation of 0.83 (p<0.005), not 

shown in Figure 5. This disparity becomes even more pronounced for clay contents exceeding ~30%, which is in 

accordance with the validity range of Equation 2 (clay contents up to 33%). 280 

 

3.3 Stochastic modelling results 

 

The performance of stochastic models for predicting observed soil properties is presented in Figure 6. Poor predictions 

(negative median R2 over test datasets) were obtained when considering topsoil and subsoil data jointly (LT) for model 285 

development over training datasets (i.e., not considering sample depth). This may be due to an oversimplistic 

modelling that does not consider samples depths. Approaches LS and LS2, which use different fitted functions per 

soil layer, resulted in better results as expected. No significant differences were observed in 𝑅2 values for features 

𝐸𝐶𝑎 uncalibrated and calibrated LIN or 𝑟𝐸𝐶𝑎. This may be due to the linear relationship between uncalibrated and 

calibrated 𝐸𝐶𝑎, and quasi-linear relationship with calibrated 𝑟𝐸𝐶𝑎, which does not add information to such variables 290 
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as polynomial features (Lavoué et al., 2010). However, the FDEM inverted 𝐸𝐶 data generally underperformed the rest 

of features, with the only exception of the LS2 approach for 𝜃 prediction at Site 1, with a 𝑅2 = 0.19 and a 

RMSE=0.047. While for Site 2 the maximum 𝑅2 is 0.31, with a RMSE=0.066. 

Comparing performances for predicting different soil properties, 𝐸𝐶𝑤 was shown to be an easier target than any other 

soil property. 𝐸𝐶𝑤  prediction was generally better for Site 2 that does not have the influence of saline 295 

groundwater. Predicting CEC, clay content and 𝜌𝑏, on the other hand, seemed to be highly site-dependent. 

 

Figure 6. Bar plots showing median results of stochastic modelling of soil properties. The median 𝑹𝟐 are obtained after 

testing such models in test datasets randomly generated as 30% of the original dataset and iterating 100 times to ensure 

good data distribution.  300 

 

Subsequently, best performant stochastic models for 𝜃 prediction were implemented using the whole dataset (see 

Figure 7). Naturally, such model implementation shows a higher performance than the ones in Figure 6, because in 

Figure 7 the test is done on the same dataset used to develop the models However, evaluating a stochastic model on 

the same dataset used for development is a improper practise that overestimates the performance of such model 305 

(Altdorff et al., 2017; Lipinski et al., 2008; Tibshirani et al., 2001). Then, implemented model errors should not be 

confused with the actual expected accuracy of a new 𝜃 sample prediction. Residuals of implemented stochastic models 

were not correlated with other soil properties.  
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Figure 7. Stochastic model implementation. Best performant stochastic models for 𝜽 prediction (based on Figure 6 results)  310 
were implemented using the 30 samples per site. Top subplot shows the data for Site 1, and bottom subplot shows data for 

Site 2.  

 

3.1 Sensitivity analysis  

The result of the sensitivity analysis is presented in Figure 8 for Site 1 (upper subplot) and 2 (lower subplot). Generally, 315 

no possible combination of parameter values yielded an RMSE lower than 11% (or 0.11 cm3/cm3) for 𝜃 predictions, 

which corresponds to a negative R2 value; that is, they performed worse than a single mean solution. Additionally, the 

predictions for 𝜃 were worse for Site 2 than for Site 1, presumably due to the larger variance in θ data at Site 2. The 

standard solution 𝜃0 obtained using the 𝑋0 parameter values was poorly performant too (see red lines in both subplots 
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of Figure 8). From Figure 8, the boxes which differ the most from the rest represent the most sensitive parameters. 320 

For both sites, the most sensitive parameters are the minimization method used and the pedophysical model approach. 

Using the minimization method ROPE leads in general to better θ predictions, despite its average inversion error (R2=

0.64 for Site 1 and R2= 0.19 for Site 2) is higher than for Gauss-Newton (R2= 0.75 for Site 1 and R2= 0.94 for Site 

2). Also, about 75% of ROPE inversions for both sites did not converge or reached a negative R2 error, while for 

Gauss-Newton most of inversions converged with a positive R2. 325 

The optimal approach in deterministic modelling is not the same at both sites. While the ID approach was the best in 

Site 1, the best in Site 2 was LT. This could be because ID uses actual soil properties to populate the pedophysical 

model (focusing on variance of the error), and the LT approach uses average soil properties (attacking the bias error), 

resulting in an unclear benefit because of the general poor performance.   

 330 

 

Figure 8 . Box and whiskers plot results of uncertainty analysis. The figure shows the error outcomes of an elementary 

effects sensitivity analysis using parameters involved in processing all FDEM data. The top row displays results for Site 1, 

and the bottom row for Site 2. The plotted data is the median of RMSE. The error associated with the 𝜽𝟎 solution is 

highlighted in red. Each box represents 50% of the data (i.e., the error associated with a specific parameter value) with a 335 
horizontal line indicating the median, while the whiskers represent 25% of the data at each end. 

 

4 Limitations 

 

Although the presented research focuses on comparing different choices made along modelling steps, it is important 340 

to highlight its site-specific nature (Boaga, 2017). Therefore, because both sites were selected based on their 
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heterogeneous nature, the challenge that they represent is not necessarily representative of most common fields where 

the FDEM technique is applied, where collected 𝐸𝐶 FDEM data normally have a narrower range (Minsley et al., 2012; 

van der Kruk et al., 2018).  

While several modelling parameters were tested, the data acquisition strategy was not changed, and new findings can 345 

be obtained by, for instance, using a different algorithm to choose the sampling locations (Brus, 2019), or reducing 

the FDEM crossline sampling density to have closer matches between FDEM data and ERT and sampling locations. 

Also, the evaluation of different parameters in the sensitivity analysis was not exhaustive, with its results being relative 

to the parameters chosen.  

For instance, using different optimization methods would improve the FDEM inversion error and offer more flexibility 350 

in the inversion, such as allowing variable layer thicknesses. However, not all optimization methods, such as the 

Gauss-Newton method, support variability in subsoil layer depths. Additionally, only 1D forward and inversion 

models using FDEM methods were employed, without considering lateral smoothing through 2D or 3D inversions.  

Furthermore, three different deterministic modelling approaches were tested using Equation 2, but other pedophysical 

models were not considered. The difficulty in obtaining the 𝐸𝐶𝑠 parameter of Equation 2 led to its exclusion, which 355 

might have compromised the model's effectiveness. 

Lastly, the study was limited to univariable stochastic modeling. Multivariable regression incorporating more than 

one feature (such as using inverted 𝐸𝐶 and uncalibrated 𝐸𝐶), as well as other machine learning methods were not 

explored. 

 360 

5 Conclusions and suggestions 

 

Absolute soil property quantification using the FDEM method in heterogeneous fields is far from being accurate and 

methodologically solved.   

The classical field-specific stochastic modelling of soil properties even limited, still offers the most straightforward 365 

solution. Based on our cases, uncalibrated 𝐸𝐶𝑎 data can be used without compromising the effectiveness of such an 

approach. This bypasses the issues of physics-driven deterministic modelling, such as data calibration, robust 𝐸𝐶 

estimation, geophysical inversion, and pedophysical modelling. Such stochastic models should consider vertical soil 

variability, otherwise large mispredictions are expected. However, this is at the cost of building a dataset by sampling 

and analyzing the soil target properties at the desired exploration depth. In samples not used for training, water content 370 

predictions achieved a poor best estimation with an R² value of 0.31 (RMSE=6.6%), which may be inadequate 

depending on the application, whereas 𝐸𝐶𝑤 was better estimated. 

In the case that sampling is not an option, a universal deterministic approach can be followed at the expense of FDEM 

calibration data, e.g. through ERT. A comprehensive sensitivity analysis of this approach shows that no possible 

combination of modelling parameters could currently lead to reasonable predictions of water content for the studied 375 

sites. Particularly, the pedophysical model of Equation 2 should be reworked and validated for soil samples above 

30% of clay content, and a pedotransfer function for 𝐸𝐶𝑠 would help to ease its implementation. Additionally, the 

minimization method implemented in geophysical inversion turned out to be of key importance. Thus, and further 

work is required to improve the deterministic modelling predictions.   
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