
Reviewer comments – Reply – Changes to the manuscript 
 
Reviewer #1: Journal: Geophysical Model Development (GMD) 

Please note that all following line references correspond to the article without track 
changes.  

General Comments: The authors present a machine learning approach to forecasting 
river runoff from weather data using convolutional long-short-term memory neural 
networks. They present convincing evidence that the utilized ml model shows results of 
equal quality as its training data. At the same time the ml method offers faster 
processing speeds and thus an easier direct integration into regional climate models. 
With this approach, they present a scientifically significant and qualitative contribution 
to the integration of river runoff forecasting into climate models. While the manuscript 
shows great potential, I think that it requires minor revisions. My comments are listed  
below. 
 
Minor Comments: As I do not possess a deeper understanding of the river runoff 
modelling and come from the machine learning side, I will limit my comments mostly to 
the technical aspects. 
 
First, to me it does not become clear exactly how well your training data performs in 
comparison to other state-of-the-art models. I understand that your ConvLSTM is able to 
reproduce its training data’s quality but I’m not fully able to grasp the strengths and 
weaknesses of the utilized training model, which I can assumed are transferred to the 
ML model. It would be helpful to extend the technical details section or the model 
section by a short description of the training data and especially its strengths and 
weaknesses compared to other possible runoff forecasting models. Although I see that 
the point of the paper is more the proof that is able to reproduce a state-of-the-art river 
runoff forecasting and not the exact strenghts and weaknesses of the utilized training 
data, it would help give perspective to the strengths of your method 
 
We agree that this is a good idea and added the following text to the paper.  
 
L168-170: To this point, no comparable long-term dataset with daily resolution was 
available. In other studies multiple datasets have been merged, but offer only monthly 
resolution (see e.g. Figure 3 \citep{Meier2019}) . 
 
For example, your training data seems to present a bias compared to observational data 
(Figure 7b), which the network reproduces. 
 
You are right for pointing this out. However, this bias is likely caused by other factors 
than the river runoff. We added the following part for clarification: 
 
L271-281: It should be noted that the discrepancies between the simulated salinity and the 
observed values at BY15 are not directly linked to the performance of the ConvLSTM river 
runoff model. Instead, it is attributed to the MOM5 ocean model's representation of physical 
processes, particularly the treatment of mixing, advection, and stratification in the Baltic Sea. 



Several factors may contribute to this discrepancy. The Baltic Sea is known for its strong 
vertical stratification due to the input of freshwater from rivers. The MOM5 model uses the 
K-profile parameterization (KPP) scheme for turbulence, which may not perfectly resolve 
small-scale mixing processes and vertical salinity gradients. This can result in an 
overestimation of salinity variability at the surface. Moreover, while the MOM5 model 
captures the large-scale dynamics of the Baltic Sea, the lateral transport of saltwater from 
the Skagerrak into the central Baltic Sea may not be perfectly represented. This can introduce 
variability in surface and bottom salinity that are not observed in reality. However, all in all, 
the long-term trends and larger salinity changes are accurately captured, indicating the 
model's robustness in predicting high-frequency and low-frequency variations. 
 
In connection to that, you describe that you utilize the time period from 1979 to 2011, 
because they are not bias corrected. As a bias correction seems to be usually 
conducted, I would like to know if that can be similarly performed on the ConvLSTM 
outputs. 
 
Yes, in principle this bias correction is possible, likely by additional scaling as post-
processing. On the other hand, some of these bias corrections have been performed 
due to reasons like changes to the water-management or a new dam. This is why we 
chose to use a period where none of the bias corrections have been applied.  
 
Connected to that, have you tried to train the ConvLSTM on any other runoff models? 
Training for 400 epochs on daily training data from 32 years is a lot of training input. Just 
out of interest, have you tried training on less data and how does the performance of the 
ConvLSTM differ? I would guess, that not all hydrological models provide such a 
comprehensive dataset. Could you thus comment on how easy it would be to extend 
this method to other runoff prediction models and how much training data would be 
required.  
 
We did some preliminary test with other measurement data, but the results we mixed. Rivers 
that have a good temporal coverage with no changes in the way the data was measured 
performed well, while other rivers where structural changes were done performed poorly. 
Hence, we assume that the good performance of the ConvLSTM is also based on the good 
data availability. 
 
For this review we also used only 10 years of training data (E-HYPE). In its current 
configuration the model’s performance is worse when only 1/3 of the trainings data is used.  





 
I would also be interested, if all ocean/regional climate models are able to utilize runoff 
predictions from similar sources or if they require their own in-model consistent runoff 
forcing. Because, if other climate models would require the ConvLSTM to be trained on 
different runoff predictions, it would significantly limit this method’s applicability if that 
runoff model would be required to possess such a comprehensive training dataset as 
the EHYPE model presented in your study. 
 
In general, the runoff data (all individual rivers) are mapped onto the ocean grid as a 
mass flux. While the grids may differ, the procedure is similar across all major ocean 
models.  
 
Additionally, I would be interested out of curiosity how many timesteps are necessary for 
the LSTM to significantly improve the CNN output. Have you tried training with 
significantly less than 30 timesteps? What was your reasoning behind choosing these 30 
days? Or was it just based on model  performance/loss functions? 
 
Based on your suggestion we performed several sensitivity tests of the hyper 
parameters. The model performance turns out to be relatively robust, even for shorter 
time steps (10 days). However, we still decided to use longer time scales, as we assume 
that longer input sizes increase the stability of the model needed for long-term climate 
simulations.  
 
L209-213 The model’s performance can be described as relatively robust when changing the 
set of hyper parameters (see Figure \ref{fig-Supp3}. Interestingly, also shorter input sizes of 
10 days perform really well. However, we still decided to use longer time scales, as we 
assume that longer input sizes increase the stability of the model needed for long-term 
climate simulations. 
 
Finally, you claim that “While the initial training of the model requires substantial 
computational resources, it remains significantly less intensive than running 
comprehensive hydrological models” (Page 17). Could you give an estimate on how big 



this“significant” reduction of computational resources is? Because in the end this time 
saving is the important improvement of your method compared to other numerical 
prediction systems/models. 
 
We agree that this information is useful and added it to the text. Our model generates 
one year of daily river runoff in roughly 10 seconds. The runtime of a hydrological model 
(personal communication with Stefan Hagemann (Dr. Stefan Hagemann, Regional Land 
and Atmosphere Modeling, Head of Department), with a similar resolution varies 
between 5-15 minutes per year.  
 
This results in a speed up in the range of factor 30-90. 
 
L309-310: The achieved speedup (depending on the complexity of the hydrological 
model) is within the range of 30 to 90 times faster.  
 
In general I felt the content of the paper was novel and the method would be of interest 
to others in the field, but some details should be explained further or lack a bit of 
background information. 
 
Thank you very much and also thank you for taking the time to review the article. 
 
 
 
 
Reviewer comments – Reply – Changes to the manuscript 
 
Reviewer #2: Journal: Geophysical Model Development (GMD) 

Please note that all following line references correspond to the article without track 
changes.  

General Comments: 
The authors introduce an impressive new way to forecast river runoff using ConvLSTM 
network models at the scale of the Baltic Sea catchment. Their study demonstrates that 
ConvLSTM can accurately predict daily runoff for 97 rivers in the Baltic Sea area by using 
weather data. The study shows the trained ConvLSTM model, on daily timescales, can predict 
river runoff with an accuracy of ± 5% compared to the original E-HYPE data. Impressively, the 
ConvLSTM model performs just as well as traditional hydrological models in capturing runoff 
patterns, but with faster processing and greater computational efficiency. This makes it a 
great fit for integration into regional climate models, enabling real-time runoff forecasting 
and improving the accuracy of coastal climate impact predictions. Overall, the authors make 
a strong case for ConvLSTM networks being well suited for integrating in regional climate 
models and a valuable tool for real-time river runoff prediction during climate projections. 
The ConvLSTM model proves reliable when using the river runoff in a comprehensive ocean 
model of the Baltic Sea to predict salinity.   
While I think this is a strong article, I have a few minor comments that I think could enhance 
it. 
Specific Comments: 



My suggestions for the technical sections are as follows: 
 

• In Väli et al. (2019), they originally generated 97 potential freshwater input locations 
from rivers in the Baltic Sea area, but this was later reduced to 91 in the final dataset. 
Could you clarify this discrepancy and explain why you state that 97 inputs are used in 
the ConvLSTM model? 

 
You are right. Thank you for spotting this error. We used an intermediate dataset of 
river runoff that was created during the BMIP project and was used to run the ocean 
model. In this dataset, some of the rivers have not yet been merged. We added this 
information to the manuscript. 
 
L175-180: It should be noted that for this study, we used an intermediate dataset of 
river runoff developed during BMIP that was employed to run the ocean model. In 
this dataset, some rivers had not yet been merged, resulting in discrepancies between 
the number of freshwater input locations of 97 in this study and 91 rivers in the final 
version of \citet{vali2019river}. The quality of the runoff was extensively evaluated. 
The dataset was found to closely align with historical observations for various rivers 
and with the \citet{Bergstrom897362} dataset, showing a difference of under 1\% for 
total Baltic Sea runoff \citep{vali2019river}. For more information, see 
\citep{groger2022} and \citep{vali2019river}. 

 
• In the "Runoff Data for Training" section, it would be useful to add context around 

why the BMIP project runoff data is necessary. Specifically, it would help to mention 
that a new homogeneous runoff dataset was created because no consistent river 
discharge data was available for the full period (1961–2018), and the E-HYPE model 
originally only covered a few recent years. 

 
We agree and added this information to the text.  
 
L168-170: To this point, no comparable long-term dataset with daily resolution was 
available. In other studies multiple datasets have been merged, but offer only 
monthly resolution (see e.g. Figure 3 \citep{Meier2019}). 

 
• In the "Runoff Data for Training" section, while you clearly state that the 1979-2011 

period of E-HYPE hindcast simulation data is used, it would improve clarity to specify 
that this data is on a daily scale. Additionally, while you indicate which periods were 
excluded (1961-1978 and 2012-2018), providing more insight into the spatial and 
temporal adjustments applied to these excluded periods would help to justify the 
selection the 1979-2011 data. For example:  

o The 1961-1978 data, based on Bergstrom & Carlsson (1994), was interpolated 
from monthly to daily values. 

o The 2012-2018 data is an E-HYPE forecast product, but further clarification on 
why this recent data was omitted would be beneficial. 

o Additionally, as noted in Väli et al. (2019), the Neva River is an exception, with 
its data coming from observational records (1961-2016) from the Russian 
State Hydrological Institute, rather than E-HYPE hindcasts. This exception 



should be explicitly highlighted as it is one of the four river locations evaluated 
in detail. 

o Finally, In the "Runoff Data for Training" section, the statement that the 
“quality of the runoff was extensively evaluated” is a bit broad. Since you are 
comparing ConvLSTM model output against E-HYPE hindcast data, it would 
help to detail the methods used for this evaluation. Including a statement 
about confidence in the BMIP data would also be valuable. Specifically, you 
might note from Väli et al. (2019) that the BMIP dataset closely aligns with 
historical observations for various rivers and with Bergstrom & Carlsson 
(1994)’s dataset, showing a difference of under 1% for total Baltic Sea runoff. 
This would reinforce the reliability of the BMIP data in the ConvLSTM 
modelling. 

 
Thank you so much for these insights, which we added to the document. This helped 
clarify this section. 

 
There are several changes from L165-180:  

 
The non-stationary daily runoff data covering the period 1979 to 2011 is based on an E-
HYPE hindcast simulation that was forced by a regional downscaling of ERA-Interim 
\citep{dee2011era} with RCA3 \citep{samuelssonRossbyCentreRegional2011} and 
implemented into NEMO-Nordic \citep{hordoir2019nemo} as a mass flux. The BMIP 
project \citep{groger2022} played a crucial role in addressing the lack of consistent river 
discharge data for the entire study period (1961–2018). To this point, no comparable 
long-term dataset with daily resolution was available. In other studies multiple datasets 
have been merged, but offer only monthly resolution (see e.g. Figure 3 
\citep{Meier2019}). Hence, a new homogeneous runoff dataset was created. The 1961–
1978 runoff data is based on \citet{Bergstrom897362}, with values interpolated from 
monthly to daily scales. The 2012-2018 data are derived from an E-HYPE forecast 
product. To ensure consistency for the analysis, the periods before (1961 to 1978) and 
after (2012 to 2018) have been neglected.  Notably, the Neva River is an exception, as its 
discharge data originates from observational records (1961–2016) provided by the 
Russian State Hydrological Institute rather than E-HYPE hindcasts. 
 
It should be noted that for this study, we used an intermediate dataset of river runoff 
developed during BMIP that was employed to run the ocean model. In this dataset, some 
rivers had not yet been merged, resulting in discrepancies between the number of 
freshwater input locations of 97 in this study and 91 rivers in the final version of 
\citet{vali2019river}. The quality of the runoff was extensively evaluated. The dataset was 
found to closely align with historical observations for various rivers and with the 
\citet{Bergstrom897362} dataset, showing a difference of under 1\% for total Baltic Sea 
runoff \citep{vali2019river}. For more information, see \citep{groger2022} and 
\citep{vali2019river}. 

 
• In the "Atmospheric Forcing" and "Ocean" sections confirm the temporal resolution 

of the Essential Climate Variables (ECV) are daily. 
 

We added this information to the text. 



 
• In the "Atmospheric Forcing" and "Ocean" sections, the horizontal resolution of the 

models I think should be expressed in consistent units. 
 
We added this information to the text. 
L190: For the training of the neural network the hourly data was remapped to daily 
values. 
 

• It would be clearer to use kilometres (km) throughout rather than miles. 
 
Added to the text. 
L194-195: It has a horizontal resolution of three nautical miles, roughly corresponding 
to 5.556 km and 152 vertical z* levels with a first layer thickness of 0.5m and a total 
depth of 264m. 
 

• The ConvLSTM model was trained and tested using daily data from 1979 to 2011, 
with 80% for training, 10% for validation, and 10% for testing. It performed well on 
both the training and test data. Have you thought about how reducing the training 
data might impact the model's performance? This could give you some insight into 
the model robustness with less data. 

 
We tested only 10 years of training data (E-HYPE). In its current configuration the 
model’s performance is worse when only 1/3 of the trainings data is used. It is beyond 
the scope of the current study but in practice, we might try to reduce the complexity 
of the model and train for longer periods. We attached the corresponding figures 
below. 
 



 



 
• It might be helpful to mention that the rivers feeding freshwater into the Baltic Sea 

have runoff data that is not stationary. One of the benefits of using LSTM models over 
other machine learning (ML) methods is that they’re specifically designed to capture 
patterns and dependencies in sequences, making them a great fit for non-stationary 
data like this. 
Thank you for the hint. Mentioned now. 
L165-167: The non-stationary daily runoff data covering the period 1979 to 2011 is 
based on an E-HYPE hindcast simulation that was forced by a regional downscaling of 
ERA-Interim \citep{dee2011era} with RCA3 
\citep{samuelssonRossbyCentreRegional2011} and implemented into NEMO-Nordic 
\citep{hordoir2019nemo}. 
 

• Could you comment on alternative ML models that might be suitable for runoff 
prediction for freshwater inputs into the Baltic Catchment. 

 
For our research we assumed that we need a model that can capture spatio-temporal 
features, this is why we use the ConvLSTM structure. In principle, it should be possible 
to use a regular LSTM architecture. However, capturing relevant spatial-temporal 
features is then not guaranteed as you need to flatten the spatial features into a one-
dimensional vector. Depending on the quality of the data, the temporal coverage, and 
the complexity of the research question simpler fully connected networks are likely 
also possible to predict single rivers. 
For example, preliminary test for single rivers with good temporal data coverage 
(measurements of the Warnow river near Warnemünde at the German coastline), 
indicates that LSTMs may even outperform E-HYPE. A single grid point of ERA5 
(atmospheric data) over the Warnow region was used for the training. 



 
 

• The paper goes into a lot of detail about the ConvLSTM model architecture in the 
‘Implemented model architecture’ section (Section 2), but the ‘Neural network 
hyperparameters’ section 3.4 could use a bit more explanation. It would be helpful to 
explain the model architecture a bit more such as whether a sequential model was 
used, which lets you stack layers in a simple, linear way. Also, it would help to clarify 
how the hyperparameter values in Table 1 were determined. 

 
The core of the model is a ConvLSTM cell that processes the input atmospheric data, 
which is provided as a sequence of spatial maps over time. The ConvLSTM 
architecture uses a convolutional operation to extract spatial features from the input 
while leveraging the LSTM’s recurrent mechanism to capture temporal relationships. 
The final hidden state of the ConvLSTM captures the spatiotemporal features relevant 
to runoff prediction. 
 
After the ConvLSTM block, the output is flattened and passed through three fully 
connected (dense) layers. These layers reduce the dimensionality and map the 
learned spatiotemporal features to the target output: daily runoff values for 97 rivers. 
 
The architecture is implemented as a sequential model. 

 
L200-202: Our architecture is implemented as a sequential model, which allows for 
testing multiple convLSTM layers - a concatenation of multiple convLSTM cells. The 
best set of hyper parameters have been defined by iterating over a pre-defined 
selection of possible parameters. 

 
• Neural network hyperparameters section 3.4, Table 1 shows details for only one layer, 

but it is unclear how many units (neurons) were in that layer. Did you consider adding 
more layers to help the model capture more complex patterns? Also, did you include 



a Dropout layer after the LSTM layer to help prevent overfitting by randomly dropping 
some neurons during training? For the Fully Connected Layer, did you use a dense 
layer to create the final output? And when compiling the ConvLSTM model, what loss 
function (like MSE or MAE) and optimizer (e.g., Adam) did you use? 

 
Determining the number of units (neurons) in a layer is not straightforward. In the 
case of applying a ConvLSTM, we utilize two-dimensional convolution kernels, 
denoted as 𝑀𝑔 and  𝑁𝑔 in the manuscript, for a given gate 𝑔 in the LSTM structure. 
The sizes of these kernels are determined by the number of input channels  𝑘 and 
the specified number of hidden dimensions ℎ, as described in Equation 6 of the 
manuscript. Subsequently, the input undergoes a mapping in a fully connected 
layer, reducing dimensionality from the output of the last hidden state to 512 
neurons to 256 neurons, to the final output, which represents 97 rivers. 
 
We considered adding more layers (see the answers below to hyper parameter 
testing). One short coming was that the network structure during training grew too 
large for the GPU, if many hidden layers are considered. We tested two and three 
layers with smaller input dimensions (timesteps to consider), hidden dimensions, and 
kernel sizes. The results were also promising, and we think going forward with a 
slightly different model architecture would also be possible (more layers, smaller 
hidden dimensions). The more complex the model was designed the longer it took to 
converge during training. Especially, when more layers were considered. We decided 
to go for the best results that were to our experience strongly influenced by the 
kernel size.  
 
We did consider using Dropout, however, overfitting was not received as a large 
problem. We did use weight decay in the Adam Optimizer during training. 
 
We used a denser layer to create the final output:  

 
1. self.river_predictors = nn.Sequential(  
2.  nn.Linear(self.linear_dim, 512),  
3.  nn.ReLU(),  
4.  nn.Linear(512, 256),  
5.  nn.ReLU(),  
6.  nn.Linear(256, 97)  
7.  ) 
8.   
9.   

 
 For the loss we used a custom MSE loss that penalizes larger errors more heavily.  
 

 1. class EnhancedMSELoss(nn.Module): def __init__(self, alpha=1.5): 
 2.  """ Initialize the enhanced MSE loss module. Args: alpha (float): Exponential factor to increase penalty for larger errors. """  
 3. super(EnhancedMSELoss, self).__init__() self.alpha = alpha  
 4. def forward(self, predictions, targets):  
 5. """ Calculate the enhanced MSE loss. Args: predictions (torch.Tensor): The predicted values. targets (torch.Tensor): The ground 
truth values. Returns: torch.Tensor: The calculated loss. """ 
 6. error = predictions – targets 
 7. mse_loss = torch.mean(error**2) 
 8. enhanced_error = torch.mean(torch.abs(error) ** self.alpha) 

The optimizer: 
 1. def configure_optimizers(self): 



 2.         """ 
 3.         Configures the optimizer and learning rate scheduler. 
 4.   
 5.         Returns: 
 6.             tuple: List of optimizers and list of learning rate schedulers. 
 7.         """ 
 8.         opt = torch.optim.AdamW(self.parameters(), lr=self.learning_rate, weight_decay=1e-4) 
 9.         sch = torch.optim.lr_scheduler.ReduceLROnPlateau(opt, mode='min', factor=0.1, 
patience=10, verbose=False) 
10.         return {"optimizer": opt, "lr_scheduler": sch, "monitor": "val_mse"} 
11.   

 
We also added more information to the text in section 3.4. 
 
• When fitting the ConvLSTM model to the training data, how did you decide on the 

number of epochs (400), batch size (50), and learning rate? Did you choose these 
values through trial and error, or did you use a more structured approach like grid 
search or randomized search to find the best model and parameters? Also, was Early 
Stopping used to prevent overfitting by stopping training when the validation loss 
started increasing? 
 

As mentioned in one of the questions before we were limited by the GPU-Memory of 40GB 
as well as how we plan to run the coupled model. For the number of timesteps that may be 
considered ahead, 30 days of atmospheric data is the upper limit as it is not feasible to store 
more than 30 daily atmospheric fields to predict river runoff one day ahead.  
The hyperparameter testing itself was done by looping over a priori-defined set of 
parameters (More details are given below). The same applies to the batch size which was 
limited by computational constraints.  
 
We did try using EarlyStopping but experienced some issues as the model often needed 
several epochs to improve. We decided to monitor the validation data MSE and save the best 
model weights based on this criterion. We simply used 400 epochs as all models’ versions 
converged during this training duration. During the model’s development we also 
implemented a new learning rate scheduler which addresses these plateaus during training 
but at this point we already removed the EarlyStopping. But your suggestions are interesting 
and we will implement EarlyStopping in the future again for training.   

 
 1.     callbacks = [ 
 2.         ModelCheckpoint( 
 3.             dirpath="/silor/boergel/paper/runoff_prediction/data/modelWeights/", 
 4.             filename=f"{args.modelName}TopOne", 
 5.             save_top_k=1, 
 6.             mode="min", 
 7.             monitor="val_mse", 
 8.             save_last=True, 
 9.             ), 
10.         PredictionPlottingCallback() 
11.         ] 
12.   

 
• Additionally, it would help to explain why 30-day timesteps were chosen for the 4-

channel atmospheric inputs, even though the runoff data is daily. This would make it 
clearer how the model is handling temporal input. 

 
We added this information to the text. 



 
L220: This window size allows the model to "remember" key atmospheric conditions 
leading up to a given day, enabling it to accurately predict runoff. 

 
• Neural network hyperparameters section 3.4, you mention that "the model 

performance can be described as relatively robust when slightly changing the set of 
hyperparameters." Could you clarify what you mean by "slightly changing" the 
hyperparameters? It would be more helpful if you could quantify the model's 
performance for different sets of hyperparameter values to give a clearer picture of 
its robustness. 
 
We looped over a predefined set of hyperparameters and evaluated their 
performance. For the sake of this review, we extended this loop to also consider 
smaller input sizes. Note that every iteration roughly takes 1 day. 
 

 1. #!/bin/bash 
 2.   
 3. HIDDEN_DIMS=(6 8 10) 
 4. KERNEL_SIZES=("(3,3)" "(5,5)" "(7,7)") 
 5. INPUT_SIZES=(10 20 30) 
 6. NUM_LAYERS=(1 2 3) 
 7.   
 8. for hidden_dim in "${HIDDEN_DIMS[@]}"; do 
 9.     for kernel_size in "${KERNEL_SIZES[@]}"; do 
10.         for input_size in "${INPUT_SIZES[@]}"; do 
11.             for num_layer in "${NUM_LAYERS[@]}"; do 
12.   
13.                 
model_name="ModelWeight_H${hidden_dim}_K${kernel_size//,/x}_I${input_size}_L${num_layer}" 
14.   
15.                 cmd="python trainForCoupledModel_more_sensitive.py --modelName $model_name --
hidden_dim $hidden_dim --kernel_size $kernel_size --input_size $input_size --num_layers 
$num_layer --num_epochs 200" 
16.   
17.                 echo "Executing: $cmd" 
18.                 $cmd 
19.   
20.             done 
21.         done 
22.     done 
23. done 
24.   

 
To give the reader a better perspective of the model’s robustness we added a 
comparison of the 10 “best” sets of parameters to the appendix.  
 
All correlations and MAE’s are comparable:  
 

                                           MAE  Correlation   

25  <xarray.DataArray ()>\narray(141.11912972)     0.999097   

24  <xarray.DataArray ()>\narray(145.20558121)     0.999060   

44  <xarray.DataArray ()>\narray(151.68033482)     0.998998   

17  <xarray.DataArray ()>\narray(148.73682357)     0.998976   

19  <xarray.DataArray ()>\narray(154.97826802)     0.998958   

38   <xarray.DataArray ()>\narray(167.9942031)     0.998770   



16  <xarray.DataArray ()>\narray(177.21611658)     0.998644   

11  <xarray.DataArray ()>\narray(193.74296444)     0.998463   

32  <xarray.DataArray ()>\narray(197.28541982)     0.998432   

8   <xarray.DataArray ()>\narray(201.52035405)     0.998384  

 
The best set of parameters was chosen and run for a longer time (more epochs, with 
a changing learning rate using cosine annealing) 
 
We also added this Figure to the appendix: 

 
 
 
L209-213: The model’s performance can be described as relatively robust when 
changing the set of hyper parameters (see Figure \ref{fig-Supp3}. Interestingly, also 
shorter input sizes of 10 days perform really well. However, we still decided to use 
longer time scales, as we assume that longer input sizes increase the stability of the 
model needed for long-term climate simulations. 
 

• In Section 4.1, where the ConvLSTM model’s output is compared to the test data, 
Figure 5 shows the “total predicted river runoff.” Could you clarify what exactly “total 
predicted river runoff” means? Does it represent the combined daily predicted runoff 
from all 97 rivers flowing into the Baltic Sea or for the four individual rivers? I’m 
assuming it’s the total daily runoff for all these rivers, but confirming this would make 
things clearer. 

 
You are right. We specified this in the text. 
 
L228-229: The model's accuracy for the combined daily predicted runoff from all 97 
rivers flowing into the Baltic Sea is displayed in Figure \ref{fig-error-metrics}. 
 

• In Section 4.1, could you clarify why the E-HYPE data is labeled as the “original HYPE 
data” in the Figure 5 caption and in the results text, and in Figure 6’s text and legend, 
it may be better to just refer to it as “E-HYPE data”? It would be clearer if it were 
consistently referred to as “E-HYPE data” throughout. 
 



We agree and changed accordingly. 
 

• Additionally, only a minor point to avoid confusion, it would help to consistently refer 
to “total predicted river runoff” instead of switching between “predicted river runoff” 
(as in line 215). “Original river runoff” should also be replaced with “E-HYPE data” for 
clarity. 

 
We agree and changed the text. 
 

• In Section 4.1, it might be helpful to present the model performance results for the 
“total predicted river runoff” into the Baltic Sea in a table, showing metrics like 
accuracy, correlation, RMSE, and MAE. If available, showing these metrics individually 
for the four rivers—Neva, Oder, Umeälven, and Neman—would add useful detail, 
rather than only displaying residual errors for the daily runoff predictions on the four 
plots. Additionally, including density plots for the predictions of each of these four 
rivers could provide a clearer view of the model’s performance for individual rivers. 

 
We added a table as well as a Figure showing the density plots to the appendix. 
 
L258: An overview of the individual error metrics is give in Table 
\ref{tab:error_metrics_rivers}. 
 
L210-213: The model’s performance can be described as relatively robust when 
changing the set of hyper parameters (see Figure \ref{fig-Supp3}). Interestingly, also 
shorter input sizes of 10 days perform really well. However, we still decided to use 
longer time scales, as we assume that longer input sizes increase the stability of the 
model needed for long-term climate simulations. 
 

 
• In Section 4.1, you make the point that the ConvLSTM model’s performance is already 

satisfactory, the “discrepancies between the actual values and the predictions can 
partly be attributed to the use of a different atmospheric dataset than the ones 
originally used to drive the E-HYPE model”. This is a key point, and it would be helpful 
to draw out this point earlier in the technical section when outlining the runoff data 
used for training and when describing the input datasets for the atmospheric forcing. 
 
We agree and added this information to the technical description in the sub-chapter 
‘Atmospheric Forcing’. 
L191: Lastly, it should be noted that UERRA is not the atmospheric dataset that was 
used to drive the original E-HYPE model. 

• In Section 4.1 in Figure 5, you describe the right panel (b), showing the distribution of 
residuals as a density plot with a Gaussian shape—a bell curve centred around zero. 
You mention that there is no systematic bias, with residuals mostly within a narrow 
range around zero, though there is a slight positive bias at the peak. Could you 
explain this slight positive bias? Is it related to the differences in atmospheric datasets 
used in the ConvLSTM model versus those originally used as input in the E-HYPE 
model? 



We think that this small shift is generated by the limited number of samples. More 
samples would likely reduce this bias. Moreover, the suggested sensitivity studies 
(Supplement Figure C1) support this assumption. However, on the other hand it is 
also possible that this small bias could be generated by the atmospheric dataset. 
 
We changed the text accordingly. 
 
L238-239: The bell-shaped curve is approximately centered around zero indicates that 
the model does not exhibit a systematic bias, […] 

• In Figure 6, it might be helpful to use the same y-axis value range for all four plots 
showing the residual error. This would make it easier to see that Neva has the lowest 
residual error, with the ConvLSTM model’s total predicted runoff within +/- 2.5%, 
compared to the other rivers. 
 
Changed. 

 
• In Figure 6, the prediction errors are larger for the other three rivers compared to the 

River Neva. Have you considered whether this could be because the River Neva uses 
observed runoff data, while the other rivers rely on the E-HYPE hindcast simulation 
data? This could be linked to the issue of using different atmospheric datasets in the 
ConvLSTM model compared to the datasets originally used in the E-HYPE model. 

 
Thanks for pointing this out. Indeed, this is really interesting and was added to text.  
L251-253: Compared to the Neva River, the prediction errors are larger, which may be 
attributed to the training dataset, as the runoff for the Neva is based on 
measurements, whereas the other rivers are solely based on E-HYPE. 
 

• In Section 4.1 in the Figure 6 caption, you mention that “the residuals were calculated 
as the relative difference between the predicted and observed values, normalized by 
the observed.” However, the total runoff data is based on an E-HYPE hindcast 
simulation. Referring to “observed runoff data” makes it sound like this is measured 
runoff data from river gauges. Is this the case for all four rivers, or just for the Neva 
River? It would be helpful to clarify what the total predicted runoff data for each of 
the four individual rivers is compared to calculate the residual error. 
 
Changed in the text. 
 

• In Figure A1, the legend refers to the "hydrological model," but it would be clearer to 
specify the E-HYPE model and ConvLSTM model. For Neva, the comparison should be 
with the measured flow data, as it is not based on the E-HYPE hindcast simulation 
data. Additionally, in Figure A1, you refer to the residuals as the relative difference 
between the predicted and observed values. However, these are not actually 
observed values but rather E-HYPE simulated values, except for Neva. It would be 
helpful to clarify this distinction. 

 
We agree and changed the figure accordingly. 

 



• In Section 4.2, specifically in line 235, you mention that the predicted salinity from 
the ConvLSTM model matches the "original data" well, capturing short-term 
fluctuations effectively. It would be helpful to clarify what you mean by "original 
data"—is this the salinity forced with the E-HYPE runoff, or is it the measured salinity 
at BY15? In the Figure 7 legend, it would be clearer to use "ConvLSTM model" and "E-
HYPE model" instead of "original". Additionally, in the caption, it might be better to 
avoid "original E-HYPE data" and simply use "E-HYPE data." 

 
Changed accordingly. 

 
• In Section 4.2, you don’t address why the salinity at the surface, and to some extent 

at the bottom, as computed using the ConvLSTM model and E-HYPE runoff prediction 
with the MOM5 Ocean model, does not match well with the observed salinity at 
BY15. Specifically, at the surface it tends to over-predict the high and low salinity 
cycles. It would be helpful to acknowledge this discrepancy and offer some possible 
explanation for it. 

 
 

We appreciate the reviewer’s observation regarding the discrepancies between the 
simulated salinity and the observed values at BY15, particularly at the surface, where 
the high and low salinity cycles tend to be over-predicted. This behavior is not directly 
linked to the performance of the ConvLSTM river runoff model. Instead, it is 
attributed to the MOM5 ocean model's representation of physical processes, 
particularly the treatment of mixing, advection, and stratification in the Baltic Sea. 
 
Several factors may contribute to this discrepancy: 
 
Vertical Mixing and Stratification: The Baltic Sea is known for its strong vertical 
stratification due to the input of freshwater from rivers. The MOM5 model uses the K-
profile parameterization (KPP) scheme for turbulence, which may not perfectly 
resolve small-scale mixing processes and vertical salinity gradients. This can result in 
an overestimation of salinity variability at the surface. 
 
Lateral Advection and Exchange: While the MOM5 model captures the large-scale 
dynamics of the Baltic Sea, the lateral transport of saltwater from the Skagerrak into 
the central Baltic Sea may not be perfectly represented. This can introduce variability 
in surface and bottom salinity that is not observed in reality. 
 
We emphasize that the focus of this study is on validating the river runoff prediction 
using the ConvLSTM model. 
 
We added this information to the text as well. 

 
L271-281: It should be noted that the discrepancies between the simulated salinity 
and the observed values at BY15 are not directly linked to the performance of the 
ConvLSTM river runoff model. Instead, it is attributed to the MOM5 ocean model's 
representation of physical processes, particularly the treatment of mixing, advection, 
and stratification in the Baltic Sea. Several factors may contribute to this discrepancy. 



The Baltic Sea is known for its strong vertical stratification due to the input of 
freshwater from rivers. The MOM5 model uses the K-profile parameterization (KPP) 
scheme for turbulence, which may not perfectly resolve small-scale mixing processes 
and vertical salinity gradients. This can result in an overestimation of salinity 
variability at the surface. Moreover, while the MOM5 model captures the large-scale 
dynamics of the Baltic Sea, the lateral transport of saltwater from the Skagerrak into 
the central Baltic Sea may not be perfectly represented. This can introduce variability 
in surface and bottom salinity that are not observed in reality. However, all in all, the 
long-term trends and larger salinity changes are accurately captured, indicating the 
model's robustness in predicting high-frequency and low-frequency variations. 
 

• In Section 5, you conclude that all results lie within the error margin of the 
hydrological model itself when compared to observations, with the average error on 
daily time scales for individual rivers mostly under 10%. It would be helpful to 
mention this average error of 10% earlier in Section 4.1, specifically around line 255, 
when introducing supplementary Figure A1. This would provide context for the 
reader before the conclusion in Section 5. 

 
We agree and added this information to the text. 

 
• In Section 5, you conclude that the ConvLSTM model is significantly less 

computationally intensive than running comprehensive hydrological models. Could 
you provide a more detailed quantification of the reduction in computational demand 
when forecasting with the ConvLSTM model compared to these hydrological models? 
Have you tested the computing speed against any other traditional hydrological 
modes or only the E-HYPE hydrological model to make this conclusion?   
 
We agree that this information is useful and added it to the text. Our model 
generates one year of daily river runoff in roughly 10 seconds. The runtime of a 
hydrological model (personal communication with Stefan Hagemann (Dr. Stefan 
Hagemann, Regional Land and Atmosphere Modeling, Head of Department), with 
a similar resolution varies between 5-15 minutes per year.  
 
This results in a speed up in the range of factor 30-90. 
 
L309-310: The achieved speedup (depending on the complexity of the 
hydrological model) is within the range of 30 to 90 times faster.  
 

 
Technical Corrections:  
Other minor suggestions: 

• The title could be simplified by changing "leveraging" to "using" and removing 
"comprehensive" before "discharge forecasting." You could also add "into the Baltic 
Sea" for more clarity. 
Changed. 

• The abstract is currently too broad, and it would benefit from including some specific 
numerical results to quantify the ConvLSTM model's performance against the e-HYPE 



data and compared to traditional hydrological models. This would demonstrate the 
ConvLSTM model's effectiveness at predicting runoff. 
Changed. 

• Equation 1 line 60 for Xtk the k I think should be subscript. 
Changed. 

• Overall, the study presents a novel approach to forecasting river runoff using 
ConvLSTM network models. The ConvLSTM model performs similarly to traditional 
hydrological models such as the E-HYPE model in capturing runoff patterns but offers 
faster processing and greater computational efficiency, which makes it a valuable 
contribution to the field. However, I think some details need further explanation, and 
in places more clarity is required. Minor revisions would strengthen the paper, but 
this use of ConvLSTM models to forecast runoff on such a widespread scale of the 
Baltic Sea catchment is definitely of interest to others in the field and a excellent 
study. 
Thank you very much for your detailed review, which improved the current version of 
the article a lot. 
 

 


