
Implementation and validation of a supermodelling framework into
CESM version 2.1.5
William E. Chapman 1, Francine Schevenhoven 2, Judith Berner 1, Noel Keenlyside 2, Ingo Bethke 2,
Ping-Gin Chiu 2, Alok Gupta 3, and Jesse Nusbaumer 1

1National Center for Atmospheric Research, Boulder, Co. USA
2Geophysical Institute and Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
3NORCE Norwegian Research Centre, and Bjerknes Centre for Climate Research, Bergen, Norway

Correspondence: William E. Chapman (wchapman@ucar.edu)

Abstract.

Here we present a framework for the first atmosphere-connected supermodel using state-of-the-art atmospheric models. The

Community Atmosphere Model (CAM) versions 5 and 6 exchange information interactively while running, a process known as

supermodeling. The primary goal of this approach is to synchronize the models, allowing them to compensate for each other’s

systematic errors in real-time, in part by increasing the dimentionality of the system.5

In this study, we examine a single untrained supermodel where each model version is equally weighted in creating pseudo-

observations. We demonstrate that the models synchronize well without decreased variability, particularly in storm track re-

gions, across multiple timescales and for variables where no information has been exchanged. Synchronization is less pro-

nounced in the tropics, and in regions of lesser synchronization we observe a decrease in high-frequency variability. Addition-

ally, the low-frequency modes of variability (North Atlantic Oscillation and Pacific North American Pattern) are not degraded10

compared to the base models. For some variables, the mean bias is reduced compared to control simulations of each model

version as well as the non-interactive ensemble mean.

1 Introduction

Climate models are essential for understanding and analyzing the complex dynamics of our Earth system. However, significant

uncertainties remain, primarily due to the challenges in accurately parameterizing key processes and the biases inherent in15

different components of these models. These biases often exceed the projected climate change signals and the natural back-

ground variability that we aim to predict (Palmer and Stevens, 2019). Numerous options to improve climate representation

are actively being explored, including enhancing subgrid physics, the incorporation of stochastic terms (e.g., Berner et al.,

2008, 2012, 2017), utilizing machine-learned parameterizations and closures developed from observations or high-resolution

model runs (e.g., Gregory et al., 2023; Chapman and Berner, 2024; Watt-Meyer et al., 2021; Bretherton et al., 2022), and20

increasing climate model resolution to directly resolve specific processes instead of parameterizing them (e.g., Judt, 2018;

Palmer, 2014). Often these approaches effectively increase the dimensionality of the prediction system in some form by adding

additional degrees of freedom. However, these methods are challenging to develop and often too computationally intensive to

1

https://doi.org/10.5194/egusphere-2024-2682
Preprint. Discussion started: 22 October 2024
c© Author(s) 2024. CC BY 4.0 License.



practically implement. Despite these challenges, progress is crucial for improving climate predictions and informing policy

decisions on climate adaptation and mitigation. Thus, alternative methods, which rely on the current generation of models,25

must be tested.

A simple approach to improving model representation is multi-model averaging, performed after individual models have

been run. This method has been shown to reduce climate model biases in various applications (e.g., NMME, CMIP). These

non-interacting ensembles (NIE) reduce errors by balancing the biases from multiple models. Moreover, advanced ensemble

weighting schemes can further improve NIE effectiveness (e.g., Weigel et al., 2010; Tegegne et al., 2019). However, NIEs30

have limitations because they cannot combine model outputs in real-time, making them confined to the attractor space of each

individual model. Additionally, biases which are shared across the individual models in an NIE cannot be corrected due to the

linear nature of post-process averaging.

Supermodels are designed to address this limitation by creating a new synchronized dynamic system, which consists of the

individual models interacting during run time by exchanging either state or tendency information. Since the models exchange35

information at runtime, the interactive ensemble is effectively of higher dimensionality. Taking advantage of model diversity

compensates for individual model bias errors and allows more complex dynamical behavior. Supermodeling is a generalization

of the interactive ensemble approach introduced by (Kirtman and Shukla, 2002) , who coupled multiple realizations of the

same atmospheric general circulation model to a single ocean general circulation model through averaging their air-sea fluxes.

Since then a number of efforts have focused on linking increasingly complex models from low-dimensional simple models to40

models of intermediate complexity (van den Berge et al., 2011; Duane et al., 2009, 2018; Schevenhoven et al., 2023), and a

framework for a state-of-the-art ocean-connected supermodel has been developed (Counillon et al., 2023).

Supermodels depend on two key principles: firstly, the synchronization of different models rooted in the concept of chaos

synchronization in non-linear dynamical systems (Duane and Tribbia, 2001; Pecora et al., 1997); and secondly, the diversity

among models can reflect the actual behavior of the target dynamical system. The models can either be directly linked to each45

other via a subset or all variables (e.g., van den Berge et al., 2011) or connected to their weighted average (e.g., Schevenhoven,

2021; Wiegerinck et al., 2013). The weighted average is also referred to as pseudo-observations, a terminology which will be

explained below. A central point is that if the models are sufficiently synchronized the supermodel should not suffer from a

decrease in variance. A decrease of variance in a particular region or variable is a sign of an insufficient synchronization and

might require the exchange of more information between the interactive ensemble members (Wiegerinck et al., 2013)50

In order to achieve optimal performance, a supermodel must be trained using data from the "truth" such as observations or a

reference model. During the training phase, the supermodel interaction coefficients are optimized to formulate the supermodel

with the best skill. Since only the interaction coefficients need to be learned, the training effort is substantially less than that

used by modern machine learning approaches which learn the entire forward operator of a model (e.g., Watt-Meyer et al.,

2023). Efficient methods have been developed to train supermodels (Schevenhoven and Selten, 2017) and have been shown in55

a coupled model of intermediate complexity, SPEEDO, connected via the atmospheres only (Severijns and Hazeleger, 2010),

these training methods showed promising results (Schevenhoven et al., 2019), even when the observations were sparse and

noisy (Schevenhoven, 2021).
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Exchanging information between models at runtime introduces substantial technical complexity and difficulties. Concep-

tionally, each model has to be to be integrated forward for a number of model timesteps and then paused. Then, information60

between the component models is exchanged. For simple models all model variables will be available on a single processor

and the exchange of information is straight forward. However, for more complex models which need to run on large distributed

memory systems, this information sharing can be more difficult. Often, input/output files need to be written, combined, and each

component model has to be ’restarted’ or ’resumed’ after reading in exchanged information. This methodology is reminiscent

of the traditional data assimilation (DA) approach, which attempts to synchronize a numerical weather forecast (NWP) with the65

observed atmospheric state. As such traditional data assimilation in NWP can be considered a special case of supermodeling.

This synergy explains why the exchanged information is also called "pseudo-observation".

(Duane et al., 2006) recognized this analogy and suggested the use of traditional data assimilation tools (e.g., Du and Smith,

2017) to ingest the pseudo-observations into the components models. This approach was adopted by Counillon et al. (2023)

to succesfully connect multiple ocean models. However, the overhead of writing and reading input/output files and restarting70

the component models is computationally very inefficient and prohibits interaction at every timestep. Furthermore a workflow

manager is necessary to create the pseudo-observations and delay the restart until the latter are available, especially if one of

the component models is slower then the other. Additionally, while some models have pause/resume capability and can be

restarted quickly, others, like the one used in this study, take a relatively long time to re-initialize the model, which makes the

DA approach for creating a supermodel undesirable.75

Here, we describe the technical details of the implementation of the so-far most complex supermodel in a heavily parallelized

High Performance Computing environment. It connects two versions of the Community Atmosphere Model (CAM) which is

the atmospheric component of the Community Earth System Model CESM (Danabasoglu et al., 2020). The advantage over

previous implementations come in through three new developments: 1) the availability of a newly developed Python-Fortran-

Bridge in CESM, 2) the adaptation of the existing nudging toolbox (reference) for our purposes, and 3) the submission of80

multiple jobs through a single PBS or SLURM scheduler, which allows both components models to get into the same queue.

A newly developed Python-Fortran-Bridge is now available in CESM which allows calls to python routines from the Fortran

executable at runtime (see e.g. Chapman and Berner, 2024). Called via the CESM-internal workflow, the python-calls take

the role of the workflow manager, control the generation of the pseudo-observations and effectively introduces pause/resume

functionality into CESM.85

The CESM nudging toolbox was used by Chapman and Berner (2024) to compare nudging tendencies to DA increments.

In the supermodeling context, its infrastructure can be easily adapted to facilitate nudging to the (weighted) model-average as

well as specifications for the interaction interval and which variables should be connected via Fortran namelist parameters.

While we present only first results using an unweighted, atmosphere-connected supermodel, we stress that the interoperabil-

ity of the implementation will make extensions to include ocean-connections straight forward. It is also easy to add additional90

component models, as long as they are available on the same supercomputer. We also use the above-described training methods

to optimize the performance of the supermodel, the results of which will be described elsewhere.
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The manuscript is structured as follows: Section 2 describes the components models, verification datatsets and implementa-

tion of the supermodel, Section 3 discusses model synchronization and presents results supporting a successful implementation.

Section 4 provides a discussion and concludes the findings.95

2 Implementation and Synchronization Methodology

2.1 Component Models and experiment setup

We combine different simulations of the Community Atmosphere Model (CAM), an atmospheric general circulation model

(AGCM) developed at the National Center for Atmospheric Research with extensive community support. Our supermodel

integrates CAM version 5 (CAM5; Neale et al., 2010) and CAM version 6 (CAM6; Bogenschutz et al., 2018; Gettelman et al.,100

2018), each incorporating different physics suites while using the same dynamical core, namely the finite-volume (FV) core.

CAM5 is released as the atmospheric component of CESM1 and CAM6 of CESM2, respectively.

The CAM5 simulation is run from the CAM6 code base with the CAM5 physics flag activated, which configures CAM to

specifically use the physics schemes from CAM5.1 (CESM1.0.6). CAM5.1 treats stratiform cloud microphysics with a two-

moment formulation (Morrison and Gettelman, 2008). The spatial distribution of shallow convection is simulated with a set105

of realistic plume dilution equations (Park and Bretherton, 2009). The ice cloud fraction scheme allows supersaturation via a

modified relative humidity over ice and the inclusion of ice condensation amount (Gettelman et al., 2010). Descriptions for all

other physics schemes (deep convection, PBL, radiation, etc.) can be found in Neale et al. (2010).

CAM6 uses the publicly released version of cam_cesm2_1_rel_60 from CESM2.1.5. Significant changes from CAM5

physics include substantial modifications to every atmospheric physics parameterization except for radiative transfer. The110

Cloud Layers Unified by Binormals (CLUBB, Golaz et al., 2002; Bogenschutz et al., 2013) scheme replaces CAM5 schemes

for boundary layer turbulence, shallow convection, and cloud macrophysics. Additionally, an improved two-moment prognos-

tic cloud microphysics (MG2 Gettelman and Morrison, 2015) was introduced between versions. The deep convection param-

eterization (Zhang and McFarlane, 1995) has been significantly retuned to increase sensitivity to convective inhibition. Both

subgrid orographic drag calculation schemes have undergone substantial modifications. The orographic gravity wave scheme115

now incorporates topographic orientation (ridges) and low-level flow blocking effects. Finally, the previous parameterization

of boundary layer form drag, known as turbulent mountain stress (TMS), has been replaced by the scheme of Beljaars et al.

(2004).

While our supermodeling implementation utilizes interpolation routines to support different vertical and horizontal resolu-

tions, we use here the resolution for which the atmospheric component models were scientifically released, namely a grid-size120

of 0.9°N x 1.25°E in the horizontal and 32 hybrid sigma-pressure levels up to 2.26 hPa in the vertical.

The model simulations followed the protocol of the Atmospheric Model Intercomparison Project (AMIP) and are forced by

observed monthly sea surface temperature and sea ice from 1979 to 2005 (26 years), which are linearly interpolated to obtain

specified daily values, as well as the evolution of aerosol emissions and trace gas concentrations (including CO2).
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2.2 Validation Datasets125

We verify the model against the ERA5 reanalysis product (Hersbach et al., 2020) for all fields except precipitation, which

is verified against the NOAA GPCP product (Adler et al., 2003). For verification, every observational product is bi-linearly

interpolated to the native CAM grid prior to any metric calculation.

2.3 RMSE and Bias Calculation

As in the NCAR Atmospheric Modeling Working Group Diagnostic Package AMWG (2022), model error is calculated as130

the sum of the cosine- latitude weighted, root-mean-squared error (RMSE) of the spatial field after a seasonal, monthly, or

daily mean has been computed. RMSE was used so that opposite-signed local biases do not cancel and erroneously inflate

skill. Percent improvement is determined by first calculating global/regional RMSE and then calculating the percent change of

RMSE compared to the reference.

2.4 Super Model Implementation135

Our first attempt at implementing a supermodeling framework followed previous work (Counillon et al., 2023) and utilized

a workflow manager, CYLC, together with tools from the data assimilation research testbed (DART Anderson et al., 2009) to

restart the component models after their interaction via nudging to averaged output files. CESM-specific bottlenecks were 1)

the time needed to re-initialize CESM after a restart, since the current CESM version does not have pause/resume capability

and 2) re-entering the system queue after each interaction interval. Due to these inefficiencies completing a single year’s140

simulation took approximately 24 hours (at 6-hour coupling), a cost that becomes untenable for multi-year simulations and

made it impossible to increase the interaction frequency.

To overcome these difficulties, we devised a new custom workflow management system that eliminates the need for halting

and re-initializing the model with each interchange of information between models by employing a PAUSE/RESUME mecha-

nism. At the beginning of the physics timestep, the first component model outputs the model state [Zonal wind (U), Meridional145

wind (V), Temperature (T) and Specific Humidity (Q)] and initiates a model pause via writing a PAUSE file. Subsequently,

CAM calls a python script which awaits the second model’s arrival at the beginning of the physics timestep and combines

the outputs from both model runs with the same timestamp. If the component model grids are different, python interpolation

routines are invoked. Subsequently, the python script removes the PAUSE file and the model resumes operation without the

necessity for re-initialization or re-entering the queue. The component models are then nudged toward the combined state for150

a prescribed number of timesteps (e.g., Chapman and Berner, 2024).

We also tackled the challenge of submitting multiple jobs through a single PBS or SLURM scheduler. This addresses the

issue of asynchronous model queuing, where one model might clear the submission queue while the other remains pending,

thereby saving considerable computational time.

The resulting CAM5/CAM6 supermodel software workflow diagram is shown in Fig. 1. First, we provide scripts to build,155

compile, set namelist parameters, and stage necessary python and Fortran files. Then, all component models are submitted to
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Figure 1. CAM5/6 Supermodel Workflow

the same submission queue using a single PBS or SLURM scheduler. The component models then run independently using

their respective physics package until the first interaction timescale (η) is reached. The interaction timescale η signifies the time

after which the supermodels share information. At this point, each model writes output and is paused. Using a python-call from

within the CESM workflow of one of the component models, the model states are subsequently averaged to create the combined160

state or pseudo-observation. The component models then resume, each being nudged towards the pseudo-observations. Once

the next interaction timescale is reached, the models are paused and resume after their combined state has been computed. The

last two steps are repeated until the desired simulation length is obtained (Fig. 1, grey box).

By adapting the previously developed nudging toolbox (Davis et al., 2022) for our purposes, we can easily set the interaction

timescale, interacting variables, pseudo-observation file name, output path locations via namelist parameters.165

The CAM5/CAM6 SuperModel, including the CESM Fortran-Python-bridge, supermodel module toolbox with namelist

section, and scheduler scripts, are readily available via the GitHub repository. Our use of GitHub for version control and

distribution reflects our dedication to open science, promoting a culture of sharing code and knowledge. It is deployed on
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Figure 2. Experiments initialized from the same atmospheric state and integrated for one month. Showing: an independent CAM6 run

(dashed black); an independent CAM5 run (dashed red); SUMO5 (teal); supermodel which uses CAM5-physics (SUMO5); supermodel

supermodel which uses CAM6-physics (SUMO6) (purple) at location [Lat: 40N, Lon: 160W, Lev; 200 hPa].

two HPC platforms 1) the National Center for Atmospheric Research’s Derecho Computer and 2) the Norwegian Research

Infrastructure Services’ machine Betzy.170

With these improvements. a one-year simulation is now accomplished in 7 hours, and is independent of system queue times.

Moreover, increasing the frequency of coupling does not significantly increase the wallclock time.

3 Supermodel Results

We now demonstrate the synchronization and resulting mean state representation for the CAM5/CAM6 supermodel for the

period 1979 through 2005, The supermodel uses an interaction timescale of η = 6 hours and employs snapshot nudging to175

the unweighted averaged state In this implementation, the information in U, V, and T are exchanged and nudged while Q is

left to evolve freely. This was done because previous work indicated difficulty when adjusting specific humidity Q in CAM

in both, nudging (e.g., Chapman and Berner, 2024) and full DA experiments (Raeder et al., 2021). We show results for four

experiments: CAM5, CAM6, the supermodel which uses CAM5-physics, but is nudged to the combined state, SUMO5, and

the supermodel which uses CAM6-physics, SUMO6. We analyse the 6-hourly averaged prognostic state variables (U, V, T, Q,180

Surface Pressure (PS)) and standard CAM output which is averaged monthly.

3.1 Synchronization

Figure 2 shows the zonal wind (U wind) at 200 hPa for four experiments started from the same initialization at a single model

point ([40◦N, 160◦W]). The results indicate that while CAM5 and CAM6 vary independently, the two supermodel trajectories

synchronize after ca. 15 day and the trajectories stay closely linked throughout the model run.185
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Figure 3 illustrates the anomaly Pearson correlation coefficients for four atmospheric variables: zonal wind (U,V,T,Q) at a

6-hourly averaged temporal frequency. These correlations are computed between the two super models (SUMO5, SUMO6) and

between the individual CAM6 model and SUMO6 in model year 1979-1980. The analysis covers the 200hPa level at every grid

point. To avoid anomalously high correlations for areas where the variability is largely driven by the annual cycle, we remove

the 30-day centered rolling mean of the data. Figure 3 provides a quantitative measure of the degree of similarity between the190

two supermodel versions and the similarity between the one of the component models, CAM6, and the associated supermodel

using also CAM6-physics. It highlights the effectiveness of the supermodeling approach in synchronizing the atmospheric state

across different variables.

As to be expected there is no synchronization of the CAM6 and SUMO6 model states, as expressed by a low correlation

coefficients of <0.15 for all almost all gridpoints (Fig. ??, right column). Correlations between the SUMO5 and SUMO6195

experiments are much higher (3, left column) indicating that the synchronization is evident not only across the component

models, but also between the supermodels using different physics packages. Synchronization is strong in the U, V, and T fields

poleward of 15◦, especially in the storm track regions. The Maritime continent region (Lat: [15◦S,15◦N], Lon:[60◦E,200◦W])

displays the least amount of synchronization, which might be related to SUMO5 and SUMO6 having different deep convective

parameterization schemes. Q displays least synchronization (Fig. 3g) with lowest correlation in the tropical belt, but still more200

than the correlation between CAM5 and CAM6 The supplemental material shows the same analysis for pressure levels of 750

hPa and 900 hPa (Fig. 1S and Fig. 2S. Generally, we see greater synchronization at these higher pressure levels, pointing again

to the representation of deep convection.

If the component models are not sufficiently synchronized, the combined model state will exhibit diminished high-frequency

variance compared to the individual models. This variance deflation occurs because the supermodel, representing a weighted205

average, tends to smooth out discrepancies between the models. As a result, the supermodel may lose critical variance, leading

to reduced accuracy in capturing fine-scale variability. This issue is structurally related to the double penalty problem in modern

machine learning for Numerical Weather Prediction (Brenowitz et al., 2024).

Poor synchronization between models, whether spatial or temporal, leads to an averaging effect that disproportionately

smooths out high-frequency variations, dampening the system’s true variability. Studies show that the less synchronized the210

models, the more the supermodel’s variance is compromised by this effect, detracting from its ability to capture dynamic

processes accurately (Counillon et al., 2023).

To examine the supermodel for signs of significant variance deflation, we compare histograms of 6-hourly averaged wind

speed values (Fig. 4). We detect a slight damping of the background winds near the mode of the distribution, but no degradation

of the highest wind speeds. Overall, the difference between the component and super-models is minimal.215

Even if the full fields do not suggest variance deflation, previous work using nudging (e.g., Chapman and Berner, 2024)

suggests that any linear relaxation back to some sort of reference field is expected to reduce band-pass filtered variance. Hence

we compute the standard deviation of the 12h to 5d band passed-filtered winds for U and V at 200 hPa (Figure 5 . The zonal

average (line), and zonal standard deviation (shading) are shown for SUMO6 (teal) and CAM6 (black) in the right hand column

for the U and V winds (Fig. 5c & f, respectively). There is a significant damping of variability in this frequency band in areas220
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Figure 3. Anomaly correlation between the SUMO5 and SUMO6 s (left: a,c,e,g) and between the SUMO6 and CAM6 experiment (right:

b,d,f,h). Shown are 6hourly-averaged model variables zonal wind (a,b), zonal wind (c,d), temperature (e,f), and specific humidity (g,h) at

200 hPa for the period spanning 1979-1980. Anomalies are computed by removing a 30-day centered mean at every timestep.
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Figure 4. Histogram of all 6-hourly averaged wind speed values in model years 1979 at 200 hPa. Showing: an independent CAM6 run

(black); an independent CAM5 run (red); the CAM5 supermodel (teal); CAM6 supermodel (purple).

where we find lower model synchronization like the tropics and the poles (Fig. 3a & c), especially over the maritime continent.

Moving to relaxation timescales tends to reduce this damping, so that we hypothesize using interaction timescales of 6h or less

is beneficial with regard to minimizing the damping of high frequency variability.

3.2 Low Frequency Modes of Variability

Evaluating the performance of an atmospheric model requires the adequate depiction of natural climate variability and sig-225

nificant low-frequency climate modes (e.g., Phillips et al., 2014). Intraseasonal variability arises from complex dynamical

processes operating across multiple timescales, which subsequently influence downstream weather patterns (e.g., Branstator,

1992; Simmons et al., 1983; Wallace and Gutzler, 1981). The model’s background climatology significantly influences this low-

frequency variability, with several mechanisms proposed for its sustenance and growth. These mechanisms include the devel-
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Figure 5. Standard deviation of 12 hour to 5 day band passed U (a,b) and V (d,e) winds for the SUMO6 (column I) and CAM6 (column II)

model runs. And, the zonal average (line) and standard deviation (shading) of the the band passed winds for U (c) and V (f) for the SUMO6

(teal) and CAM6 (black) runs.

opment of low-frequency anomalies due to instabilities in the zonally asymmetric midlatitude jet (e.g., Branstator, 1990, 1992;230

Frederiksen, 1983; Simmons et al., 1983), alterations in quasi-stationary eddies linked to changes in the zonal-mean flow

(e.g., Branstator, 1984; Kang, 1990), tropical heating or orographic forcing (e.g., Hoskins and Karoly, 1981; Sardeshmukh

and Hoskins, 1988), and vorticity fluxes from high-frequency eddies (e.g., Branstator, 1992; Egger and Schilling, 1983; Lau,

1988; Ting and Lau, 1993). Accurately representing this low-frequency variability is vital for climate models, as the numerous

interactions that contribute to an accurate depiction of low-frequency modes are indicative of the model’s reliability.235

To extract the leading patterns of variability we perform a empirical orthogonal function (EOF) decomposition on the

monthly anomaly fields. The climatology is defined as the monthly mean from the full 26-year run or reanalysis product.

All EOF patterns are area weighted by the square root of the cosine (latitude) prior to decomposition. We express the orthogo-

nal spatial field as the pointwise regression of each time series with a one-standard deviation change of the temporal principal

component. The DJF Pacific - North American Pattern (PNA, Fig. 6), and North Atlantic Oscillation (NAO, Fig. 3S) are exam-240

ined in detail. These patterns are defined as in Phillips et al. (2014) (NCAR’s Climate Variability Diagnostic Package) as the

leading mode of atmospheric variability in the region [20-85°N, 120°E-120°W] and [20-80°N, 90°W-40°E], respectively.

Twenty-six years and a single atmospheric realization is likely too short to adequately assess the spatial bias of either the PNA

or the NAO (Deser et al., 2017). Therefore, we simply examine the patterns to show general loading locations (Fig. 6a-d) and

compare the representation of total variance to observations (Fig. 6e, grey histogram). To develop the histogram of explained245
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Figure 6. DJF 500 mb geopotential leading mode of variability over the region [NAO, 20-80°N, 90°W-40°E] ERA5 (a), CAM6 (b), CAM5

(c), and SUMO6 (d). Also, the explained variance in each model experiment (solid lines), and the bootstrapped spread of explained variance

in the observations (e, grey histogram).

variances we sub-sample the ERA5 observations into random twenty-six year chunks and bootstrap the EOF calculation 500

times (e.g. Chapman and Berner, 2024). The PNA shows a classic stationary Rossby wave pattern spanning from the central

Pacific, across Canada and through Florida for every simulation. It is encouraging that the pattern in the supermodels is nearly

identical, showing that low frequency modes of variability are also synchronized and that connecting U, V, and T lead to the

synchronization of the geopotential height field.250

The principal components (PC) corresponding to the supermodel PNA show a Pearson correlation coefficient of 0.992, while

the correlation between the PNA PC from CAM6 and SUMO6 is 0.27. We would expect some correlation due to tropical SST

forcing in the AMIP runs (Wallace and Gutzler, 1981). Additionally, the PNA’s variance explained sits well within the spread

of the observations (Fig. 6e).

The NAO is slightly less synchronized (Fig. 3S) with a Pearson correlation coefficient of 0.75 between the two supermodel255

runs , but this correlation is still much higher than the correlation of -0.012 between the SUMO6 and CAM6 run.
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Figure 7. The observed annual precipitation climatology [mm/day] in the NOAA GPCP product (a) and the biases of the CAM5 model (b),

CAM6 model (c), SUMO6 (d), SUMO5 (e), and NIEnse (f) relative to the observations. The model RMSE is shown in the title of each

panel. The color bars indicate the precipitation bias in mm/d, with orange representing positive bias (too much precipitation) and purple

representing negative biases (too little precipitation).

3.3 Impact on mean-field Biases

One reason to develop supermodels lies in their potential to have smaller mean-field biases. The work presented her has

its emphasis on the supermodeling implementation connecting CESM components and we have not performed any training.

Therefore any improvement in bias is fortuitous. Here, we diagnose the climatological biases in order to confirm that the260

synchronization did not introduce large error or other artifacts. We find that for most variables the SUMO biases fall between

those of CAM5 and CAM6. The same is true when fields are seasonally stratified (not shown).

Figure 7 shows the annual precipitation climatology in the NOAA GPCP product and the model biases (Model - Observa-

tions). The SUMO5 and CAM5 precipitation biases are similar, likely because they share the same convection and boundary

layer schemes (see section 2.1.1 & 2.1.2). The same is true for the SUMO6 and CAM6 experiments.265

In SUMO5/6 the largest differences from their respective constituent models are over the tropics with loading differences

from the Bay of Bengal through the international dateline, and again off of the Pacific Coast of Central America (see Fig. 4S

for a climatological difference plot which highlights this finding). This indicates that the synchronization of the prognostic

variables is likely affecting the monsoonal regions and deep convective zones.
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Figure 8. As in Figure 7, but for 10-meter wind speed.

We introduce a new experiment, the non-interactive ensemble (NIEnse), which is a multi-model ensemble mean of the270

CAM5 and CAM6 simulation runs, which interestingly has with an 0.88 the lowest RMSE.

Figure 8 shows the same analysis but for the 10-meter wind speed. For wind speed, SUMO6 has an RMSE of 0.91, even

outperforming the NIEnse simulation. The largest changes between the respective CAM and SUMO models occur over the

maritime continent. This is particularly noticeable in the SUMO5 simulation (see Fig. 8e), which is closer to CAM6 than to

CAM5 in this region.275

To examine this more closely, we compare the differences between the NIEnse and an ensemble formed as the average of

the two SUMO runs (SUPERense). Figure 9 shows the absolute difference in bias [(|NIEnse-Observations|) - (|SUPERense-

Observations|)] for annually averaged precipitation (top) and U10 (bottom). Positive values (grey) indicate that the SUPERense

is outperforming the NIEnse and vise-versa. It is clear that the SUMOs formed their own dynamical systems with distinct

biases. We observe that the SUPERense represents a 5% improvement to RMSE over the NIEnse for annual U10 winds and a280

3% degradation of annual precipitation when compared to the NIEnse. Focusing on the U10 winds (Fig. 9b), the Pacific low-

cloud deck regions are attenuated and degraded while the eastern boundary current regions are enhanced (see, for example,

the Kurishio and Gulf stream extensions). Unlike, Counillon et al. (2023), we do not find that the areas of low synchronization

necessarily lead to areas of high bias.
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Figure 9. The annual absolute bias difference of NIense and the SUPERense ((|NIEnse-Observations|) - (|SUPERense-Observations|)) for

precipitation (a) and 10-meter windspeed (b). Positive values indicate SUPERense is more skillful and vise-versa.

15

https://doi.org/10.5194/egusphere-2024-2682
Preprint. Discussion started: 22 October 2024
c© Author(s) 2024. CC BY 4.0 License.



4 Conclusions285

In this work, we give technical details on the implementation of the CAM5/CAM6 supermodel, which is the first to connect

two atmospheric components of general circulation models in an HPC setting.

Our implementation leverages three new developments: 1) The exchange of information is managed through a novel Python-

FORTRAN I/O interface that avoids the need to stop and start each model. This circumvents the in CESM costly initialization

stage and introduces effectively PAUSE/RESUME capability (Fig. 1). This Python-FORTRAN bridge was also used to manage290

the timestamps in the output files, and efficiently write the pseudo-observations files. 2) All component models are submitted

through a single PBS or SLURM scheduler, which allows both component models to get into the same queue. This minimizes

the time one component model has to wait for the other one to finish. Without these two improvements the supermodel would

have been too slow to produce multi-year simulations. 3) We were able to adapt the CESM nudging toolbox (Davis et al., 2022)

for our purposes, so that we have full control over e.g. which pseudo-observation variables we want to connect.295

The supermodel framework is readily available for earth system research via our public GitHub repositories, making it

relatively easy to port if active CESM systems are installed on a machine. Currently, the framework is available on both the

NCAR and Norwegian supercomputers. Our driver scripts set-up the users constituent models and pseudo observations. All

software is made available through Github repositories (see below).

To test our implementation we linked the CAM5/CAM6 atmosphere and confirmed that synchronization across various300

temporal scales and variables Even though the supermodels only exchange limited information (U, V, and T) every 6 hours,

fields outside of the exchanged information exhibit synchronization across multiple time scales.

In this study, we only nudge to pseudo-observations which are the equally-weighted mean of the two component models.

Unweighted-mean supermodels can lead to partial synchronization regimes and localized variability damping (see also Counil-

lon et al. (2023)). We find that in regions of lesser synchronization, some model variability is damped due to the smoothing305

effect of averaging over dissimilar fields, though the effects are minimal and should improve as the information exchange

frequency (η) is increased.

Since our supermodel is untrained, we do not expect big improvements in the mean-fields biases. With the computational

efficiency of our implementation, we can now focus on the question if a trained supermodel of comprehensive Earth-System

models can outperform its component models as demonstrated for simpler systems. Since our implementation is using the310

latest CESM infrastructure, an extension to coupled framework is straight forward.

Additional work will explore the use of machine learning techniques to dynamically optimize the weights and improve the

performance of the CESM supermodel.

Code and data availability. To promote transparency and reproducibility, this study includes two code repositories:

1. All figure scripts are readily accessible and can be downloaded using the provided code on Zenodo (Chapman, 2024) to produce all315

figures.
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2. To create all model runs and build your own supermodel, refer to Chapman et al. (2024). This second repository contains the setup

for the SuperModel and its constituent models, including source modifications, model build scripts, and namelists for running the

described CAM versions.

Comprehensive instructions for each step of this study are documented in the repository’s README file. Raw ERA5 Reanalysis data320

can be obtained from the NSF NCAR Research Data Archive (European Centre for Medium-Range Weather Forecasts, 2019). The Global

Precipitation Climatology Project (GPCP) Monthly Analysis Product data is provided by the NOAA PSL, Boulder, Colorado, USA, and can

be accessed at https://psl.noaa.gov.
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