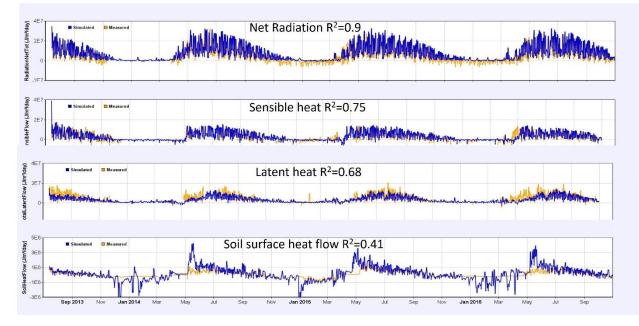
- 1 Supplementary to Simulating soil atmosphere exchanges and CO₂ fluxes for a restored peatland
- 2 Hongxing He¹; Ian B. Strachan²; and Nigel T Roulet¹
- 3 <u>hongxing.he@mcgill.ca; ian.strachan@queensu.ca; nigel.roulet@mcgill.ca</u>
- 4 Hongxing He, <u>https://orcid.org/0000-0003-4953-7450</u>
- 5 Ian Strachan, <u>https://orcid.org/0000-0001-6457-5530</u>
- 6 Nigel T Roulet, <u>https://orcid.org/0000-0001-9571-1929</u>
- 7
- ¹ Department of Geography, McGill University, Montréal, Quebec, Canada
- ⁹ ² Department of Geography and Planning, Queen's University, Kingston, Ontario, Canada
- 10 Correspondence, HH <u>hongxing.he@mcgill.ca</u>; <u>hongxing-he@hotmail.com</u>

- 12 Supplementary section A. Parameters values used in the reference model run
- 13 **Table S1** List of model parameters used in the model run that differs from the model default for
- the BDB restored peatland, for details of the parameter, equations see Jansson and Karlberg (2011)

Symbol	Parameters	Value	Unite	References
p_{cmax}	Surface max cover, shrub-trees/sedges/moss	0.5/0.5/1	-	Nugent et al. (2018)
k _{rn}	Beer's extinction coefficient, shrub- trees/sedges/moss	0.5/0.5/1	-	Frolking et al. (2002)
p_{ck}	The sensitivity of reach max cover on LAI, shrub-trees/sedges/moss	1/2/4	-	Moore et al. (2002)
Zr	The lowest shrub rooting depth, shrub- trees/sedges/moss	0.5/0.35/0	m	Assumed
Е	Light use efficiency, shrub- trees/sedges/moss	1.15/1/0.65	$g C M J^{-1}$	Kross et al. (2016)
$ heta_{Amin}$	The minimum amount of air that is necessary to prevent a reduction of root water uptake, shrub-trees/sedges/moss	5/2/0	vol %	Silvola et al. (1996)
ψ_c	Critical pressure head for reduction of potential water uptake, shrub-trees/sedges/moss	100/60/40	cm water	
p_l	Coefficient determines how fast the reduction of potential water uptake when ψ_c is reached, shrub-trees/sedges/moss	1/0.5/4	day-1	
p_{mn}	ThresholdAirtemperaturewhenphotosynthesisstarts,shrub-trees/sedges/mossstarts,shrub-	5/5/0	⁰ C	Moore et al. (2006)

$p_{rl,sp}$	Specific leaf area, shrub-trees/sedges/moss	75/45/45	$g_2 C m^2$	Assumed
r _{alai}	LAI Scale factor for r_a of the shrub layer	100	m s ⁻¹	
l_{c1}	Leaf allocation parameter, shrub- trees/sedges/moss	0.25/0.35/0.9	-	He et al. (2023)
r _{wc1}	Root allocation parameter, shrub- trees/sedges/moss	0.3/0.35/0.00	-	
l_{Lc}	Leaf litterfall rate, shrub-trees/sedges/moss	0.004/0.004/0.02	d-1	Calculated based on
l_{Rc}	Root litterfall rate, shrub-trees/sedges/moss	0.00175	d-1	literature pool
l_{CRc}	Coarse root litterfall rate, shrub- trees/sedges/moss	0.0001	d-1	turnover rates
l_{Sc}	Stem litterfall rate, shrub-trees/sedges/moss	0.0005/0.0005/0.0001	d-1	
Zo	The surface roughness length	0.001	m	Campbell et al. (2002)
\mathcal{E}_{S}	The emissivity of the ground	0.95	-	Kettridge and Baird (2008)
α_{dry}	Soil albedo when tension $>10^4$ cm H ₂ O	15	%	Kellner (2001)
α_{wet}	Soil albedo when tension $<10 \text{ cm H}_2\text{O}$	5	%	
<i>kB</i> ⁻¹	Difference between the natural logarithm of surface roughness length for momentum and heat	2.3	-	Humphreys et al. (2006)
ψ_g	The empirical correction factor compensates for the difference between the mean soil moisture potential in the top-soil layer and the soil moisture potential at the surface	2.1	-	Assumed
M_T	The snow melting coefficients for air temperature	2	kg C m ⁻² d ⁻¹	Gustafsson et al. (2001)
M_R	The snow melting coefficients for radiation	2×10 ⁻⁷	kg J ⁻¹	
θ_{sat}	Total porosity *	98.8 - 90	vol %	Measured
<i>n_{tortuosity}</i>	Tortuosity	1	-	Default
$ heta_m$	Macroporosity *	30-10	vol %	Liu and Lennartz (2019)
<i>k_{minus}</i>	The minimum hydraulic conductivity	1×10 ⁻⁵	$\underset{1}{\text{mm}} d^{-}$	Alvenäs and Jansson (1997)
k _{sat}	Total saturated hydraulic conductivity*	100000 - 600	mm d ⁻	McCarter and Price (2015) and Gauthier et al. (2022)
θ_r	Residual water content*	10-30	vol %	Schwärzel et al.
θ_{wilt}	Wilting point *	10-30	vol %	(2002); Menberu et al. (2021) and McCarter and Price (2013)
<i>a_{scale}</i>	The sorption scaling coefficient to calculate macropore flow	0.05	-	Assumed
asurf	The first-order coefficient for surface runoff	0.05	-	Assumed
dspace	The distance between drainage ditches	500	m	Measured
Zditch	Drainage ditch depth	0.7	m	1
p_{max}	The maximum surface water pool cover	0.3	-	Assumed
fwcovtot	The maximum amount of water on the soil surface pool	50	mm	Mustamo et al. (2016)
<i>k</i> _l	First-order decomposition coefficient for labile C	0.25	yr-1	Frolking et al. (2010)
k _{ref}	First-order decomposition coefficient for	0.004	yr-1	1

C _{tot}	Total soil C at 1.5 m profile	101800	$g_2 C m^{-2}$	Calculated from measured bulk density
$C_{tot, layer}$	Total soil C for each simulated layer*	625-56000	$g_2 C m^2$	and C concentration
Q_{10}	Q ₁₀ value for decomposition	3	-	Lafleur et al. (2005)
$p_{\theta Low}$	Lower range for moisture response	50	vol %	Or et al. (2007)
$p_{ heta Upp}$	Upper range for moisture response	30	vol %	
$p_{ heta p}$	Shape coefficient for the response function	1	-	
P _{θsatact}	Anaerobic activity	0.1	-	Scanlon and Moore (2000)
h_1	Thermal conductivity coefficient for peat soil	0.01	W m ⁻¹ C ⁻¹	Lai, (2022)
h_2	Thermal conductivity coefficient for peat soil	0.0075	$W_{C^{-1}}$ m ⁻¹	
Cf	The coefficient for frozen surface conduction damping function	0.2	C-1	Assumed


* Note different values were used for the simulated 9 soil layers, the range from top to bottom layer was given.

16

17 Supplementary section B. Time series of surface energy fluxes and soil temperature profiles,

18 used for model evaluation and validation, and additional simulation results for future

19 climate change impact

20

Fig. S1 Measured (orange) and simulated (blue) daily total net radiation, sensible heat, latent

22 heat and soil surface heat flux.

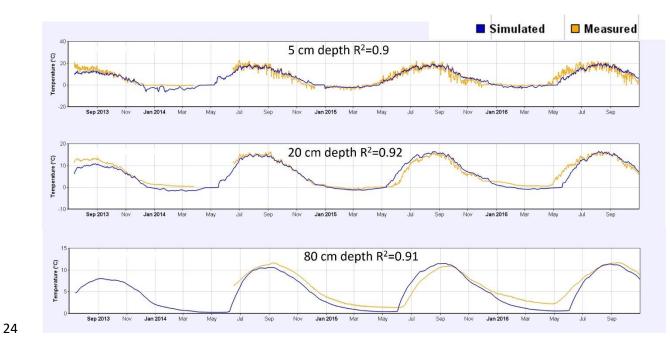
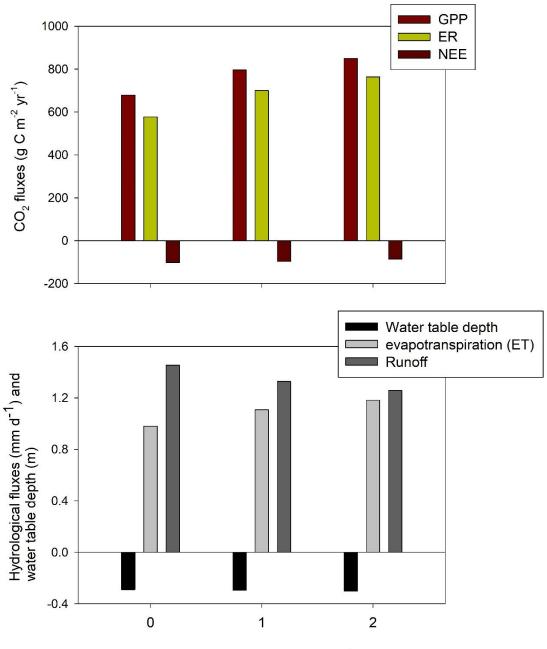
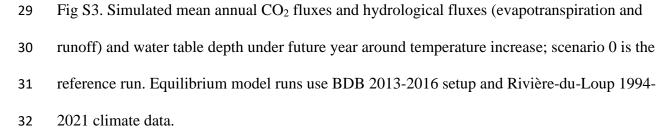




Fig. S2. Measured (orange) and simulated (blue) 30-minute soil temperature profiles

Air temperature increase (°C)

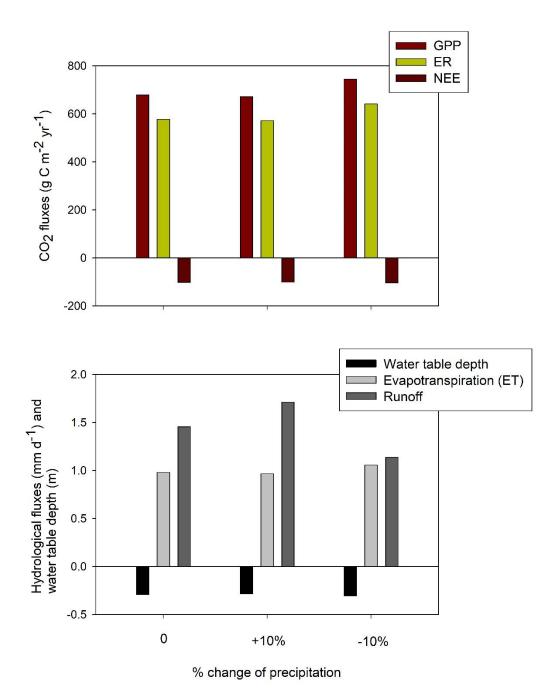


Fig S4. Simulated mean annual CO₂ fluxes and hydrological fluxes (evapotranspiration and
runoff) and water table depth under future year around precipitation increase or decrease by
10%; scenario 0 is the reference run. Equilibrium model runs use BDB 2013-2016 setup and
Rivière-du-Loup 1994-2021 climate data.

39 References

- 40 Alvenäs, G., Jansson, P.E., 1997. Model for evaporation, moisture and temperature of bare soil:
- 41 calibration and sensitivity analysis. Agricultural and Forest Meteorology 88, 47-56.
- 42 Campbell, D.R., Lavoie, C., Rochefort, L., 2002. Wind erosion and surface stability in abandoned milled
- 43 peatlands. Canadian Journal of Soil Science 82, 85-95.
- 44 Frolking, S., Roulet, N.T., Moore, T.R., Lafleur, P.M., Bubier, J.L., Crill, P.M., 2002. Modeling seasonal to
- 45 annual carbon balance of Mer Bleue Bog, Ontario, Canada. Global Biogeochemical Cycles 16, 4-1-4-21.
- 46 Frolking, S., Roulet, N.T., Tuittila, E., Bubier, J.L., Quillet, A., Talbot, J., Richard, P.J.H., 2010. A new model
- 47 of Holocene peatland net primary production, decomposition, water balance, and peat accumulation.
- 48 Earth System Dynamics Discussions 1, 115-167.
- 49 Gauthier, T.-L.J., Elliott, J.B., McCarter, C.P.R., Price, J.S., 2022. Field-scale compression of Sphagnum
- 50 moss to improve water retention in a restored bog. Journal of Hydrology 612.
- 51 Gustafsson, D., Stähli, M., Jansson, P.-E., 2001. The surface energy balance of a snow cover: comparing
- 52 measurements to two different simulation models. Theoretical and Applied Climatology 70, 81-96.
- 53 He, H., Moore, T., Humphreys, E.R., Lafleur, P.M., Roulet, N.T., 2023. Water level variation at a beaver
- pond significantly impacts net CO₂ uptake of a continental bog. Hydrology and Earth System Sciences 27,
 213-227.
- 56 Humphreys, E.R., Lafleur, P.M., Flanagan, L.B., Hedstrom, N., Syed, K.H., Glenn, A.J., Granger, R., 2006.
- 57 Summer carbon dioxide and water vapor fluxes across a range of northern peatlands. Journal of
- 58 Geophysical Research: Biogeosciences 111.
- Jansson, P.-E., Karlberg, L., 2011. User manual of Coupled heat and mass transfer model for soil-plant-
- atmosphere systems. Royal institute of technology, Department of land and water resources,Stockholm.
- 62 Kellner, E., 2001. Surface energy fluxes and control of evapotranspiration from a Swedish sphagnum
- 63 mire. Agricultural and Forest Meteorology 110, 101-123.
- 64 Kettridge, N., Baird, A., 2008. Modelling soil temperatures in northern peatlands. European Journal of
- 65 Soil Science 59, 327-338.
- 66 Kross, A., Seaquist, J.W., Roulet, N.T., 2016. Light use efficiency of peatlands: Variability and suitability
- 67 for modeling ecosystem production. Remote Sensing of Environment 183, 239-249.
- Lafleur, P.M., Moore, T.R., Roulet, N.T., Frolking, S., 2005. Ecosystem Respiration in a Cool Temperate
- 69 Bog Depends on Peat Temperature But Not Water Table. Ecosystems 8, 619-629.
- Liu, H., Lennartz, B., 2019. Hydraulic properties of peat soils along a bulk density gradient-A meta study.
- 71 Hydrological processes 33, 101-114.
- 72 McCarter, C.P.R., Price, J.S., 2013. The hydrology of the Bois-des-Bel bog peatland restoration: 10 years
- 73 post-restoration. Ecological Engineering 55, 73-81.
- 74 McCarter, C.P.R., Price, J.S., 2015. The hydrology of the Bois-des-Bel peatland restoration: hydrophysical
- 75 properties limiting connectivity between regeneratedSphagnumand remnant vacuum harvested peat
- 76 deposit. Ecohydrology 8, 173-187.
- 77 Menberu, M.W., Marttila, H., Ronkanen, A.K., Haghighi, A.T., Kløve, B., 2021. Hydraulic and Physical
- Properties of Managed and Intact Peatlands: Application of the Van Genuchten-Mualem Models to Peat
 Soils. Water Resources Research 57.
- 80 Moore, T., Bubier, J., Frolking, S., Lafleur, P.M., Roulet, N.T., 2002. Plant biomass and production and
- 81 CO2 exchange in an ombrotrophic bog. Journal of Ecology 90, 25-36.
- 82 Moore, T.R., Lafleur, P.M., Poon, D.M.I., Heumann, B.W., Seaquist, J.W., Roulet, N.T., 2006. Spring
- 83 photosynthesis in a cool temperate bog. Global Change Biology 12, 2323-2335.

- 84 Mustamo, P., Hyvärinen, M., Ronkanen, A.K., Kløve, B., Moffat, A.J., 2016. Physical properties of peat
- soils under different land use options. Soil Use and Management 32, 400-410.
- Nugent, K.A., Strachan, I.B., Strack, M., Roulet, N.T., Rochefort, L., 2018. Multi-year net ecosystem
- 87 carbon balance of a restored peatland reveals a return to carbon sink. Glob Chang Biol 24, 5751-5768.
- 88 Or, D., Smets, B.F., Wraith, J.M., Dechesne, A., Friedman, S.P., 2007. Physical constraints affecting
- bacterial habitats and activity in unsaturated porous media a review. Advances in Water Resources 30,
 1505-1527.
- 91 Scanlon, D., Moore, T., 2000. Carbon dioxide production from peatland soil profiles: the influence of
- 92 temperature, oxic/anoxic conditions and substrate. Soil Science 165, 153-160.
- 93 Schwärzel, K., Renger, M., Sauerbrey, R., Wessolek, G., 2002. Soil physical characteristics of peat soils.
- Journal of Plant Nutrition and Soil Science 165, 479-486.
- 95 Silvola, J., Alm, J., Ahlholm, U., Hykänen, H., Martikainen, P.J., 1996. CO₂ fluxes from peat in boreal mires
- 96 under varying temperature and moisture conditions. Journal of Ecology 84, 219-228.