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Fig. S1: Within-cluster variance for different numbers of clusters (Sect. 2.1).
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15 Fig. S2: Attributes of the study catchments. Boxplots of (a) area, (b) slope, (c) snow fraction, (d) urban, (e) cropland, (f) pastures,
(9) forests, (h) sand, (i) silt, (j) clay, (k) runoff ratio, and (I) baseflow index for all catchments and by clusters. Details on the
attributes are in Table 1.
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20 Fig. S3: Long-term variations in 30dQmin, 334, as a metric for the magnitude of summer low flows, over 1970-2019. (a) Average
anomalies across the study catchments. (b) Map of catchment-scale trends (black edges if significant). (c) Boxplots of trends for all
catchments and by cluster.
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25 Fig. S4: Long-term variations in 7dQmin, m-0, as a metric for the magnitude of summer low flows, over 1970-2019. (a) Average
anomalies across the study catchments. (b) Map of catchment-scale trends (black edges if significant). (c) Boxplots of trends for all
catchments and by cluster.
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30 Fig. S5: Long-term variations annual catchment evapotranspiration (E) over 1970-1999. (a) Map of catchment-scale trends (black
edges if significant). (b) Boxplots of trends for all catchments and by cluster.
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Fig. S6: Long-term variations in summer low flows (7dQmin, 33a, panels a-d) and their potential predictors (annual
35 evapotranspiration, E, e-h, precipitation over summer, Pija, i-l, spring, Pmam, m-p, and winter Posr, g-t) over 1970-2019.
Average anomalies across the catchments in each cluster.
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Fig. S7: Attribution of long-term variations in summer low flows to their predictors (strength of spatial coherence): Pearson’s

40 correlation coefficients (r) between catchment-scale trends in summer low flows (7dQmin, 334) and in potential predictors (annual
evapotranspiration, E; summer precipitation, Paja; spring precipitation Pmam; and winter precipitation, Poyr) over 1970-1999, for
the catchments in the different clusters. Pre-al. refers to Pre-Alpine, South. to South-Central, East. to Eastern, and North. to
Northern cluster.



45  Fig. S8: Boxplots of mean anomalies over the multi-year drought between 1989 and 1993 in detrended annual evapotranspiration
(Eq) and precipitation (Pg), for catchments with change and no change in the annual relationship between precipitation and
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Table S1: Model results from the multiple linear regressions on cluster-average data: coefficients of determination of the model
(R?) and standardized coefficients (Eq. 4, * if significant) for each cluster. a1 refers to annual evapotranspiration, a2 to summer

Eq

precipitation (P), a3 to spring P, and a4 to winter P.

Pa

B2 change

B3 no change

Cluster R? a1 a2 as as

Pre-Alpine 0.7 -0.16 0.89* 0.42 0.44
South-Central 0.87 -0.36 0.63* 0.76* 0.34
Eastern 0.95 -0.74* 0.64* 0.65* 0.09
Northern 0.94 -0.64* 0.67* 0.75* 0.25




