
Dear Referee, 

we thank you for your time in reviewing our manuscript and your constructive feedback. We see 

feasible implementing all your suggestions in a revised version of the manuscript. In particular, we 

have now performed the multiple linear regression analysis also at the catchment scale, which we 

plan to introduce in a revised version of the manuscript. We also intend discussing more the reasons 

for our methodological choices and potential uncertainties in the study.   

Please find below our point-by-point reply to your comments (italic, numbered) and the changes we 

propose to do in the manuscript to address them (underlined).  

Best regards, 

Giulia Bruno and co-authors 

 

This paper analysed the summer low flows by using the datasets from 363 small catchments. The 
relationships among evapotranspiration (E), precipitation (P) and streamflow (Q), as well as the 
storage (S) were quantified. Results showed that summer low flows decreased significantly, and 
increased E played the main driver in the eastern catchments. In addition, the P-Q relationship changed 
in 26% of catchments between 1989 and 1993. Generally, the structure of the paper is clear and well-
organized, however, there are some concerns. 

We thank you for appreciating the clarity of our manuscript and for raising interesting points to 
improve our work. 

Specific comments: 

1. The coefficients of a and b in equation (2) should be vary with wind direction and elevation of 
gauges. Does authors calculate them for each gauges? If so, please provide the analysis which 
are the main uncertainty for precipitation datasets. 

The method we used for the correction of precipitation (P) for gauge undercatch was developed for 
point data (Richter, 1995), with coefficients depending on gauge characteristics (wind exposure) and 
meteorological conditions (P type, Eq. 2 in the manuscript). Here, we used a gridded P dataset (Sect. 
2.2) and we applied the correction procedure at pixel-scale, by assuming all pixels as moderately 
sheltered with respect to wind exposure. This approach was used also in previous works (Duethmann 
& Blöschl, 2018; Bruno & Duethmann, 2024). Duethmann & Blöschl (2018) showed that alternative 
assumptions regarding the corrective coefficients had small influences on long-term variations in P 
and water-balance derived catchment evapotranspiration (E), we are mostly interested in for our 
analyses. Thus, we argue that this assumption unlikely affected our main conclusions. We agree, 
however, that P data are unavoidably affected by some degree of uncertainty, either per se and 
following this correction, which we do not discuss in the manuscript at the moment. We propose to 
modify L134–137 to make clearer our assumption regarding the correction procedure and to add some 
discussion concerning the uncertainty in P data in a new section (4.4 Sources of uncertainty).  

L134–137: We corrected the dataset for gauge undercatch following the method proposed for 

Germany by Richter (1995): 

 𝑃𝑐𝑜𝑟𝑟 = 𝑃𝑢𝑛𝑐𝑜𝑟𝑟 +  𝑎𝑃𝑢𝑛𝑐𝑜𝑟𝑟
𝑏 (2) 



with Pcorr as corrected P, Puncorr uncorrected P, a and b coefficients which vary with wind exposure of 
the gauges, precipitation type (rain or snow), and season. Here, we assumed for all grid cells the 
coefficients for moderately sheltered locations in Richter (1995), given the low sensitivity of long-term 
variations in P to the selected coefficients (Duethmann & Blöschl, 2018). 

4.4 Sources of uncertainty: Uncertainties in P can arise from potential inhomogeneities in gauge 
data over time and gauge undercatch. Here, we used a gridded P dataset from the interpolation of a 
fixed number of gauges over time to minimize inhomogeneities and we corrected it for gauge 
undercatch (Sect. 2.2). This correction procedure may lead to further uncertainties, but Duethmann 
and Blöschl (2018) demonstrated that assumptions regarding corrective coefficients have little 
influence on trends in P and E, we were mostly interested in here.  

2. It is quite difficult to understand the equation (4), where the dynamics of storage was 
approximated by P_mam and P_djf. Please provide more explanations. In addition, since 
baseflow is 0.66 in this area, which means the soil moisture and groundwater both plays 
important roles in runoff variation. But it seems they are not taken into account in the analysis. 

We agree that soil and groundwater storage are relevant for Q generation in the study catchments. 
As predictors of trends in summer low flows, we indeed considered variations in E, summer P, and 
storage (S). We accounted for the influence of S variations using winter precipitation (PDIF) and spring 
precipitation (PMAM) as wetness conditions in the seasons preceding the dry period in the study region 
and therefore, proxies for S recharge. We used these proxies since long-term data on soil moisture 
and groundwater are unavailable for the large sample of small catchments that we analyzed, similarly 
to what done by previous works (Duethmann et al., 2015; Saft et al., 2016; Laaha et al., 2017). We 
propose to rephrase L161–162 as follows and to discuss this point in the new section 4.4. 

L161–162: Since long-term data on soil moisture and groundwater storage are not available for the 
study catchments, we used PMAM and PDJF as proxies of storage recharge in the seasons preceding the 
dry one (Duethmann et al., 2015; Saft et al., 2016; Laaha et al., 2017). 

4.4 Sources of uncertainty: Finally, as potential predictors of changes in summer low flows we 
approximated storage processes with P in the season preceding the dry one, due to unavailability of 
long-term S data for the study catchments. We chose this approach instead of using alternative proxies 
for S (e.g., estimates of Sdyn or baseflow from Q data) to avoid dependences between predictors and 
target variable (summer low flows). The satisfactory performances of the multiple linear regressions 
and the plausible signs of their coefficients suggest the suitability of the selected predictors to 
represent the long-term dynamic of summer low flows (Table S1). 

3. For multiple linear regression in predicting summer low flows, the authors showed the R2 in four 
clusters which exhibited good performance in Table S1. However, there is spatial variation 
among different gauges so the coefficients vary at each gauge, does the regression in the gauge 
scale follow the same trend with cluster? 

In a first step, we performed the multiple linear regression at a cluster-scale to minimize uncertainties 
in E for specific catchments (see also reply to comment #4 by Referee #2). However, we see that such 
analysis may not fully reveal potential spatial differences in the predictors of the temporal dynamics 
of summer low flows. Thus, we have now repeated the analysis at the catchment-scale. We achieved 
overall satisfactory results in terms of model performances (median coefficient of determination 
across the catchments equal to 0.78, Fig. 1a and b here) and in line with those at a cluster-scale. By 
looking at the predictor with highest contribution to the simulation (primary predictor) for each 
catchment, we found that summer precipitation (PJJA) was the most recurrent one across all clusters 
(Fig. 1c). PJJA was frequently non-significant though, especially where model performances were 



relatively low (Fig. 1a) and predictors had a similar relative contribution (not shown). By focusing on 
significant primary predictors only, the most recurrent ones were PJJA in the Pre-Alpine cluster, PMAM in 
the South-Central one, and E in the Eastern and Northern clusters (Fig. 1d). These are coherent with 
the conclusions we draw at the cluster-scale (i.e., PJJA dominant predictor in the Pre-Alpine cluster, 
PMAM significant predictor in the South-Central one, and E in the Eastern and Northern clusters, Fig. 6 
in the manuscript). To reinforce our trend attribution, we intend to add this analysis in a revised 
version of the manuscript, by introducing Fig. 1 as a new Fig. S6 in the Supplement, and adapting the 
description of methods and results as follows.   

 

Fig. 1: Model results from the multiple linear regressions on catchment-scale data. (a) Map of coefficients of determination 
of the models (R2). (b) Histogram of R2. (c) Map of primary predictors (black edges if significant). (d) Relative frequency of 
primary predictors by cluster. Light grey in (a, c, and d) refers to catchments with high multicollinearity of the predictors, and 
thus excluded from the analysis (Sect. 2.5). In (d), Pre-al. refers to Pre-Alpine, South. to South-Central, East. to Eastern, and 
North. to Northern cluster.  

Methods: Firstly, we modelled the temporal dynamics of summer low flows (7dQmin, JJA in Eq.(4) both 
at a catchment- and cluster-scale from the dynamics of the predictors through multiple linear 
regression: 

   7𝑑𝑄𝑚𝑖𝑛,   𝐽𝐽𝐴 =  𝛼1𝐸 +  𝛼2𝑃𝐽𝐽𝐴 + 𝛼3𝑃𝑀𝐴𝑀   + 𝛼4𝑃𝐷𝐽𝐹  + ε (4) 

with αi (i = 1…4) the regression coefficient for each predictor and ε the model residuals. We adopted 
5-year averages to focus on long-term dynamics and reduce uncertainties in water balance-derived E. 
Moreover, for the cluster-scale analysis we used average time series across the catchments in each 
cluster to minimize uncertainties in E for specific catchments, while analysing the main signal at a 
regional scale. 



Results: Multiple linear regression for predicting long-term dynamics in summer low flows achieved 
satisfactory performances both at cluster- and catchment-scale (for 7dQmin, JJA, R2 > 0.7 for each cluster 
and median R2 of 0.78 across all catchments, Table S1, and Fig. S6a and b). 

Catchment-scale results showed similar patterns, despite being unavoidably more affected by noise 
than those at the cluster-scale (Fig. S6c and d). By focusing on significant primary predictors only (i.e., 
predictors with highest contribution to the simulations), PJJA was the most recurrent one in the Pre-
Alpine cluster, PMAM in the South-Central cluster, and E in the Eastern and Northern clusters (Fig. S6d).   

4. Could authors discuss why the r= -0.49 in P_djf for the easter cluster in lines 258? 

In the Eastern cluster, we indeed detected a negative correlation between trends in summer low flows 
and trends in PDJF, which may sound counterintuitive under our assumption of PDJF as a proxy for 
storage recharge during the wet season. While we acknowledge that spurious effects in the correlation 
analysis may play a role here, we see a mechanistic explanation, related to E-storage feedbacks 
(Boeing et al., 2024) and the observed changes in this cluster. In particular, catchments in the Eastern 
cluster showed both positive and negative trends in PDJF, but generally negative trends in PMAM and 
positive trends in E. This means that increases in PDJF, and thus in storage conditions at the beginning 
of the growing season, might have buffered the decreases in PMAM in sustaining the increases in E in 
some catchments. Increases in E, in turn, contributed to decreases in summer low flows in this cluster 
(Fig. 6 and 7 in the manuscript). Thus, increases in PDJF may have indirectly contributed to decreases 
in summer low flows in the Eastern cluster. We propose to expand the mechanistic explanation on 
this point as follows.  

These three mechanisms (i.e., widespread increases in E, local decreases in PJJA, and local decreases in 
PMAM, in the previous sentence not reported here) also overcompensated local increases in storage 
recharge during winter (approximated by PDJF), possibly through E-storage feedbacks (Boeing et al., 
2024) for instance in the Eastern cluster (Fig. 7).        

5. For 363 catchments, there is only 15 catchment with negative Cp-q rel values which distributed 
sparsely in Fig.8(a). I am curious about the possibility caused by data process uncertainty. 

Having no changes in the P-Q relationships even during prolonged dry periods was common 
expectation for humid catchments until recently (Massari et al., 2022) and a sparse occurrence of 
these changes is positive for water management (see e.g. Fowler et al., 2022  for practical implications 
of these changes). We see that our study revealed less widespread changes in the P-Q relationship 
during the multi-year drought in Germany in the early 1990s than previous works for other case 
studies. We discuss that these differences may relate to the characteristics of the multi-year droughts 
(i.e., severity and duration of the P deficits) and to the hydro-climatic properties of the catchments.  
We agree that the unavoidable uncertainty in P and Q data (see reply to comment #1) may also play 
a role, despite we here aimed at minimizing uncertainty in P data by using a dataset specifically 
tailored to long-term consistency (Sect. 2.2). To add this point to the Discussion, we propose to 
rephrase L360–365 as follows. 

According to this analysis, the multi-year drought in Germany in the early 1990s had less severe impact 
on Q generation than the Millennium drought in Australia (changes in 56 % of the catchments, with 
median decrease of approximately -50 %, Saft et al. 2015), the 2012–2016 event in California (mean 
decreases of -28 % across three catchments, Avanzi et al. 2020), and the 2010–2020 drought in Chile 
(changes in 61 % of the catchments and mean decrease of -19 %, Alvarez-Garreton et al., 2021). These 
differences may be related to the characteristics of the P anomalies (severity and duration), potential 



uncertainties in the underlying data (Sect. 4.4), and the hydro-climatic characteristics of the 
catchments.      

6. For Fig.5 and Table S1, it showed that P_jja played a major contribution to Q changes in Pre-
Alphine and South-Central cluster, while E played much more contribution in Eastern and 
Northern area. Does it relate to elevation changes? 

Catchments in the Pre-Alpine and South-Central clusters have indeed relatively higher mean 

elevations than others (Fig. 3 in the manuscript). Furthermore, catchments in the Pre-Alpine cluster 

generally experienced decreases in PJJA and mild increases in E. Catchments in the South-Central 

cluster showed similar behaviors, but overall small trends. On the contrary, catchments in the Eastern 

and Northern clusters largely had increases in PJJA and E. Therefore, we argue that differences in the 

main drivers of decreases in summer low flows between the Pre-Alpine and North-Eastern areas can 

be ascribed to differences in the variations in the drivers themselves, rather than to differences in 

catchment characteristics like elevation. To make the differences in hydro-climatic changes among the 

clusters easier to grasp, we propose to add the following summary table in Section 4.2. 

Table 1: Summary of long-term variations in summer low flows and in their potential predictors (annual evapotranspiration, 

E, and precipitation over summer, PJJA, spring, PMAM, and winter, PDJF) over 1970–2019, and drivers of variations in summer 

low flows (only significant ones according to both attribution analyses, Sect. 2.5) for each cluster. Red arrows refer to strong 

decreases, light red arrows to mild decreases, light blue arrows to mild increases, and blue arrows to strong increases at the 

median level, with ± 2 % decade-1 as thresholds for strong increases/decreases.  

 Cluster 

 Pre-Alpine South-Central Eastern Northern 

Variations in summer low flows     

Variations in E     

Variations in PJJA     

Variations in PMAM     

Variations in PDJF     

Drivers of variations in summer low flows PJJA - E E, PJJA 
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