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Abstract. In the vast Pacific Ocean, remote islands and atolls induce mesoscale and sub-mesoscale processes that significantly

impact the surrounding oligotrophic ocean, collectively referred to as the Island Mass Effect (IME). These processes include

nutrient upwelling and phytoplankton biomass enhancement around islands, creating spatial and temporal heterogeneity in

biogeochemical properties. Previous algorithms developed for detecting IME using satellite data are based on monthly or longer

averages of satellite derived chlorophyll concentrations. As such, they tend to underestimate the true extent of this phenomenon5

because they do not take into account sub-mesoscale and short term temporal variations and because of the sensitivity of the

detection algorithm to single pixel variability. Here we present a new approach that enhances satellite data recovery by merging

products from multiple sensors and applying the POLYMER atmospheric correction. By integrating modelled surface currents

with higher temporal resolution satellite observations, we dynamically track chlorophyll enhancements associated with IME

and the advection of detached patches and filaments over distances exceeding 1000 km from their source. Our findings, applied10

to four island groups in the South Pacific, suggest that the ecological influence of IME on the oligotrophic ocean is much larger

than previously recognized. This work provides a foundation for improved mechanistic understanding of IME and suggests

broader implications for ocean ecology in subtropical regions. The approach developed here could be also be applied in studies

on biological responses to other mesoscale and sub-mesoscale processes in other parts of the world’s oceans.

1 Introduction15

The Pacific Ocean is the largest ocean on our planet, covering approximately one-third of Earth’s surface. Embedded in this vast

open ocean are remote islands and atolls that are a source of perturbations to the open ocean ecosystem. As winds and currents

interact with island topography, they induce mesoscale processes (i.e. local upwelling, eddies) at their wake downstream of

islands. These in turn alter vertical and horizontal fields of temperature, light, and nutrients (Eden and Timmermann, 2004;

Dong et al., 2007; Hasegawa et al., 2009; De Falco et al., 2022, and references therein). In most cases, increased chlorophyll20

concentration ([Chla], see Table 1 for definitions of all acronyms and variables used in this manuscript) is observed in the

vicinity of islands, likely triggered by nutrient inputs from land and/or upwelling of nutrient-rich deep water around islands

(Shiozaki et al., 2014; Gove et al., 2016; Caputi et al., 2019). This phenomenon, known as Island Mass Effect (IME), alters the

growth and mortality rates of plankton species and introduces spatio-temporal heterogeneity in biogeochemical properties in

the surrounding oligotrophic ocean. Signatures and effects of these IMEs can be detected hundreds of kilometers away from25

islands around which they were initiated (Messié et al., 2020, 2022). The first study on IME evaluated the enhancement of

1

https://doi.org/10.5194/egusphere-2024-2670
Preprint. Discussion started: 15 October 2024
c© Author(s) 2024. CC BY 4.0 License.



carbon fixation as a measure of productivity near Oahu island (Hawaii) relative to the background ocean (BO), which was

defined as the furthest station along a transect (in that case, 30 km away from the island’s shore). This approach assumed

that the IME was confined to an area located between the island’s shore and the location of "BO station" (Doty and Oguri,

1956). The first basin-scale study of IME used in situ chlorophyll fluorescence measurements (Dandonneau and Charpy, 1985)30

and showed ubiquitous enhancements of chlorophyll fluorescence in the vicinity of large islands in the western Pacific (e.g.

Vanuatu, Fiji, Tonga and Samoa islands).

Table 1. Table of notation

SPSG South Pacific Subtropical Gyre

IME Island Mass Effect

BO Background Ocean

IMEM Island Mass Effect zone delineated with the Messié et al. (2022) algorithm

IMED Dynamic Island Mass Effect zone delineated with the algorithm developed in this study

IMET Total Island Mass Effect zone delineated with the algorithm developed in this study. IMEM + IMED =

IMET

BOM Background ocean zone relative to IMEM zone, defined as: BOM area == IMEM area, located outside of

IMEM zone, and closest to the 30 m isobath

BOT Background ocean zone relative to IMET zone, defined as: BOT area == IMET area, located outside of

IMET zone, and closest to the 30 m isobath

[Chla] Total chlorophyll a concentration (mg.m−3)

cp660 Particulate beam attenuation coefficient at 660 nm (m−1)

chl_min Minimum [Chla] detected in the first pixel band adjacent to the 30 m isobath (shallow pixel polygon) of

each island

chl_max Maximum [Chla] detected in the first pixel band adjacent to the 30 m isobath (shallow pixel polygon) of

each island

chl5th 5th percentile [Chla] of the IMET predicted zone

chl95th 95th percentile [Chla] of the IMET predicted zone

∆[Chla]IMET−BOT IMET [Chla] enhancement computed as [Chla]IMET − [Chla]BOT (mg.m−3)

∆[Chla]IMEM−BOM IMEM [Chla] enhancement computed as [Chla]IMEM − [Chla]BOM (mg.m−3)∑
[Chla]IMET IMET surface-integrated [Chla] (mg.m−1)∑
[Chla]IMEM IMEM surface-integrated [Chla] (mg.m−1)

∆
∑

[Chla]IMET−BOT IMET surface-integrated [Chla] enhancement computed as
∑

[Chla]IMET −
∑

[Chla]BOT (mg.m−1)

∆
∑

[Chla]IMEM−BOM IMEM surface-integrated [Chla] enhancement computed as
∑

[Chla]IMEM −∑
[Chla]BOM (mg.m−1)

SEMf
∆[Chla]IMET−BOT

Standard error of mean associated with
∑

[Chla]IMET−BOT (mg.m−3; see appendix B)

SEMf
∆

∑
[Chla]IMET−BOT

Standard error of mean associated with ∆
∑

[Chla]IMET−BOT (mg.m−1; see appendix B)
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The limited accessibility to vast areas in the South Pacific Ocean make ocean color remote sensing approaches well-suited

for basin-scale studies of IME. Using long term averages of [Chla] from ocean color remote sensing data (July 2002 to June

2012), Gove et al. (2016) showed that IME is a nearly-ubiquitous phenomenon across the Pacific Ocean. They estimated the35

magnitude of IMEs by looking at changes in [Chla] within a ∼30 km wide band around each island’s 30 m isobath, relative to

BO reference pixels located just outside this band (Gove et al., 2013, 2016). In practice, this detection method uses the same

quantitative approach as Doty and Oguri (1956) and accurately assesses the magnitude of the [Chla] enhancement associated

with IME as long as the BO reference pixels are outside the region affected by IME. This assumption is reasonable for small

islands (most islands in Gove et al. (2016) were smaller than a 30 km equivalent spherical diameter) and when using multi-year40

averages of [Chla] that tend to highlight only locations with permanent [Chla] enhancement (see below). A more recent basin-

scale study of IME aimed to capture more complex spatial heterogeneity around islands by defining a specific [Chla] contour

to delineate the extent of IME, allowing the detection of IME to extend further than 30 km away from the 30 m isobath (Messié

et al., 2022).

Generally speaking, approaches for the detection of IME from remotely sensed [Chla] require a full or nearly full pixel45

data recovery over the entire study area for an accurate delineation of the extent of IME. Messié et al. (2022) used yearly and

monthly averages of 4 km spatial resolution [Chla] maps for their basin-scale estimation of IME. While this temporal and

spatial averaging enables the production of gap-less [Chla] maps, it reduces the ability to detect fine-scale heterogeneity in

space and time (Lee et al., 2018), only highlighting [Chla] enhancement observable at the same location over the time frame

of the averaging period and therefore generally confined to regions directly adjacent to islands. Indeed, determining the spatial50

extent of the biological response of IME and its effect on the ecology and bio-geochemistry of the adjacent oligotrophic ocean is

challenging due to its spatial heterogeneity and the transient nature of phytoplankton responses to perturbations (Messié et al.,

2020; Cassianides et al., 2020). Surface ocean properties, as observed by satellite sensors, are advected by wind and currents

across a kilometer-wide pixel on a timescale of a few hours. Therefore, observations of the ocean using yearly averages only

capture spatial patterns due to dominant winds and currents over this time frame, ignoring spatial and temporal heterogeneity55

caused by short-term wind and current variability. Thus, a more accurate quantification of IME extent and dynamics requires

temporal averaging of satellite data over shorter time scales (e.g. to resolve mesoscale variability up to two weeks) and tracking

the evolution of IMEs over space and time using surface currents data (Cassianides et al., 2020). Ideally, daily observations of

the entire global ocean would provide the necessary temporal resolution to track IMEs. In reality, satellite measurements of

the ocean surface in visible and near-infrared wavelengths are often obstructed by clouds or affected by sun-glint, limiting the60

extent of data recovery at the necessary temporal scales.

Here, we present a method to increase satellite data recovery to improve spatial and temporal resolution of satellite observa-

tions by merging products from up to five different satellite sensors and using an atmospheric correction that is less sensitive to

glint and adjacency effect. These merged products reveal frequent occurrences of higher [Chla] patches that are detached from

islands and advected offshore (referred to as "delayed IME" in Messié et al., 2020). The higher temporal resolution achieved65

allows a more accurate estimation of [Chla] accumulation as a proxy for phytoplankton biomass accumulation (termed as

"blooms") associated with IMEs. Building upon the work of Messié et al. (2022), we integrate modelled surface currents to
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develop a dynamic algorithm for the detection of IME. We applied this algorithm to four island groups in the South Pacific

Ocean (i.e. Rapa Nui, Society Islands, Samoa, and Fiji) over a six-month period and show that accounting for detached patches

significantly increases estimates of total [Chla] stocks associated with IME in the area of study. This implies that IME has a70

much larger impact on the oligotrophic ocean than previously estimated.

2 Method

2.1 Level-3 multi-satellite composites

The use of a single satellite sensor often results in maps with significant gaps in data due to intermittent cloud cover or

glint (which depends on satellite-specific viewing angle). To address this, we have adapted NASA Ocean Color’s processing75

strategy to produce level 3 custom-made composite products from level-1A (L1A) top-of-the-atmosphere radiance. We merged

data collected by three different sensor types (MODIS, VIIRS, and OLCI) onboard up to five polar-orbiting satellites (Aqua,

Terra, SNPP, JPSS1, Sentinel-3a, and 3b). By taking advantage of their different overpass times, swaths, and viewing geometry,

we decreased the impact of clouds and glint on data recovery. Additionally, we applied the POLYMER atmospheric correction

(Steinmetz et al., 2011) to further improve data recovery in areas impacted by glint and adjacency effect (e.g. close to shore80

and clouds, see Steinmetz et al., 2011). The conceptual diagram of the processing pipeline, from level-1 to level-3, is shown

in Fig. A1.

2.1.1 Level-3 satellite products computation

We downloaded all MODIS and VIIRS level-1 (L1A) images in the vicinity of islands of interest from the Ocean Color reposi-

tory, and OLCI level-1 images from the Copernicus repository. We processed these L1A images into atmospherically corrected85

level-2 remote sensing reflectance (Rrs) data using the POLYMER algorithm. We removed bad quality data pixels by applying

the flags and recommendations of POLYMER (Steinmetz et al., 2011). Subsequently, we projected each satellite image onto

the same equally spaced one kilometer spatial resolution plate-carré reference grid using nearest-neighbor interpolation. We

estimated [Chla] using the CI-OCx blended algorithm based on the most recent update of the color index algorithm (Hu et al.,

2019) and the OCx algorithm (O’Reilly and Werdell, 2019). We computed surface-integrated [Chla] as a metric for two dimen-90

sional phytoplankton biomass in metric tons of Chla per depth meter (mt.m−1) by summing the [Chla] of each pixel within a

predefined zone (i.e. here, the zone influenced by IME) multiplied by the area of that pixel:

∑
[Chla]IME =

NpixelIME∑

n=1

[Chla]n× areapixeln (1)

2.1.2 In situ data

We calibrated remote sensing products to minimize inter-sensor variability and biases using in situ data collected during the95

Tara Pacific Expedition (Gorsky et al., 2019; Lombard et al., 2023). We measured hyper-spectral absorption (a) and attenuation
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(c) quasi-continuously near islands with a SeaBird ACs spectrophotometer mounted in an underway flow-through system. We

computed particulate absorption and attenuation coefficients (i.e., ap and cp) by referencing these sensor measurements to

hourly samples taken through a 0.2µm filter (Dall’Olmo et al., 2009; Slade et al., 2010; Boss et al., 2019). Particulate beam

attenuation at 660 nm (cp660) was used as a proxy for particulate organic carbon (Gardner et al., 2006; Cetinić et al., 2012).100

We estimated absorption specific to [Chla]-containing particles using the line-height of the ap peak at 676 nm (ap676LH ; Boss

et al., 2013). We collected surface samples daily around 10:30 am local time for pigment analysis via high-pressure liquid

chromatography (HPLC; see Gorsky et al., 2019; Lombard et al., 2023). We then estimated [Chla] from ap by applying the

well-constrained linear relationship between the logarithm of ap676LH amplitude and the logarithm of total [Chla] estimated

from HPLC (Fig. B2.a).105

2.1.3 In situ and satellite match-ups

We performed match-ups between the calibrated [Chla] estimated from the underway system and the [Chla] estimated from

satellites to choose the best algorithm (i.e. least noisy or biased) to compute [Chla] from satellite Rrs. We downloaded L1A

top-of-the-atmosphere radiance from MODIS-Aqua, MODIS-Terra, VIIRS-SNPP, VIIRS-JPSS1, OLCI-S3a, and OLCI-S3b

along the entire Tara Pacific transect (May 2016 to October 2018 see Gorsky et al., 2019) with the python download utility110

"getOC" (https://github.com/OceanOptics/getOC) and processed them into atmospherically corrected level-2 Rrs. We then

derived products following the same scheme as the level-3 products aforementioned but without re-projecting, nudging, or

merging the products to keep each satellite’s native resolution (Fig. A1). For comparison, we also generated the standard

NASA Rrs using the atmospheric correction of SeaDAS (i.e. "l2gen") using the Ocean Color processor (OCSSW) V2022.3.

We then estimated [Chla] from these Rrs using the same blended CI-OCx algorithm (i.e. chlor_a; Hu et al., 2019) and the115

simple OCx algorithm (i.e. chl_ocx; O’Reilly and Werdell, 2019). We matched these three different [Chla] products (i.e.

chlor_a_polymer, chl_ocx_seadas, chlor_a_seadas) with the calibrated [Chla] estimated from the underway system follow-

ing Bailey and Werdell (2006). We extracted and averaged underway [Chla] measurements within a ±3 hour period of each

satellite overpass, and satellite data from the 25 closest pixels to underway data locations, following the application of rec-

ommended Level-2 masks. We computed median coefficients of variation of normalized water-leaving radiance (nLw) for120

bands between 412 and 555 nm and for the aerosol optical thickness at 865 nm for each match-up and tested several homo-

geneity thresholds and minimum number of unmasked pixels to maximize the number of valid match-ups without introducing

noise to the in situ-satellite correlations (Bailey and Werdell, 2006). Only match-ups with a minimum of 7 unmasked pixels

and coefficients of variation lower than 0.15 were kept (Fig. B2(b), (c), and (d)). We compared the parameters of the ro-

bust linear regressions of valid match-ups to choose for the best [Chla] derivation methods (Table B1). We found 33% more125

valid match-ups with [Chla] computed using POLYMER Rrs (N = 428) than valid match-ups with [Chla] computed using

SeaDAS Rrs (N = 321). [Chla] computed with the blended CI-OCx using POLYMER Rrs showed, on average, the highest

coefficient of determination (R2
chlor_a_polymer = 0.78± 0.05), slopes closest to 1 (slopechlor_a_polymer = 0.99± 0.10), and

intercepts closest to 0 (interceptchlor_a_polymer =−0.06±0.10) when compared to in situ [Chla]. In contrast, the normalized

root mean square error of the correlation between in situ [Chla] and [Chla] computed with the blended CI-OCx using POLY-130
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MER Rrs (nRMSEchlor_a_polymer = 21.81± 6.34%) was higher than with the other two [Chla] computed using SeaDAS

Rrs (nRMSEchlor_a_seadas = 16.55± 1.70% and nRMSEchl_ocx_seadas = 20.94± 3.18%). Considering the smaller bias

(slope closer to 1 and intercept closer to 0) and better data recovery (higher number of valid match-up) associated with the

computation of [Chla] with the blended CI-OCx algorithm applied on POLYMER Rrs, we choose this method for the rest of

the analysis to minimize differences between sensors while maximizing valid pixel recovery.135

2.1.4 Satellite products adjustment and merging

We followed a similar merging strategy to that of GlobColour: each sensor’s satellite product was derived separately before

merging them (Garnesson et al., 2019), rather than merging reflectances before calculating the products (Sathyendranath et al.,

2019). This method offers two important advantages; (1) it does not require simulations of the 510 nm band, which are not

available on VIIRS and MODIS, and (2) it benefits from sensor-specific algorithm coefficients that account for variability140

in Rrs across sensors to produce consistent products (Garnesson et al., 2019). To improve consistency and minimize the

differences across satellite sensors, we individually calibrated the [Chla] data from each sensor with the underway in situ

[Chla] measurements (using parameters from their respective robust linear regressions, see Table B1) to produce "calibrated"

products before merging them. This nudging method reduced the inter-satellite variability and improved the spatial smoothness

of the binned products. Since [Chla] was calibrated to in situ data, the bias associated with the estimation of [Chla] from each145

satellite was centered, and likely reduced, to the bias of in situ data. For each study area, we binned the calibrated data

temporally to reconstruct full satellite images. Time-series of 8-day medians were the smallest temporal binning we could

achieve to recover nearly full satellite images in all the studied regions for six-month long time-series. Before computing the

median of a given 8-day period and a given region, we grouped all re-projected level-2 images and removed outliers (see

appendix C). We produced a six-month long time-series of 8-day medians of [Chla] for each of the four case-studies presented150

here. Each case-study region was centered geographically on an island sampled during the Tara Pacific Expedition, and each

six-month time-series was centered temporally on the day of in situ sampling (Gorsky et al., 2019; Lombard et al., 2023). We

propagated errors associated with [Chla] estimation, nudging, and merging throughout each step to represent the final [Chla]

uncertainty of the merged product (SEMf
[Chla]IME

; appendix B). We used this final uncertainty to determine if the [Chla]

enhancement associated with an IME was significant or not.155

2.1.5 Spatial resolution

Most operational level-3 products are available at spatial resolutions of 4 or 9 km. While this resolution is usually sufficient

to capture important mesoscale spatial features in the open ocean, it does not resolve sub-mesoscale features like fronts, small

eddies, and filaments around islands. Additionally, bottom reflectance in coastal waters prevents data recovery closer than 4

and 9 km from shore at these spatial resolutions. Moreover, it is a common practice in coastal studies to remove at least one160

neighboring pixel around shallow areas to limit the impact of adjacency effects and ensure no contamination from bottom

reflectance. Therefore, the closest data recovered with a 4 km spatial resolution is most often centered at least 6 km away from

all 30 m isobaths. However, most islands in the ocean are smaller than 2 km2. For instance, the median island area in the
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2593 km x 2593 km region analyzed around the Fiji Archipelago is ∼0.06 km2 with ∼ 86% of all islands smaller than 2 km2.

Therefore, having the closest pixel 6 km away from shore, and a pixel size that is at least twice the size of ∼ 86% of islands,165

limits our ability to accurately quantify their IME (see example around Niue island Fig. A2). With the approach presented here,

we can maximize data recovery close to shore while keeping the nominal resolution of 1 km of the operational MODIS and

VIIRS level-2 (L2) products. Ideally, we would produce this type of multi-satellite composite for the entire Pacific Ocean, but

we had to limit our study area to four case-studies around islands of interest due to computational and data storage capacity

limitations. In each case, the maps were large enough (i.e. > 1200 km x 1200 km area) to capture the full extent of the IME170

around the group of islands studied and were limited to a maximum size of 2600 km x 2600 km area.

2.2 Island Mass Effect Detection

2.2.1 Bathymetry, island, and submerged reef databases

We created masks at one kilometer spatial resolution denoting land (land mask) and areas shallower than 30 m depth (shallow

mask) for the studied areas using the General Bathymetric Chart of the Oceans (GEBCO) database. Since a large number of175

islands and reefs are smaller than the spatial resolution of the GEBCO database (i.e. 15 arc-seconds corresponding to 463 m

at the equator), we utilized the 30 m spatial resolution global island database (Sayre et al., 2019, 2020) to refine the land and

shallow masks for the study areas. We then extended the shallow mask by one additional pixel to ensure all shallow pixels are

masked. Subsequently, we merged the global island database and the submerged reef database from Messié et al. (2022) into a

single database. To ensure accuracy, we automatically verified all island centroids to confirm their alignment with a land pixel180

on the land mask and to ensure their associated land polygon was not significantly smaller than the reported island area in

the global island database. Similarly, we automatically checked all submerged reef centroids to confirm their alignment with

a shallow mask pixel and to ensure their associated shallow mask polygons were not significantly smaller than the reported

reef area in the Messié et al. (2022) database. We manually corrected any discrepancies that were identified when comparing

to the bathymetry data and saved the corrections for reference. For simplicity, the term "islands" in this study also refers to185

submerged seamounts or reefs shallower than 30 m depth.

2.2.2 IME contour delineation

The [Chla] contour value delineating the IME was determined in three successive steps to dynamically detect detached IME

patches. The first step used the method from Messié et al. (2022) to detect IMEs on each 8-day composite map of the time-series

(see Fig. 1.a: step 1). This method defines the [Chla] contour value with an iterative process starting from the highest (chl_max)190

to the lowest [Chla] (chl_min) values detected one pixel away from the 30 m isobath of each island and ending when a set of

specified conditions were met. These conditions include: (1) when [Chla] values fall below chl_min, (2) when the IME mask

touches the domain borders or a continent masks, and (3) when regions with [Chla] exceeding 80% of the chl_max are detected

farther than 150 km away from the 30 m isobath. This 150 km threshold was set to allow for the detection of water masses that

were detached from an island and advected offshore (denoted as "detached IMEs") but, at the same time, to prevent potential195

7

https://doi.org/10.5194/egusphere-2024-2670
Preprint. Discussion started: 15 October 2024
c© Author(s) 2024. CC BY 4.0 License.



bias by accounting for non-IME related [Chla] variability far from the island. We observed that this algorithm performed well

when the IME is directly adjacent to the 30m isobath of an island and when the IME is spatially homogeneous, with the highest

[Chla] values typically located near the island and decreasing with distance from shore (similar to the IME detected on monthly

or yearly satellite averages; Messié et al., 2022). Therefore, this method is valuable as the first step for detecting the strongest

IME signal that surrounds an island, referred to in this study as IMEM (Fig. 1.a: step 1). However, this approach underestimates200

the entire extent of an IME when applied on 8-day [Chla] products because it fails to detect elevated [Chla] patches that have

been detached from their originating IME or when pixels with [Chla] > 0.8∗ chl_max were detected more than 150 km from

the island of origin. Detached IMEs, typically comprised of dynamic filaments and eddies that are quickly advected away from

islands, are detectable on 8-day averaged satellite products, but often not captured using monthly or yearly averages such as the

products used by Messié et al. (2022). We therefore extended the method proposed by Messié et al. (2022) by adding another205

set of detection protocols. We utilized modeled daily surface currents (i.e. global ocean ensemble physics reanalysis products

provided by Copernicus Marine Services) to predict the general locations of IME patches that detach from islands (Fig. 1 step

2). For clarity, we refer to the detached IME area obtained with this approach as IMED (Fig. 1 step 3). The sum of both IMEM

and IMED areas (i.e. total IME) is referred to as IMET . The following sequence was applied to detect IMEs in each 8-day

median composite of the time-series (Fig. 1):210

Step 1: Detection of IMEM (Messié et al., 2022, Fig. 1.a).

Step 2: Prediction of the general location of IMED by applying the average current u and v vectors from the previous

8-day period (t = -1) to the location of IMET detected at t = -1 (Fig. 1.d). When step 2 is performed on the first

8-day median of the time-series (t = 0), the surface current at t = 0 is applied to the IMEM detected at t = 0

instead (Fig. 1.b).215

Step 3: Delineation of IMED and IMET using a second round of [Chla] value iteration ranging from the 95th to the

5th percentiles of [Chla] measured within the predicted zone and only keeping the patches that overlap with the

predicted zone location as explained below.
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Figure 1. Island mass effect detection method. a. Step 1: [IMEM ]t0 detection following the method from Messié et al. (2022), b. step 2 at t

= 0 (first image of the time-series): prediction of the detached IME ([IMED]t0 ) location applying t0 surface currents ([u,v]t0 ) to [IMEM ]t0
location, c. step 3 at t = 0: detached IME contour detection ([IMED]t0 ) iterating from the 95th to 5th percentile of [Chla] (chl95th and chl5th

respectively) detected within the [IMEM ]t0 and the t0 predicted zone, d. step 2 at t > 0 (rest of the time-series): prediction of [IMED]t

location applying t−1 surface currents ([u,v]t−1 ) to the total IME location detected on the previous image ([IMET ]t−1 ), e. step 3 at t > 0:

[IMED]t contour detection iterating from chl95th and chl5th detected within the [IMET ]t−1 and the t predicted zone.
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Step 3 of the detection involves a second round of [Chla] iteration which is based on the IMEM detection method but

adapted to the higher resolution satellite composites. First, we modified the detection of the [Chla] range, defining the range220

of iteration for a given IME, to better capture the dynamic range in [Chla] of the entire IME while avoiding potential biases

in pixels adjacent to the island due to bottom reflectance and adjacency effect. We performed the [Chla] iteration from the

95th to the 5th [Chla] percentiles of the entire predicted zone (chl95th and chl5th) instead of performing the [Chla] iteration

from chl_max to chl_min of the first pixel band around the 30 m isobath of each island. Additionally, the iteration step size was

automatically defined to always correspond to 30 [Chla] steps within the [Chla] range of the entire predicted zone (from chl95th225

to chl5th). The number of [Chla] iteration steps (i.e. 30 iterations) was optimized by trial and error to better detect IME around

Rapa Nui, where the [Chla] dynamic range is the lowest and where a small change in [Chla] contour has the most impact

on the IME surface detected. Similarly to the IMEM detection, once the [Chla] contour value was found, the iteration was

performed again starting at the preceding iteration but with an iteration step size divided by 10 in order to delineate the IME

patch more accurately. As a result, the [Chla] iteration step value ranged from 10−4 to 10−1 mg m−3 which, in low dynamic230

range regions, is smaller than the 10−3 mg m−3 step value used in Messié et al. (2022), and smaller than the accuracy of

absolute [Chla] retrieval from satellites (10−1 mg m−3, discussed below). This smaller [Chla] iteration step value improved the

performance of the detection algorithm around islands in regions with a very low dynamic range in [Chla] (e.g. Rapa Nui). We

also modified the conditions to stop the [Chla] iteration, removing the condition that stopped the [Chla] iteration when pixels

with [Chla] > 0.8 ∗ chl_max are located more than 150 km away from the studied island to allow the detection of detached235

IME further than 150 km away from the island (i.e. condition number 3; Messié et al., 2022). Additionally, instead of stopping

the [Chla] iteration when the IME touched the domain border, the IME was considered to be exiting the domain and the iteration

was stopped when, for a given [Chla] contour, more than 25% of the predicted pixel location overlapped with a chlorophyll

patch touching the border. This modification improved detection of IME by tolerating a small proportion of the IME patch to

be advected near the domain border while still stopping the iteration when the [Chla] contour becomes too low and includes240

features that are not part of the IME. We also added a condition to stop the IMED [Chla] iteration when the IMED [Chla]

contour intersected an IMED contour associated with another island. Finally, as in Messié et al. (2022), the BO reference zones

associated with each IME zone (i.e. IMEM , IMED, and IMET ) were defined as the area equal to the size of the corresponding

IME zone but located outside of the IME zone, closest to the shallow mask (i.e. BO zone associated with IMEM denoted as

BOM and BO zone associated with IMET denoted as BOT , Table 1). The difference in average [Chla] and
∑

[Chla]IMET
245

between the IME and their corresponding BO reference zone were computed to estimate the biomass increase associated

with an IME relative to the BO (i.e. ∆[Chla]IMET−BOT
and ∆

∑
[Chla]IMET−BOT

respectively). The [Chla] enhancement

attributed to a given IME was deemed significant when both the mean and integrated values were above their uncertainty, e.g.

∆[Chla]IMET−BOT
−SEMf

∆[Chla]IMET−BOT
> 0 or ∆

∑
[Chla]IMET−BOT

−SEMf
∆

∑
[Chla]IMET−BOT

> 0. Examples of

IME zones detected on the six-month long map time-series around Fiji/Tonga and Samoa/Niue (Fig. 2 and Fig. 3) show250

contours outlining the IMEM (i.e. red contours), the extension of the algorithm to detect the IMED (i.e. green contours), and

their associated BOT zones (i.e. blue contours). The same analysis was performed around Rapa Nui and the Society Islands,

and are accessible at Bourdin (2024a).
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Figure 2. Snapshot of six-month long time series of 8-day multi-satellite composites of total chlorophyll a concentration ([Chla]) around

Fiji and Tonga archipelagos. The IMEM (Messié et al., 2022) contours are delineated in red, the IMED contours added in this study are

delineated in green, and the BOT associated with each IMET area is delineated in light blue. Overlaid arrows represent modeled surface

current. Entire six-month animated time series accessible in video supplements or at Bourdin (2024a).

2.2.3 Detecting IME around neighboring islands

In the case of neighboring islands, it is important to define which island, among a group of islands within a common IMEM255

patch, contributes the most to the IMEM (referred to as the "lead island"). In Messié et al. (2022), the lead island was defined

as the island with the highest chl_min value detected on the first pixel band adjacent to its shallow mask polygon. In our study

the 8-day median composite product maps are more spatially heterogeneous than monthly or yearly averages used in Messié

et al. (2022) and therefore chl_min values may not be the best indicator to assign a lead island. Moreover, the first pixel band

adjacent to the shallow mask, from which the chl_min value is extracted, is the most likely to be impacted by adjacency effect260

and bottom reflectance, leading to potential mis-assignment of the lead island. For example, the six-month map time-series

around Fiji shows regions of enhanced [Chla] that have been advected in different directions around the archipelago with the
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Figure 3. Snapshot of six-month long time series of 8-day multi-satellite composites of total chlorophyll a concentration ([Chla]) around

Samoa (north of the map), Tonga (east of the map), and Niue (center of the map). The IMEM (Messié et al., 2022) contours are delineated in

red, the IMED contours added in this study are delineated in green, and the BOT associated with each IMET area is delineated in light blue.

Overlaid arrows represent modeled surface current. Entire six-month animated time series accessible in video supplements or at Bourdin

(2024a).

largest bloom always centered on Fiji’s two largest islands (i.e. Viti Levu = 10912 km2 and Vanua Levu = 5817 km2; Fig. 2).

When applying the IMEM criteria, the lead island was assigned to smaller islands (e.g. Koro Island = 105 km2, Yalewa Kalou

Island = 0.2 km2) or to a 20 km2 submerged reef in 19% of the realizations in this time series. Likewise, when applying the265

IMEM criteria on Society Islands’ IME, the lead island was assigned to small islands in 24% of the 8-day frames in the time-

series although the bloom was always centered on Tahiti. Based on observations of the time-series of [Chla] maps, we found

that for large islands (> 100 km2), the largest IMEs, in terms of area and magnitude [Chla], are generally located around islands

with the largest land area. For that reason, in our dynamic model the lead island was reassigned after the IMEM detection (step

1; Fig. 1.a) following a different ranking (see below), which was also later used as the order of detection of the IMED (Fig.270

1 step 3). All islands of a specific study region were first sorted by 100 km2 increments of land area categories (e.g. smaller

than 100 km2, between 100 km2 and 200 km2, etc.), then within each category they were further sorted by increments of 10
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km2 30 m isobath area sub-categories (representing the reef area). Thus, land area is ranked higher than reef area only when

islands are larger or equal to 100 km2. We further ranked islands within each land area category and reef area sub-category

using their IME intensity based on chl95th values, rounded to the closest 0.1 mg m−3. Finally, islands of similar rounded land275

area, rounded reef area, and rounded chl95th were ranked by their calculated IMEM area. The IMET detection was performed

following this ranking order, thus for a given IMET zone encompassing multiple islands, the lead island was defined as the top

ranked island in the IMET zone. Once all IMET detections were performed, the "lead islands" assigned by this ranking were

verified to ensure that among all islands associated with a given IMET patch, the lead island was indeed selected as the first

island in the ranking previously defined. Considering the complexity of the currents around archipelagos, we acknowledge that280

although a single lead island was assigned to a given IMET , the enhancement in [Chla] associated with IMEs could originate

from the influence of multiple islands. For instance, the IME associated with Fiji was a combination of IMEs of all islands and

submerged reefs of the archipelago which was also often mixed with the substantial IME influence of the Tonga archipelago.

Therefore, IMEs of all islands and reefs associated with archipelagos were combined into "archipelagos IME", such as the

"Fiji-Tonga" IME example (Fig. 2), to track the evolution of the combined IME over the six-month time-series produced (i.e.285

88 islands and 140 submerged reefs; Fig. 5). Likewise, the IMET associated with Samoa encompassed the IMEs of Savaii,

Upolu, and Tutuila Islands and all the other small islands and reefs contained within the IMET patch detected around the

archipelago (i.e. 7 islands and 38 submerged reefs; Fig. 4). The IME around Society Islands in French Polynesia were also

combined into one large IME that encompassed the Society Islands themselves, the Tuamotu Archipelago, and all small islands

and reefs located in the large IME zone detected around Tahiti (i.e. 176 islands and 34 submerged reefs; Fig. E2). The IMET290

associated with Rapa Nui encompassed Rapa Nui and Sala y Gómez islands and two submerged reefs (Fig. E1).

3 Assessment

3.1 Benefit of multi-sensor composites

Observation and tracking of water masses in the ocean from space is challenging due to glint and clouds that significantly

reduce the amount of data recovered from satellite ocean color sensors. Furthermore, even without clouds or glint, uncertainties295

associated with satellite retrieval remain substantial mainly due to atmospheric gases (Gilerson et al., 2022). This impact is

even larger in oligotrophic and ultra-oligotrophic regions where less light is reflected back to the satellites by the ocean in

comparison to the atmosphere. Merging data from multiple satellites with different overpass times and viewing angles offers

several advantages: (1) changing cloud coverage over time may allow zones masked by clouds in the morning to be visible

in the afternoon; (2) observing the ocean from varying viewing angles improves data recovery by minimizing the impact of300

sun-glint; (3) assuming no bias, combining data from sensors with different inherent uncertainties likely reduces the overall

uncertainty of the merged product; and (4) as atmospheric properties (other than clouds) change over time, merging data from

multiple overpass times can further decrease the relative uncertainty of the final product. Moreover, the correction of adjacency

effect and glint by the POLYMER atmospheric correction further increases data recovery and reduces uncertainties around

clouds and in glint impacted areas. By merging products from multiple satellites, we maximized the amount of data available305
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Figure 4. Six-month long time series of satellite derived IME properties of the IME zones (IMEM = red dashed line, IMED = green dash-

dotted line, and IMET = black solid line) detected around Samoa (Savaii, Upolu, and Tutuila). A and C: average of properties within the IME

zones, B and D: difference between properties within each IME zones and their associated BO zones. A and B: chlorophyll a concentration

([Chla]), B and C: IME integrated chlorophyll a (
∑

[Chla]IME), E: IME zone area, F: surface current velocity.

at a given time and location (∼10 measurements per pixels in average for a given 8-day period). Recovery of sufficient data

for binning was critical to identify and remove outliers, and obtain smooth level-3 products. To further minimize the weight

of outliers on the end level-3 products, the binning was performed with medians instead of averages. This method allowed a

gap-less and smooth coverage of the zones analyzed during six month time-series at an 8-day frequency, and therefore improve

the detection of sub-mesoscale currents, filaments, and eddies associated with IME.310

3.2 IME detection algorithm refinement

Time-series of remote sensing maps reveal the complexity of currents around islands and the rather chaotic advection patterns

of IME into the open-ocean and between islands (Fig. 2 and Fig. 3). The four case studies were located in the South Pacific
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Figure 5. Six-month long time series of satellite derived IME properties of the IME zones (IMEM = red dashed line, IMED = green dash-

dotted line, and IMET = black solid line) detected around Fiji and Tonga archipelagos combined. A and C: average of properties within

the IME zones, B and D: difference between properties within each IME zones and their associated BO zones. A and B: chlorophyll a

concentration ([Chla]), B and C: IME integrated chlorophyll a (
∑

[Chla]IME), E: IME zone area, F: surface current velocity.

Subtropical Gyre (SPSG) where geostrophic currents are low and mesoscale and sub-mesoscale currents interact with island

topography from variable directions. In this region, the "upstream" sides of islands also show enhanced [Chla] which suggests315

IME water masses are advected in all directions around islands (e.g. Fig. A2). Under these conditions and contrary to the

assumption in Messié et al. (2022), there are generally no strict upstream pixels directly adjacent to an island. Consequently,

defining the lower end of the [Chla] iteration as the minimum [Chla] detected in the first pixel band around the shallow pixel

mask may result in an overestimation of the lower threshold of the [Chla] iteration, and thus an underestimation of the IME

area. Therefore, to better capture the local range in [Chla] and to avoid potential remaining impact of adjacency effect and320

bottom reflectance on satellite retrievals, we extracted the range of the [Chla] iteration from the entire predicted zone of the

IME location. In addition, to improve robustness and reduce sensitivity to noise, we used the 95th to the 5th percentiles

instead of the maximum and minimum [Chla] values. By construction, all IME [Chla] were higher than the [Chla] of their
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respective BO zones, however, while mean [Chla] of all IMET zones were significantly higher than their BOT counterparts

(i.e. ∆[Chla]IMET−BOT
−uncertainty > 0; Fig. 4, Fig. 5, Fig. E1, Fig. E2), IMEM [Chla] were not significantly higher325

than their BOM counterparts in several occurrences in the eastern SPSG (i.e. ∆[Chla]IMEM−BOM
−uncertainty < 0; Fig.

E1, Fig. E2). This suggests that the larger relative uncertainty in [Chla] retrieval and the very low dynamic range in [Chla] in

this region (Fig. E1) prevented accurate delineation of the entire IME zone using the [Chla] iteration step size of the IMEM

algorithm. To improve IME detection in ultra-oligotrophic regions, we used a dynamic [Chla] iteration step size as a function

of the regional [Chla] dynamic range instead of a fixed step size. This adaptive iteration step size resulted in a smaller step size330

in ultra-oligotrophic regions than the value used in Messié et al. (2022), and smaller than the accuracy of [Chla] retrieval from

satellites. While a 0.01 mg m−3 iteration step is appropriate for accurately delineating IME in mesotrophic regions (Messié

et al., 2022), it represents most of the [Chla] variability of ultra-oligotrophic regions (Fig. A2). Satellite measurements may

exhibit a notable relative uncertainty when retrieving absolute [Chla], particularly in oligotrophic regions. This is mostly due

to the atmospheric contribution being significantly larger than the contribution of the water-leaving radiance to the top-of-335

atmosphere radiance measured by satellites (Gilerson et al., 2022). However, given that these Pacific Ocean regions are distant

from major sources of absorbing aerosols, atmospheric properties are expected to be relatively uniform within a specific

satellite image (i.e. MODIS images cover 600 km2 at the equator). Consequently, the precision of the signal necessary to

delineate spatial patterns in [Chla] is expected to be higher than the accuracy of retrieved [Chla]. An advantage of this iterative

method is that it does not rely on absolute values of [Chla] to delineate IME, but rather on spatial increases in [Chla] around340

islands. Indeed, reducing the step size of the [Chla] iteration improved the performance of the detection algorithm around small

islands and in ultra-oligotrophic regions where the dynamic range of [Chla] is very low (e.g. Rapa Nui).

In the current study, we adjusted the satellite measurements of [Chla] to best match in situ values and improve our confidence

in accurately retrieving absolute [Chla]. We note that a similar IME delineation accuracy can be achieved, even without in situ

data, by nudging [Chla] of all satellite sensors to one of them to minimize inter-sensor heterogeneity and obtain spatially345

homogeneous composites. Even though this method may introduce a bias towards the satellite sensor chosen as reference, this

bias will be equivalent to the bias associated with the use of a single satellite sensor, and, since for the detection of IME we do

not rely on absolute [Chla] values, we expect to achieve a similar accuracy in mapping the extent of IME.

3.3 Detached IME detection

When quantifying IME, one challenge is to only account for [Chla] increases associated with this phenomena and not with350

other mesoscale processes. Messié et al. (2022) solved this problem by stopping the [Chla] iteration when pixels with [Chla] >

0.8 ∗ chl_max are located more than 150 km away from the 30m isobath of an island. When comparing IMET and IMEM

contours on the same 8-day median [Chla] products, we found that this restriction was the primary reason the IMEM algorithm

underestimated the IME area. With the higher resolution time series obtained here, we show that pixels with the highest [Chla]

within an IME, are heterogeneously distributed and frequently detected further than 150 km from the 30 m isobath. A detection355

of such pixel with the IMEM algorithm will result in the termination of the iteration process before the entire IME is detected.

Therefore, in this study, we adapted and improved the IME detection algorithm of Messié et al. (2022) to work with the spatial
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and temporal heterogeneity of our level-3 merged satellite products. We removed this aforementioned condition and minimized

accounting for potential [Chla] increases due to non-IME related processes by using modelled surface currents to select and

track only the high [Chla] patches that were advected away from islands and submerged reefs. We nonetheless expect a potential360

overestimation of IME where processes not associated with IME trigger [Chla] accumulation in the surface ocean away from

an island and advect this water mass from the open ocean, around an island, and towards the open ocean again downstream of

the island (e.g. advection of continental coastal processes, equatorial upwelling, etc.). In these regions, clustering water masses

based on more properties than just [Chla] may help differentiate between non-IME [Chla] increases and IME patches. This

clustering method was initially explored in this study using Self-Organizing Maps (SOM; Vesanto and Alhoniemi, 2000) to365

delineate IME zones based on [Chla], back-scattering coefficient (bbp), SST, the ratio of [Chla] and bbp, and phytoplankton

physiological stress indicators (not shown). While the SOM clustering accurately delineated the IME zones in regions with

sufficient dynamic range (e.g. in the western SPSG, around Fiji, or Samoa), the method often failed in the ultra-oligotrophic

regions (e.g. in the eastern SPSG around Rapa Nui) where the signal-to-noise ratio of bbp and the physiological stress indices

were too low to delineate IME zones as accurately as the iterative [Chla] method. Therefore, because this study also focuses370

on regions with relatively low dynamic ranges, we decided not to use the SOM clustering method; nonetheless it could be a

good alternative or complement method in regions under continental or upwelling influence where the [Chla] iteration method

might overestimate IME. In the four case studies presented here, the high temporal resolution products show that most, if not

all, increases in [Chla] initiated close to islands or submerged reefs. The mixed layer depth in the SPSG is almost exclusively

shallower than 80 m, which is significantly shallower than the nutricline in most of the gyre (∼150-220 m; Longhurst, 2007;375

Raimbault et al., 2008). It implies that wind-driven divergence in this region generally upwells nutrient-deplete water from

above the nutricline. In this context, islands and shallow submerged topography may provide the most significant perturbations

in this strongly stratified system, with the potential to introduce nutrients to the euphotic zone and trigger phytoplankton blooms

as large as the IME zones observed.

3.4 IME detection method validation380

Consistent with satellite imagery, IMEM and IMED zones were characterized by elevated underway [Chla] and cp660 in com-

parison to the BOT zones in all four cases studied (Fig. 6, Fig. D1, Fig. D2, and Fig. D3). Both variables collected with the

underway system increased steeply on the inbound transect to Fiji (left hand side panel of Fig. 6) and decreased gradually on

the outbound transect (right hand side panel of Fig. 6). Southward currents were the dominant surface currents on the western

side of Fiji during the 16-day period overlapping with in situ sampling. The pattern shown along the outbound transect indicates385

the demise and/or dilution of the bloom as it was advected south of Fiji. The increase in [Chla] and cp660 was ubiquitous near

shore and was captured by the satellite IMET detection algorithm. In comparison, the IMEM algorithm detected the strongest

[Chla] increase within IMEs (Fig. 6, Fig. D1, Fig. D2, Fig. D3) but often missed the [Chla] gradient from IME to background

ocean (e.g. outbound transect from Society Islands Fig. D2), and systematically missed the IMED (e.g. inbound transect to

Samoa Fig. D3 and departure from Fiji Fig. 6).390
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Figure 6. Validation of the extent of IME using in situ underway data around Fiji archipelago. Top row: 8-day median [Chla] at the time of

sampling along the transect inbound to Fiji (top left panel) and at the time of sampling along the transect outbound from Fiji (top right panel).

[Chla] measured in situ with the underway system are overlaid on the satellite data background, middle row: Chlorophyll a concentration

([Chla]), bottom row: beam attenuation at 660 nm (proxy for particulate organic carbon). Data sampled with the underway system during

the transect sailing towards Fiji (left) and sailing away from Fiji (right). Data colored when located within the IME zones detected on the

overlapping 8-day satellite composite (BOT = black circle, IMEM = red square, or IMED = green diamond). The underway data points are

minute binned and the solid lines are smoothed underway data. The smoothing was performed applying a 2h low-pass digital filter to the

minute binned data. The grey patch highlights the time Tara was sailing in coastal water (< 6 nautical miles away from a submerged reef or

coast).

3.5 Extent of IME using different algorithms

Similarly, the IME zones detected during the six-month time-series around Fiji/Tonga, Samoa/Niue, Rapa Nui, and the Society

Islands (Fig. 2, Fig. 3, and Bourdin, 2024a) suggest that the IMEM detection algorithm generally performs well in capturing
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the core of an IME as long as the associated [Chla] distribution is concentric on the island with the highest [Chla] located

close to shore. In all four case studies, the IMEM algorithm generally failed to capture the full extent of the IME area at395

8-day observation frequency (i.e. IMEM area << IMET area; Fig. 7 and Table 2). To compare the IMEM algorithm to the one

developed here, we calculated the absolute and percent differences in mean [Chla], detected IME area, and surface-integrated

chlorophyll a (
∑

[Chla]) derived from the two approaches applied on the same 8-day median [Chla] products (Fig. 7 and

Table 2). [Chla] averages in IMEM zones were equivalent or higher than in the IMET zones (Fig. 7 and Table 2) because the

minimum value of the [Chla] used in the iteration to find the IMET contour was always lower than the minimum value used in400

the IMEM algorithm. Therefore, when different from the IMET contour, the IMEM contour was always located closer to the

island shore where [Chla] is generally higher than in the rest of the IMET zone, explaining the negative differences in average

[Chla] between IMET and IMEM (Table 2, Fig 7). The area and surface-integrated chlorophyll a were largely underestimated

in IMEM in comparison to IMET in all four case studies (Fig. 7 and Table 2). For instance, the large bloom event that developed

around Fiji between March and May 2017 detected in the IMET zone was not detectable in the IMEM zone. The IMET also405

captured a nearly continuous increase in biomass around the Society Islands while it was only intermittently captured by the

IMEM contour (Fig. 7). In each case, the underestimation of IMEM compared to IMET was variable over time, suggesting the

criteria used to delineate the extent of the IMEM are sensitive to noise in a given satellite image and thus depends on the spatial

smoothness of the [Chla] map used to delineate the IMEM . The modification of these criteria in the IMET algorithm reduced

its sensitivity to single pixel variability.410

Table 2. IMEM and IMET detection methods comparison summary: six month mean and standard deviation of differences

Variables Island group ∆ [IMET - IMEM ] ∆[%]

[Chla]IME

Rapa Nui

Society Isl.

Samoa

Fiji&Tonga

7× 10−4± 5.7× 10−3mg.m−3

−2.2× 10−3± 3.2× 10−3mg.m−3

−1.7× 10−2± 3.9× 10−2mg.m−3

−3.6× 10−2± 3.6× 10−2mg.m−3

1±10%

-4±6%

-14±30%

-21±21%

IME area

Rapa Nui

Society Isl.

Samoa

Fiji&Tonga

7× 104± 6.3× 104km2

2.2× 105± 2.2× 105km2

5.7× 104± 5.8× 104km2

3.1× 105± 2.2× 105km2

58± 39%

33±32%

49±35%

60±28%

∑
[Chla]IME

Rapa Nui

Society Isl.

Samoa

Fiji&Tonga

4.1± 4.1mt.m−1

10.4± 11.7mt.m−1

4.6± 4.9mt.m−1

52.3± 35.2mt.m−1

58± 27%

32±31%

45±34%

58±27%
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Figure 7. Differences (%) in IME area (solid line), chlorophyll a concentration ([Chla]; dash-dotted line), and IME surface-integrated

chlorophyll a (
∑

[Chla]IME ; dash line) estimated by the IMEM and IMET algorithms for the four case studies (Rapa Nui, Society Isl.,

Samoa, Fiji-Tonga)

.

3.6 IME quantification metric

The [Chla] enhancement associated with IME was quantified as the difference between surface-integrated [Chla] in a given IME

zone and surface-integrated [Chla] in the respective BO zone (chosen to have the same surface area, see Methods) to better rep-

resent the total Chla enhancement. In all four cases, the surface-integrated [Chla] enhancement associated with IMET relative to

their BOT counterparts was significant during the entire six-month time-series (i.e. ∆
∑

[Chla]IMET−BOT
−uncertainty >415

0) except for two 8-day occurrences around Rapa Nui.

It should be emphasized that [Chla] can be associated with large uncertainties as a measure of phytoplankton biomass due

to photo-acclimation, a process of intra-cellular pigment adjustment in response to changes in light and nutrient conditions

(Cullen, 1982; Geider et al., 1998). This is especially the case in regions with increased mesoscale activity and upwelling such

as those adjacent to islands. When low-light adapted cells with larger intra-cellular [Chla] are upwelled to the surface, satellites420

can measure an apparent increase in [Chla] that is not necessarily associated with an increase in biomass (Hasegawa et al.,

2008). In all case studies presented here, the increased [Chla] detected in IME zones was associated with increased cp660, which
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is a proxy of total organic biomass (including phytoplankton biomass) that is not impacted by photo-acclimation (Behrenfeld

and Boss, 2006). This observation provides confidence that detected IME zones were indeed associated with spatial increases

in phytoplankton biomass around islands. When investigating the ecological consequences of IME, it is important to note that425

both satellite data and our underway measurements only describe surface ocean properties and do not inform about the vertical

distribution of biomass in IME zones. Gove et al. (2016) showed that the increase in [Chla] associated with IME propagated

below the surface and suggested this increase in [Chla] represented a strong increase in biomass at depth. Although strong

subsurface chlorophyll maximums (SCM) are generally measured in subtropical regions, most of the SCM signal is often due

to photo-acclimation to low light availability at depth and only associated with a moderate increase in biomass (Kitchen and430

Zaneveld, 1990; Fennel and Boss, 2003; Furuya, 1990).

3.7 The utility of capturing IME’s temporal dynamics

The high temporal resolution products revealed the high spatial and temporal heterogeneity of IME and frequent connectivity

between IME zones of distant islands. This dynamic IME detection method permitted tracking in time the accumulation of

chlorophyll a in surface waters, which suggested frequent temporal increases in phytoplankton biomass in addition to the435

spatial increase in phytoplankton biomass already detected around islands. For instance, the accumulation of integrated [Chla]

in IME zones suggests the occurrence of two distinct blooms in Samoa’s IME zone and a large bloom in Fiji-Tonga’s IME

zone. These blooms were sustained for weeks while being advected off-shore and eventually detached from the island they

originated from (Fig. 2 and Fig. 3). The first one around Samoa was initiated around mid-September 2016 and was advected

southward towards Niue (see area and ∆[Chla]IMET−BOT
increases; Fig. 4). The integrated [Chla] of this bloom continued440

to increase after the water mass detached from Samoa and persisted near Niue until the end of November 2016 (i.e. ∼10

weeks after detaching from Samoa; Fig. 3 and Fig. 4). The second bloom detected in Samoa’s IME initiated around November

22nd 2016 was advected east, detaching from the archipelago and reaching a maximum surface-integrated [Chla] enhancement

relative to BO of 13.6 mt.m−1 before ending around January 24th 2017 (Fig. 3, Fig. 4). A third bloom observed in the

same region detached from Tonga and was detected more than ∼1300 km east of the island. Phytoplankton biomass can445

continue to accumulate in advected water masses even without an additional influx of nutrients. For example, if the rate of

horizontal dilution of a bloom with its surrounding oligotrophic waters reduces encounter rates, and hence grazing pressure,

phytoplankton biomass will continue to accumulate even if the remaining nutrients only support a low growth rate (as long

as the growth rate exceeds the grazing rate; Lehahn et al., 2017). Interestingly, both bloom initiation events detected around

Samoa were synchronised with a sudden increase in the average surface current velocity within the IMEM zone. The increased450

current interacting with the island topography may have promoted sub-mesoscale and mesoscale mixing and the upwelling of

nutrient and trace metal enriched water to the surface close to shore. The current data overlaid on the [Chla] map time-series

also show increased surface current close to shore when and where each of the three blooms started to detach from their island

of origin (Bourdin, 2024a). This suggests that when IME water parcels were detached from their source of nutrients (i.e. the

island) and diluted into the surrounding oligotrophic ocean, the phytoplankton biomass in the growing patch continued to455

accumulate due to a reduction of grazing while using the limited nutrient supply advected with it. This dynamic emphasizes
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the fact that although phytoplankton blooms in IME zones are triggered by local enrichment of macro-nutrients and trace

metals near islands (Messié et al., 2020, 2022; Gove et al., 2016, 2013; De Verneil et al., 2017; Hasegawa et al., 2009; Caputi

et al., 2019; Palacios, 2002; Signorini et al., 1999), they are also tightly controlled by loss processes such as grazing. In the

case of Fiji-Tonga, the IME surface-integrated [Chla] enhancement relative to the BO (i.e. ∆
∑

[Chla]IMET−BOT
) increased460

up to 88.7±15.8 mt[Chla].m
−1, covered an area up to ∼1 million km2, with a longitudinal extent of ∼2000 km. The IME

surface-integrated [Chla] decreased from May 5th to September 2nd to finally reach pre-bloom values again in August 2017,

approximately five months after the bloom initiated; Fig. 5). In contrast to the Samoa case study, no apparent increase in

current speed was detected near Fiji or Tonga during the period covered by the time series. In this case, the timing of this large

bloom observed around the Fiji and Tonga archipelagos coincided with the annual Trichodesmium spp. blooms observed in this465

region during the austral summer (Dandonneau and Gohin, 1984; Dupouy et al., 2000). The high underwater volcanic activity

characteristic of this region can supply significant amount of trace metals directly into the euphotic zone and support these large

blooms of Trichodesmium spp. (Bonnet et al., 2023; Guieu et al., 2018; Berman-Frank et al., 2001; Lory et al., 2022; Rubin

et al., 2011). These known shallow hydrothermal vents were systematically located within the detected IME zone associated

with Tonga and Fiji suggesting the detected IME is likely a combined effect of islands and shallow hydrothermal vents in470

this region. The longer generation time of Trichodesmium spp., which allows surface currents to spread them horizontally, and

their ability to partially escape grazing pressure may explain why these blooms can be maintained for five months and cover a

significant area of ∼1 million km2 (Capone et al., 1997; Messié et al., 2020). These two case studies show how the dynamic

detection of IME provides information about IME phenology and about island connectivity in comparison to a frozen field

observation of the ocean for which all maps are independent of each other.475

4 Conclusions

The method developed here describes the history of a given IME with finer resolution, and highlights dynamics that are not

detectable using monthly and yearly average remote sensing products. Such a method is essential for improving our mecha-

nistic understanding of IME (e.g. whether the cause is island runoff or upwelling) and the ecological succession within IMEs.

De Falco et al. (2022) highlight the uniqueness of interactions between a given island topography and surrounding wind and480

current flows, suggesting that phytoplankton responses depend on these interactions. Here we show that IMEs are highly dy-

namic, they can induce large coherent blooms that can sustain for month while being advected more than 1000 km away from

their source. These advected IMEs seed the oligotrophic ocean and other islands with water masses characterized by higher

phytoplankton abundance and potentially different species composition than the surrounding oligotrophic ocean such as the

Trichodesmium blooms in the south-west Pacific ocean. This analysis reveals a broader spatial extent of IMEs in subtropical485

regions, suggesting that islands have a greater impact on food web dynamics and biogeochemical processes in these areas,

which are traditionally considered oligotrophic. This detection method can also be adapted to track water masses with specific

optical properties being advected in upwelling regions or in river plumes. We suggest that future studies use more satellite

22

https://doi.org/10.5194/egusphere-2024-2670
Preprint. Discussion started: 15 October 2024
c© Author(s) 2024. CC BY 4.0 License.



variables than just [Chla] in regions where processes other than the one studied can cause elevated surface [Chla] to better

discriminate the underlying processes.490

We demonstrated the importance of using gap-less high temporal and spatial resolution satellite products and modeled

surface currents to identify and track sub-mesoscale filaments and eddies associated with IME around islands in the subtropical

Pacific Ocean. We minimized satellite uncertainties by augmenting the number of observations and maximized data recovery

by using all available NASA and ESA polar-orbiting ocean color satellites. At the current dawn of global hyperspectral ocean

color sensing, we recommend having sensors with different overpass times when planning for new ocean color satellites as part495

of the future constellation to help maximize coverage and understand the dynamic of mesoscale and sub-mesoscale processes

in the Ocean.

Code and data availability. HPLC data is accessible on BCO-DMO repository. In situ underway optical data can be accessed on Tara Pacific

SeaBASS repository. The satellite binning software package used to create custom level-3 multi-satellite products from level-2 satellite

data, to remove outliers, to nudge, and propagate uncertainties is accessible at Bourdin (2024b). Level-3 multi-satellite composites data,500

downloaded current data, the dynamic IME detection algorithm software, and its main outputs for each case study, including island databases

for all region and their IME and BO masks, are available at Bourdin (2024a).
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Appendix A: Satellite merging pipeline

MODIS, VIIRS, and OLCI L1A radiance data were processed with SeaDAS l2gen and POLYMER algorithms to produce

atmospherically corrected level-2 Rrs data. Low-quality data pixels were removed by applying the recommended atmospheric520

correction flags on their respective Rrs data. Every scene was then projected onto the same equally spaced one-kilometer spatial

resolution plate-carré reference grid using nearest-neighbor interpolation before [Chla] computation. Each satellite [Chla] were

nudged to best match in situ values before merging them into 8-day median composites (Fig. A1).

Figure A1. Satellite composite production flowchart.
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Figure A2. Multi-satellite composite of [Chla] around Niue island (2016-09-11 to 2016-09-18) at 1 km spatial resolution. The white squares

represent the 4 and 9 km resolution pixel sizes of the level-3 NASA and the red contour represents the shallow pixel mask at 4 km spatial

resolution.

Appendix B: Uncertainty estimates

The 8-day merged products represent a composite of multiple overpasses and satellites that included ∼120 ocean color images525

(daytime) for a∼2500 km2 square region around the Fiji archipelago. Therefore, each pixel of the merged product is a median

of n number of observations of the original images with standard deviations (σVbin
) representing the temporal variability of a

variable V in a given pixel during each 8-day period and the variability between sensors after nudging. The number of non-

flagged observations (nVbin
) used to bin each merged pixel was generally sufficient, with 8-day long periods and an operational

constellation of five to six satellites, to produce smooth merged [Chla] products. For example, the median number of non-530

flagged [Chla] observations used to bin each pixel was nbin[Chla] = 10 for the entire time series around Fiji, with less than

2.5% of the pixels binned with less than 3 non-flagged observations (Fig. B1).

Known uncertainties were propagated from in situ data to satellite [Chla] end-products. HPLC derived [Chla] and in situ

ap spectra were measured along track. The error associated with the computation of [Chla] from the underway system was

estimated by the normalized root mean square error (nRMSEudw in %) of the relation between the underway chlorophyll line535

height (ap676LH ) and total [Chla] measured from HPLC during the Tara Pacific expedition (Fig. B2.a).

The error associated with the computation of [Chla] from satellites was estimated by the nRMSEsat of the relation between

the underway chlorophyll line height (ap676LH ) and [Chla] obtained from each satellite sensor along the transect of the Tara

Pacific expedition (Fig. B2 (b), (c), and (d)). The uncertainties of binned satellite end-products were computed as follows:

σV =

√√√√σ2
V bin +

nc∑

n=1

(Ṽ ×nRMSEc)2 (B1)540
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Figure B1. Distribution of the number of valid [Chla] (i.e. not flagged) observations per merged pixel over each 8-day period along the

six-month time-series around the Fiji archipelago (2017-02-18 to 2017-09-05).

Table B1. Robust correlations parameters of match-ups between satellite and in situ underway data

Variables Satellite sensor R2 nRMSE [%] Slope Intercept N

POLYMER Rrs

Blended CI-OCx [Chla] (chlor_a)

MODISA

MODIST

VIIRSN

VIIRSJ1

OLCI

0.78

0.81

0.82

0.70

0.79

24.38

20.48

16.18

31.47

16.56

1.09

1.08

0.90

1.02

0.89

-0.01

-0.01

-0.19

0.05

-0.13

111

96

109

27

85

SeaDAS Rrs

Blended CI-OCx [Chla] (chlor_a)

MODISA

MODIST

VIIRSN

VIIRSJ1

OLCI

0.74

0.71

0.70

0.84

0.81

18.59

16.61

16.17

17.37

13.99

0.84

0.70

0.81

1.15

1.01

-0.27

-0.43

-0.56

0.14

-0.10

85

67

92

22

55

SeaDAS Rrs

OCx [Chla] (chl_ocx)

MODISA

MODIST

VIIRSN

VIIRSJ1

OLCI

0.66

0.67

0.62

0.74

0.70

20.00

19.30

25.97

21.76

17.65

0.71

0.75

1.20

1.36

0.80

-0.32

-0.35

-0.50

0.19

-0.11

85

67

92

22

55

With Ṽ the binned variable, nc the number of calibration/correction, and nRMSEc the nRMSE associated with each of the

nc correction. The standard error of the mean of the adjusted satellite end-products of each pixel were computed as follows:

SEMV =
σV√
nVbin

(B2)
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Figure B2. Robust linear regressions between [Chla] measured from HPLC and ap Chla absorption peak at 676 nm measured from the

underway system (a), and between calibrated [Chla] estimated from ap underway measurements and [Chla] estimated from satellite data

using the blended CI-OCx algorithm on POLYMER Rrs (b), the blended CI-OCx algorithm on l2gen Rrs (c), and the OCx algorithm on

l2gen Rrs (d). In situ measurements were conducted during the Tara Pacific expedition (May 2016 to October 2018).

The final uncertainty estimate associated with [Chla] within entire IME or BO zones (SEMf
[Chla]IME

) as presented in Fig. E1,

Fig. E2, Fig. 4, and Fig. 5 were expressed as the average standard error of the mean of the adjusted [Chla] within entire IME545

or BO zones:

SEMf
[Chla]IME

=
σ[Chla]IME∑
n[Chla]binIME

+ S[Chla]unc
× [Chla]IME (B3)

With
∑

n[Chla]binIME
the total number of [Chla] observations within the IME zone before merging and S[Chla]unc

the weighted

bias associated with the computation of the slopes of the regressions between in situ [Chla] and each satellite [Chla] estimates.

S[Chla]unc
was computed as follows:550

S[Chla]unc
= |1−S[Chla]sat| ×

nMsat

NMtot

(B4)

With S[Chla]sat the slope of the relation between in situ [Chla] and [Chla] of a given satellite, nMsat the number of valid match-

ups of the same satellite, and NMtot
the total number of valid match-ups. S[Chla]unc

represents the maximum bias associated
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with the computation of the merged satellite [Chla] which we assume to be equivalent to the potential likelihood bias of the

merged satellite [Chla]. Assuming enough valid match-ups with each satellite, S[Chla]unc
is a conservative estimate of the555

bias associated with the slopes computation because the merging method forces each satellite [Chla] to agree with in situ data

using sensor-specific corrections, which likely reduces the bias of the merged product. IME area uncertainties (σAIME
) were

computed during the detection of the IME [Chla] contours as the difference in IME area between the last two iterations of

[Chla] contours:

σAIME
= AIMEcChlf

−AIMEcChlf−1
(B5)560

With AIMEcChlf
the IME area at the final IME contour value and AIMEcChlf−1

the IME area at the previous contour value.

Therefore, σAIME
represents the area detection resolution associated with the size of the step of [Chla] iteration. The uncer-

tainties associated with the estimation of IME surface-integrated [Chla] (
∑

[Chla]IME) were computed as follows:

SEMf∑
[Chla]IME

=
∑

[Chla]IME ×

√√√√
(

SEMf
[Chla]IME

[Chla]IME

)2

+
(

σAIME

AIME

)2

(B6)

Appendix C: Outliers removal565

Bio-optical variables in the ocean, including [Chla], generally follow a log-normal distribution (Campbell, 1995) with fewer

high values forming a heavy-tail in the high end of the dynamic range. After appropriate flagging, low quality data pixels

impacted by sun glint, adjacency effect, and bottom reflectance are rare and account for a few pixels scattered on either end

of the log-normal distribution and beyond realistic values for a given region (generally < 1st percentile or >> 99th percentile;

Fig. C1). Computing the median of these pixels can result in noisy merged products when they are the only available data over570

a given 8-day period and at a given location (i.e. pixel). Consequently, to improve consistency of the level-3 merged products,

rare outliers of a given variable were removed from all re-projected level-2 images of a given 8-day period and a given region

based on the distribution of all individual x measurements (i.e. pixels). First, we grouped all the re-projected level-2 images of

a given variable, 8-day period, and region together, and applied a log normal transformation to the data:

xt = ln(x−min(x) + 1) (C1)575

We partitioned xt into N bins of width W defined using the Freedman-Diaconis rule that is more suited to a heavy-tailed

distribution due to its low sensitivity to outliers (Freedman and Diaconis, 1981):

W = 2× IQR(xt)
3
√

n
(C2)

Where IQR is the inter-quartile range and n is the number of observations in the data xt. The minimum number of pixels per

bin threshold (nb
min) was computed as a rounded fraction of n of a given variable (i.e. horizontal line in Fig. C1):580

nb
min = ⌊n× 10−6⌉ (C3)
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Figure C1. Example distribution of all valid [Chla] (i.e. not flagged) observations from all satellite sensors merged (i.e. MODISA-Aqua,

MODIS-Terra, VIIRS-SNPP, OLCI-S3A) from 2016-09-19 01:00 to 2016-09-26 21:30 UTC (8-day period) around Niue and Samoa (77

satellite images merged) before outlier removal (subplots (a) and (b)), and after outlier removal (subplots (c) and (d)). The number of pixels

per bin are displayed on a linear scale on subplots (a) and (c) and on a log base 10 scale on subplots (b) and (d). The dashed lines represent

the 1st and the 99th percentiles, the solid horizontal line represents the cut-off value in pixel per bin for outlier removal (nb
min), and the red

shaded area highlights the pixels removed.

The lower-end threshold tL was determined by finding the first bin with less pixels than nb
min (i.e. gap in normal distribution),

going from the median x̃ to xmin (xmin ≤ tL < x̃). Similarly, the higher-end threshold tH was determined by finding the first

bin with less than nb
min pixels per bin, going from x̃ to xmax (x̃ < tH ≤ xmax). This threshold detection was iterated up to

15 times or until tL and tH did not change from one iteration to the other. Any re-projected level-2 pixel from a given 8-day585

period, region, and variable falling out of the range (tL, tH ) were deleted before computing the medians of the merged level-3

products.
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Appendix D: Rapa Nui, Society Isl., and Samoa validation transects

Figure D1. Validation of the IME extent using in situ underway data around Rapa Nui. Top row: Chlorophyll a concentration ([Chla]), and

bottom row: beam attenuation at 660 nm (proxy for particulate organic carbon). Data sampled with the underway system during the transect

sailing towards Rapa Nui (left) and sailing away from Rapa Nui (right). Data colored when located within the IME zones detected on the

overlapping 8-day satellite composite (BOT = black circle or IMEM = red square). The points are minute binned underway data and the

solid lines are smoothed underway data. The smoothing was performed by applying a 2h low-pass digital filter to the minute binned data.

The grey patch highlights the time Tara was sailing in coastal water (< 50 m depth).

Figure D2. Validation of the IME extent using in situ underway data around Society Islands in French Polynesia. Top row: Chlorophyll a

concentration ([Chla]), bottom row: beam attenuation at 660 nm (proxy for particulate organic carbon). Data sampled with the underway

system during the transect sailing towards Society Islands (left) and sailing away from Society Islands (right). Data colored when located

within the IME zones detected on the overlapping 8-day satellite composite (BOT = black circle, IMEM = red square, or IMED = green

diamond). The points are minute binned underway data and the solid lines are smoothed underway data. The smoothing was performed

applying a 2h low-pass digital filter to the minute binned data. The grey patch highlights the time Tara was sailing in coastal water (< 50 m

depth).
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Figure D3. Validation of the IME extent using in situ underway data around Samoa. Top row: Chlorophyll a concentration ([Chla]), and

bottom row: beam attenuation at 660 nm (proxy for particulate organic carbon). Data sampled with the underway system during the transect

sailing towards Samoa (left) and sailing away from Samoa (right). Data colored when located within the IME zones detected on the over-

lapping 8-day satellite composite (BOT = black circle or IMEM = red square). The points are minute binned underway data and the solid

lines are smoothed underway data. The smoothing was performed by applying a 2h low-pass digital filter to the minute binned data. The grey

patch highlights the time Tara was sailing in coastal water (< 50 m depth).
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Appendix E: Rapa Nui and Society Isl. time-series

Figure E1. Six-month long time series of satellite derived IME properties of the IME zones (IMEM = red dashed line, IMED = green

dash-dotted line, and IMET = black solid line) detected around Rapa Nui. A and C: average of properties within the IME zones, B and D:

difference between properties within each IME zones and their associated BO zones. A and B: chlorophyll a concentration ([Chla]), B and

C: IME integrated chlorophyll a (
∑

[Chla]IME), E: IME zone area, F: surface current velocity.
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Figure E2. Six-month long time series of satellite derived IME properties of the IME zones (IMEM = red dashed line, IMED = green

dash-dotted line, and IMET = black solid line) detected around Society Islands in French Polynesia. A and C: average of properties within

the IME zones, B and D: difference between properties within each IME zones and their associated BO zones. A and B: chlorophyll a

concentration ([Chla]), B and C: IME integrated chlorophyll a (
∑

[Chla]IME), E: IME zone area, F: surface current velocity.
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