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Abstract. Accurately projecting future precipitation patterns over land is crucial for understanding climate change and devel-

oping effective mitigation and adaptation strategies. However, projections of precipitation changes in state-of-the-art climate

models still exhibit considerable uncertainty, in particular over vulnerable and populated land areas. This study aims to ad-

dress this challenge by introducing a novel methodology for constraining climate model precipitation projections with causal

discovery. Our approach involves a multistep procedure that integrates dimension reduction, causal network estimation, causal5

network evaluation, and a causal weighting scheme which is based on the historical performance (the distance of the causal

network of a model to the causal network of a reanalysis dataset) and the interdependence of Coupled Model Intercomparison

Project Phase 6 (CMIP6) models (the distance of the causal network of a model to the causal network of other climate mod-

els). To uncover the significant causal pathways crucial for understanding dynamical interactions in the climate models and

reanalysis datasets, we estimate the time-lagged causal relationships using the PCMCI causal discovery algorithm. In the last10

step, a novel causal weighting scheme is introduced, assigning weights based on the performance and interdependence of the

CMIP6 models’ causal networks. For the end-of-century period 2081-2100, our method reduces the very likely ranges (5-95

percentile) of projected precipitation changes over land between 10 and 16 % relative to the unweighted ranges across three

global warming scenarios (SSP2-4.5, SSP3-7.0 and SSP5-8.5). The sizes of the likely ranges (17-83 percentile) are further

reduced between 16 and 41 %. This methodology is not limited to precipitation over land and can be applied to other climate15

variables, supporting better mitigation and adaptation strategies to tackle climate change.

1 Introduction

Global mean precipitation and evaporation are expected to rise with warming by approximately 2-3 % per ◦C, driven by

increased atmospheric water vapor according to thermodynamics (Allan et al., 2020). Although recent observations have strug-

gled to detect a response of global precipitation to the current warming level, new research has demonstrated that precipitation20

variability has already increased globally over the past century (Zhang et al., 2024). The Coupled Model Intercomparison
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Project Phase 6 (CMIP6) models represent the latest generation of climate models used to simulate past, present, and future

climate conditions, providing vital projections to inform policy and adaptation strategies (Eyring et al., 2016). However, a

significant challenge associated with these models is the large uncertainty range in land precipitation projections, reflecting the

complex nature of precipitation processes and their representation in climate models (Tebaldi et al., 2021). Studies have shown25

that uncertainty in climate projections can be attributed to multiple factors, including, e.g., model structure, parameterization,

and internal variability (Hawkins and Sutton, 2009). Model uncertainty is commonly assessed as the range of values projected

by different climate models for a given future scenario (also known as intermodel spread). According to the Intergovernmental

Panel on Climate Change (IPCC) Sixth Assessment Report (Douville et al., 2021), the average projected precipitation rates

over land increases by 2.4 % in the low-emission scenario by 2081-2100 (with the 17-83 percentile range varying from -0.2 %30

to +4.7 %) relative to the period 1995-2014. In comparison, the very high-emission scenario shows a more substantial in-

crease of 8.3 % (with the 17-83 percentile range varying from 0.9 % to 12.9 %) by 2081-2100. Reducing intermodel spread in

precipitation projections is crucial for enhancing the reliability of climate projections.

These changes in future precipitation patterns have profound implications for various sectors, including natural and human

systems (IPCC, Seneviratne et al., 2021). Kotz et al. (2022) discuss the extensive economic impacts associated with pre-35

cipitation shifts, emphasizing the need for precise and reliable projections. The economic consequences of climate change,

particularly in regions vulnerable to precipitation changes, underscore the urgency of reducing the uncertainty in these projec-

tions. Accurate projections are therefore critical for developing effective adaptation and mitigation strategies to minimize these

negative impacts and enhance resilience.

To reduce the intermodel spread of future climate projections, a common method is the usage of an emergent constraint40

(Hall and Qu, 2006; Eyring et al., 2019). An emergent constraint identifies a statistically significant relationship between a

constrained observable and a future climate variable. This observable can be a trend or variation observed during the historical

period and includes metrics such as temperature variability (Cox et al., 2018) and shortwave low cloud feedback (Qu et al.,

2018). The future climate variable often relates to key climate sensitivity metrics such as Equilibrium Climate Sensitivity

(ECS) and Transient Climate Response (TCR) (Nijsse et al., 2020; Schlund et al., 2020b). By establishing a robust statistical45

relationship and combining it with observed data, the probability distribution of ECS and TCR can be constrained, leading to

a narrower range in future climate projections.

However, when it comes to global precipitation and precipitation over land, the emergent constraints tend to be weaker

compared to those for TCR or ECS (Ferguglia et al., 2023). Previous studies attribute this to the complexity of precipitation

processes, model parameterizations, and observational constraints (Ferguglia et al., 2023). For example, complex atmospheric50

processes affecting precipitation, including aerosol impacts on cloud microphysics (Allen and Ingram, 2002; Beydoun and

Hoose, 2019), convection, and large-scale circulation, are challenging to model accurately, leading to larger uncertainties. Fur-

thermore, climate models use different parameterizations for subgrid-scale processes such as cloud formation, contributing to

the spread. In addition, precipitation observations are often limited and carry substantial uncertainties (Trenberth and Zhang,

2018), weakening the relationships between historical predictors and future projections. The robustness of emergent constraints55

also depends on the specific ensemble of models used. For example, the constraints identified in the previous generation of
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models, CMIP5, may not hold in CMIP6 (Pendergrass, 2020; Schlund et al., 2020b). Building on this understanding, Shiogama

et al. (2022) investigated emergent constraints related to future global precipitation changes using past temperature and precip-

itation trends. They revised the upper bound (95th percentile) of global precipitation change for 2051–2100 under a medium

greenhouse gas concentration scenario from 6.2 % change to a range of 5.2–5.7 %. Additionally, other studies have also ex-60

plored constraining future precipitation projections using observational data and past warming trends. Thackeray et al. (2022)

developed an emergent constraint to reduce the uncertainty in projections of future heavy rainfall occurrence. Dai et al. (2024)

propose an emergent constraint that utilizes past observational warming trends to constrain future projections of mean and

extreme precipitation on both global and regional scales. They constrained the projected globally averaged mean precipitation

fractional changes under the high-emission scenario for the 2081–2100 period relative to 1981–2014, reducing the average65

estimate from 6.9 % to 5.2 % and narrowing the 5–95 % range from [3.0−10.9] % to [1.9−8.5] %.

Other methods have been developed to constrain future climate projections. For instance, Schlund et al. (2020a) employed

a machine learning regression approach known as Gradient Boosted Regression Tree (GBRT) on historical climate data to

reduce the uncertainty range of future projections of Gross Primary Production (GPP). Another key method to address the

intermodel spread is multimodel weighting based on model performance and interdependence. This addresses the issues in the70

commonly used "model democracy" approach, used in the IPCC Sixth Assessment Report (IPCC, Lee et al., 2021), where each

climate model is given equal weight regardless of its performance and interdependence with other models. Equal weighting

can lead to significant issues, such as overrepresenting similar models and ignoring differences in model performance (IPCC,

Doblas-Reyes et al., 2021). The methodology introduced by Knutti et al. (2017) and further explored by Brunner et al. (2020)

evaluates the historical model performance and interdependence based on several diagnostics and applies weights to combine75

the model outputs. This technique refines ensemble projections by prioritizing models that more accurately simulate historical

climate conditions and accounts for redundancy among models.

These previous studies highlight the importance of using advanced statistical techniques and observational data. Notably,

Nowack et al. (2020) introduced a causal model evaluation framework which assesses models based on their ability to capture

cause-and-effect relationships within the system. In particular, Nowack et al. (2020) applied a causal discovery algorithm to sea80

level pressure (SLP) data from CMIP5 simulations and meteorological reanalyses. They constructed causal networks, referred

to as fingerprints, to conduct a process-oriented evaluation of the models. Interestingly, models with fingerprints closer to

observations better reproduced precipitation patterns over various regions, including South Asia, Africa, East Asia, Europe,

and North America. These findings highlight the potential of causal model evaluation to address uncertainties in climate

projections but have not yet been applied as such.85

Nowack et al. (2020) also underscores the role of using SLP components as proxies for modes of variability to better un-

derstand precipitation patterns. Furthermore, we emphasize the strong connection between dynamical interactions imprinted

in SLP fields and precipitation patterns. Numerous studies (e.g., Lavers et al., 2013; Thompson and Green, 2004; Müller-Plath

et al., 2022) revealed how large-scale pressure variations, such as the North Atlantic Oscillation (NAO), the Azores high, the

Arctic oscillation and the North Sea Caspian pattern, can influence precipitation variability across Europe and the Mediter-90

ranean basin. Dia-Diop et al. (2021) have shown that SLP anomalies over specific areas such as the Azores and St. Helena
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High are interconnected with monthly mean precipitation in West Africa, indicating a relationship between SLP and rainfall.

Furthermore, Benestad et al. (2007) demonstrated the importance of statistical models that use SLP to predict interannual vari-

ations in rainfall, revealing the connection between these variables. Costa-Cabral et al. (2016) confirmed the importance of

large-scale climate indices, particularly the North Pacific High (NPH) wintertime anomaly, in predicting precipitation variabil-95

ity in Northern California. These studies support the broader applicability of SLP indices to understand precipitation patterns.

A research gap lies in the need to explore new methods, such as causal model evaluation, to more accurately assess the per-

formance of climate models. Combining these advanced evaluation techniques with multimodel weighting schemes promises

to reduce the uncertainty of climate projections. The goal of this study is to explore causal discovery for evaluating climate

models and reducing the uncertainty of their projections, particularly for precipitation over land. We further demonstrate the100

application of causal approaches in capturing complex climate dynamics. Additionally, we address the practical challenges of

integrating causal model evaluation with multimodel weighting. As such, this research will ultimately help to improve projec-

tions of precipitation change over land, enhancing our ability to anticipate and respond to the consequences of climate change

in populated and vulnerable areas. This is essential for water resource management, agriculture, infrastructure planning, and

overall climate resilience efforts (IPCC, 2021).105

To constrain precipitation change projections over land, our methodology involves a multistep process that integrates data

preprocessing, dimension reduction, causal relationship estimation, causal network evaluation, and model weighting. Our study

utilizes CMIP6 historical simulations of Sea Level Pressure (SLP) complemented by reanalysis datasets which serve as ref-

erences. Future projections based on Shared Socioeconomic Pathways (SSP, O’Neill et al., 2014) are employed to calibrate

the weighting scheme and project precipitation changes. To address the high dimensionality of the data, Principal Component110

Analysis (PCA, Shaffer, 2002; Ramsay and Silverman, 2005) with Varimax rotation (Rohe and Zeng, 2023; Kaiser, 1958) is

utilized, extracting 60 components that capture the essential modes of variability. We estimate the time-lagged causal relation-

ships using the PCMCI (Peter-Clark Momentary Conditional Independence, Runge et al., 2019b) causal discovery algorithm to

uncover the significant causal pathways crucial for understanding dynamical interactions in the climate models. The identified

causal networks are evaluated against the reference networks derived from the reanalysis data using the F1 score and its com-115

plement 1−F1. The causal networks of the climate models are also compared with one another with the F1 score to measure

their similarities. This quantitative approach provides insights into the relative performance and uniqueness of each model’s

representation of dynamical processes. In the last step, a novel causal weighting scheme is introduced, assigning weights based

on the performance and interdependence metrics of the causal networks. This scheme prioritizes models closely matching

the reference causal network and exhibiting distinctive causal structures. The resulting weights inform the computation of the120

multimodel weighted means and ranges of precipitation changes over land.

Section 2 provides an overview of the materials and methods used in this study. The results are detailed in Sect. 3. We

summarize and discuss our findings in Sect. 4.
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2 Materials and methods

Here we introduce the data and methodology used in this study. Section 2.1 describes the CMIP6 and reanalysis data that we125

integrate. Section 2.2 explains the pre-processing of the data and its relevance in this study. Sections 2.3, 2.4, 2.5, 2.6, re-

spectively, introduce our multistep methodology consisting of dimension reduction, causal network estimation, causal network

evaluation, and causal weighting of climate models. Fig.1 presents the different steps of our framework.

2.1 Data

This study utilizes CMIP6 historical simulations of SLP spanning from 1979 to 2014, with daily time resolution. These simula-130

tions, derived from 23 different climate models, each with 2 to 10 ensemble members, are used to estimate the historical causal

networks. This results in a total of 154 ensemble members. The daily resolution of the SLP data provides a robust foundation for

analyzing the climate models and evaluating their performance in simulating SLP patterns. In addition to the historical simula-

tions of CMIP6, the study employs ERA5 reanalysis data sets (Hersbach et al., 2020), and NCEP/NCAR (Kalnay et al., 1996),

covering the period 1979-2014 with daily resolution. These reanalysis datasets serve as a reference for estimating the causal135

networks of SLP, providing a benchmark against which the performance of the climate models could be assessed. Additionally

to the SLP datasets, future climate projections of precipitation of the same climate models are incorporated using simulations

based on three Shared Socioeconomic Pathways (SSP, O’Neill et al., 2014): the medium-emission SSP2-4.5 scenario (101

total members), the high-emission SSP3-7.0 scenario (96 total members), and the very high-emission SSP5-8.5 scenario (107

total members), for the period 2015-2100 focusing on precipitation over land with yearly time resolution. These simulations140

are used to calibrate the model performance parameter σD of the weighting scheme. They are also used for the projections

of precipitation changes over land. A complete list of included models and members for the SLP historical simulations, and

precipitation SSP simulations is available in supplementary Table S1.

2.2 Data preprocessing

The preprocessing of the SLP data involved several crucial steps to ensure consistency and enhance the quality of the anal-145

ysis. Firstly, all the datasets (including the ERA5 dataset) are linearly interpolated to the 2.5◦ latitude × 2.5◦ longitude grid

of NCEP/NCAR. Subsequently, the daily data is detrended and anomalized by subtracting the climatological monthly
:::
are

::::::::
detrended

:::
on

:
a
::::::::

grid-cell
:::::
basis

::
to

:::::::
remove

:::::
small

::::::
trends

:::
and

::::::
ensure

::::::
robust

::::::
causal

:::::::::
discovery.

:::::::::
Anomalies

::::
are

::::
then

:::::::::
calculated

::::
using

::
a
:::::::::
long-term

::::
daily

:::::::::::
climatology

::
by

::::::::::
subtracting

::::
each

:::::
day’s

:
mean and dividing by the monthly variance, which reduces

seasonality in the data. In addition
::
its

::::::::
standard

::::::::
deviation.

::::::
While

::::
SLP

::::
data

::
is

::::::
largely

:::::::::
stationary

::::
even

:::::
under

::::::::
historical

:::::::
forcing150

:::::::::::::::::
(Nowack et al., 2020)

:
,
::::
these

:::::
steps

:::::::
improve

:::
the

::::::::::
stationarity

::
of

:::
the

::::
time

:::::
series

::::::
which

:
is
::::::::
essential

:::
for

:::
the

:::::::
effective

::::::::::
application

::
of

::
the

:::::::
PCMCI

:::::
causal

:::::::::
discovery

::::::::
algorithm

::::::::::::::::
(Runge et al., 2023)

:
.
::::::::::
Additionally, the data are separated to isolate winter (DJF: Decem-

ber, January, February), spring (MAM: March, April, May), summer (JJA: June, July, August), and autumn (SON: September,

October, November), as different causal dependencies are expected for each meteorological season. These preprocessing steps

5



Dimension reduction: PCA Varimax

Causal network estimation: PCMCI

Causal network evaluation: 𝐹1score

Interdependence between models Performance of models against observation

Model 1 network

Observation network
Model M network

Model 1

Observations

Model M

… …

Causal weighting based on model performance

and interdependence

Model weights 𝑊𝑖 after calibration of 𝜎𝐷 and 𝜎𝑆 Weighted multimodel projections

(a)

(b)

(c)

(d)

(e)

… …

Figure 1. Overview of the causal weighting framework. (a) Daily SLP data from NCEP/NCAR and ERA5 reanalyses is reduced using PCA-

Varimax to yield (b) regionally confined climate modes for each meteorological season and climate model. PCMCI estimates lagged causal

relationships, resulting in (c) dataset-specific causal networks for reanalysis and climate models. These networks enable (d) casual
:::::
causal

model evaluation via network similarity and (e) causal model weighting, which informs the weighted multi-model precipitation projections

over land.
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are designed to improve the stationarity of the time series, which is essential for the effective application of the PCMCI causal155

discovery algorithm (Runge et al., 2023).

2.3 Dimension reduction (Step 1)

As in Nowack et al. (2020), a PCA with Varimax rotation is used to extract the main modes of variability and to manage the

high dimensionality of the SLP dataset. This dimension reduction step is crucial to represent the processes of interest.

PCA serves as a dimension reduction technique, preserving as much information as possible while reducing the number of160

dimensions (Shaffer, 2002; Ramsay and Silverman, 2005). This is accomplished by identifying orthogonal linear combinations

(known as principal components) from the original spatial data. These initial components often lack straightforward interpreta-

tion. Varimax rotation’s role is to enhance interpretability by transforming the principal components. Varimax rotation achieves

this by maximizing the variance of loadings on each component (Rohe and Zeng, 2023; Kaiser, 1958). The loadings become

more localized on specific variables, making them distinct and easier to interpret.165

The PCA-Varimax transformation is derived from the reference reanalysis datasets individually for each season and subse-

quently applied to the datasets of all climate models. For the final analysis, the first 60 components are selected that capture the

essential characteristics of the variability of SLP data. In the remainder of the study, we use the terms components and modes

interchangeably to refer to the PCA-Varimax components.

2.4 Causal network estimation (Step 2)170

The next step is the estimation of time-lagged causal relationships within the reduced datasets. As correlation alone does not

establish causation, we choose to apply causal discovery methods which come with certain assumptions. Here, the assumptions

are that all the relevant variables are included in the analysis (causal sufficiency), the causal relationships and the distributions

of the variables remain consistent in the sample data (stationarity), and the statistical dependencies and independencies are a

true reflection of the underlying causal structure (faithfulness and Markov condition) (Runge et al., 2023). We underscore that175

not all of these assumptions are strictly verified in this study. For instance, causal sufficiency is not fully met, as our analysis is

restricted to SLP causal networks. However, these assumptions are less critical in our case because our main goal is to derive a

metric of the data, rather than to determine the exact causal relevance of each link. The rationale behind using causal discovery

is that it offers a more precise estimation of dynamical interactions compared to correlation networks, thanks to its ability to

filter out spurious relationships.180

Given this last assumption, we choose to implement the PCMCI causal discovery algorithm, which is well-suited for time se-

ries data with no contemporaneous effects (Runge et al., 2019b). PCMCI aims to uncover causal relationships among variables

by assessing conditional dependencies over different time lags. PCMCI builds on the PC algorithm — a constraint-based causal

discovery method — by incorporating momentary conditional independence (MCI) tests. These tests help identify causal links

even when variables exhibit high autocorrelations, which is common with climate time series (Runge et al., 2019a). During185

the MCI step, the PCMCI algorithm tests for conditional independence among variables. A causal link is only considered

significant if the p-value of the test is less than or equal to a significance level αMCI set by the user.
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In this study, the PCMCI algorithm is applied to the principal component time series of each dataset (one dataset per member

and season), which are derived from the previous dimension reduction step. The PCMCI algorithm outputs a causal network,

enabling the identification of causal pathways between the SLP modes of individual climate datasets or reanalysis datasets.190

This step identifies significant causal relationships, which is crucial for understanding the dynamical interactions between the

SLP modes.

2.5 Causal network evaluation (Step 3)

Following the identification of causal relationships, the resulting causal networks are evaluated using similarity and distance

metrics. Given the relatively large size, consisting of 60 variables and a maximum time lag of 20 days, it is challenging to195

discern patterns. This complexity underscores the necessity of employing a similarity metric to facilitate the comparison of

causal networks. The similarity is quantified using the F1 score introduced in Nowack et al. (2020), while its complement

1−F1 score serves as a measure of distance. The F1 score is defined as the harmonic mean between precision and recall

where: Precision = TP
TP+FP , Recall = TP

TP+FN and F1 =
2·Precision·Recall
Precision+Recall

Compared to a reference network, FP represents the count of falsely identified links, FN is the count of undetected links, and200

TP denotes the number of correctly identified links. Like Nowack et al. (2020), we adjusted the traditional F1 score definition

to account for the sign of the dependencies and integrated a relaxation of the time-lags of identified links. Specifically, if a link

exists in reference network A and corresponds to a link in network B with the same causal direction within a time range of

±τDiff time lags, we consider it a correctly identified link (TP).

The performance of each climate model’s causal network is assessed against a reference causal network derived from obser-205

vational data, with the distance to this reference network serving as the performance metric. Furthermore, the interdependence

among the causal networks of the climate models is quantified, reflecting the degree of similarity or divergence among the

networks. Smaller distance values indicate greater similarity, both in terms of performance relative to the reference and in

terms of dependence among the models. These measures are averaged over separate causal networks obtained for the four

meteorological seasons for each model and reanalysis dataset. The results provide insights into the relative performance and210

distinctiveness of each model’s representation of atmospheric dynamical processes.

2.6 Causal weighting scheme based on performance and interdependence (Step 4)

In this study, we develop a new weighting scheme called causal weighting, which is based on the performance and inter-

dependence of the model causal networks. Specifically, we measure performance and assess interdependence between the

networks using the complement of the F1 scores, calculated as 1−F1 score. These scores are then normalized by the median215

score across all models. The causal weighting scheme aims to assign higher weights to models that closely match the reference

causal network (indicating high performance) and exhibit unique causal structures (indicating high independence). The scheme

is formulated as:
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In Eq. 1, M indicates the number of models in the ensemble, 1−F i
1 is the normalized "distance" of model i relative to220

observations or reanalyses, and 1−F ij
1 is the normalized "distance" of model i relative to model j. Weights are normalized

to sum to 1. The causal weighting is inspired by the scheme introduced in Knutti et al. (2017) and further explored in several

follow-up studies (Brunner et al., 2020). In the original scheme, the performance and interdependence are measured with

root-mean-square differences (RMSD).

The parameters σD and σS determine the balance between model performance and interdependence. The calibration of225

the interdependence shape parameter σS is performed first. In the original weighting scheme, different options are available

to calibrate σS as reported in Merrifield et al. (2020). We choose one of the more robust options. Namely, we identify an

interdependence shape parameter larger than the typical distances between members of the same model but smaller than the

typical intermodel distances. More independent models are given smaller denominators resulting in larger weights.

The other weighting parameter is the performance shape parameter σD. Large σD values result in equal weighting across230

models, whereas small σD values cause aggressive weighting, with high-performance models receiving the majority of the

weights. After calibrating σS , a perfect model test is used to estimate the performance shape parameter σD by evaluating

climate models based on their historical performance without being overconfident (Karpechko et al., 2013; Abramowitz and

Bishop, 2015; Wenzel et al., 2016; Sanderson et al., 2017; Knutti et al., 2017; Brunner et al., 2020). In the perfect model test

approach, each model is sequentially treated as the “truth”, while the other models are weighted to project the future target235

response of the perfect model. After testing σD values between 0.1 and 2.0, the calibration selects the smallest σD value for

which the projection is not overconfident, i.e., when 80% of these "perfect models" fall within the 10–90 percentile range of

the weighted distribution in the target period. To prioritize performance over interdependence in the weighting trade-off, we

reduce this proportion to 70%. In this study, the target to predict is the precipitation over land for different SSPs and periods

(2041-2060 and 2081-2100), resulting in different calibrated values.240

Once the two shape parameters have been calibrated, the weights are computed to obtain weighted multimodel means and

ranges of future climate projections. The weighting scheme and associated figures were developed using the Earth System

Model Evaluation Tool (ESMValTool) version 2 (Eyring et al., 2020; Righi et al., 2020; Lauer et al., 2020; Brunner et al.,

2020; Schlund et al., 2023).

2.7 Technical details245

::::
Both

:::
the

::::::::::::
observational

::::
data

:::
and

:::
the

:::::::
climate

::::::
model

::::::::::
simulations

::::::
contain

:::::::
internal

::::::::::
variability,

:::::
which

::::
can

::::::::
introduce

:::::
noise

::::
and

:::::::::
potentially

:::
bias

:::
the

::::::::::
comparison

::::::::
between

::::::
models

::::
and

:::::::::::
observations.

::
To

:::::::
mitigate

:::
its

::::::::
influence,

::::::::
multiple

::::::::
ensemble

::::::::
members

:::
for

::::
each

:::::
model

:::::
were

:::::::::
processed,

::::
with

:::::
causal

::::::::
networks

:::::::
derived

::::::::::::
independently

::
for

:::::
each.

::::
The

::::
final

::::::::
F1-scores

::::::::
represent

:::
an

::::::::
ensemble

:::::::
average,

:::::
which

:::::::
reduces

:::
the

::::::::
variability

::::::
effects

:::
by

:::::::::
smoothing

:::
out

::::::::::::::
member-specific

::::::
results.

:::::::::::
Recognizing

:::
that

:::::::::
reanalysis

:::::::
datasets
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:::::::::
themselves

:::
are

::::::
subject

::
to
:::::::

internal
:::::::::
variability

::::
and

:::::::::::
measurement

:::::::::::
uncertainties,

:::
we

:::::
have

:::::::
analyzed

::::::::
multiple

::::::::
reanalysis

::::::::
products250

::::::
(ERA5

:::
and

:::::::::::::
NCEP/NCAR).

In the dimension reduction step, we keep the first 60 components of the 100 obtained from the PCA-Varimax analysis. Some

tests are also performed with only the first 50 components. Components with unresolved frequency spectra or dipolar patterns

are discarded similar to the methodology used in Nowack et al. (2020). This selection ensures that only the most significant

and stable modes of variability are considered, enhancing the quality of the following steps in our methodology.255

Time-lagged dependencies within the data are estimated using the PCMCI algorithm, with a minimum time lag τmin of 1 day

and with a maximum time lag τmax set to 20 days, though trials with a maximum time lag of 10 days are also tested. PCMCI

outputs a time series Directed Acyclic Graph (DAG, Runge et al., 2023), where the nodes represent variables, the directed

edges indicate lagged causal relationships, and there are no cycles in the graph. We assume that the causal dependencies are

linear and with additive Gaussian noise. Under such assumptions, we employ the partial correlation conditional independence260

tests within PCMCI to detect these dependencies. The hyperparameter αMCI , which controls the significance threshold for the

PCMCI algorithm’s MCI step, is set to 10−5 in the results presented in the main text. We briefly investigate the sensitivity of

the causal model evaluation to larger values of this parameter in the appendix D1.

The causal network evaluation employs the F1 score, which is "relaxed" by counting links as true positives even if they occur

at slightly different time lags than the reference. We set this window at 2 days (τDiff = 2 days).265

3 Results

In this section, we present the findings for each step of our methodology as applied to the CMIP6 model datasets.

3.1 Dimension reduction
:::
and

::::::
causal

:::::::
network

::::::::::
estimation (Step 1

:
&

::
2)

::::::
Results

::
of

:::
the

:::::::::
dimension

::::::::
reduction

::::
step

:::
are

:::::
shown

:::
in

:::
Fig.

:::
A1

:::
and

:::
A2

::
in

:::
the

::::::::
appendix.

:
In Fig. A1 and A2 in the appendix, we

show the centers of the 60 first PCA-Varimax components. By comparing the spatial patterns for each season between ERA5270

and NCEP/NCAR, we can observe similarities and differences in the distribution of components. Generally, we see similar

large-scale patterns since both datasets are reanalyses of atmospheric variables. However, differences arise due to variations in

data assimilation methods, and model physics. PCA-Varimax identifies major modes of variability for all seasons and datasets

as reported in Vejmelka et al. (2015) and Nowack et al. (2020). The components explaining the most variance are located in the

tropics (for example El Niño region), influencing atmospheric circulation globally. In our analysis, we chose to retain the first275

60 components from the 1979-2014 data to better cover the Northern Hemisphere, particularly during the JJA season. Using

SLP data from 1948 to 2017, Nowack et al. (2020) truncated and kept a selection of 50 components, discarding additional

components due to unphysical time series, such as sudden jumps observed in 1979 when entering the satellite era. We do not

encounter these jumps in the time series that start in 1979. We also perform tests with 50 components to investigate the stability

of the methodology. Components retrieved from NCEP/NCAR were used across all climate models to obtain reduced datasets.280

Additionally, components derived from ERA5 were used as an alternative reference for all models.
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3.2 Causal network estimation (Step 2)

Although a maximum time lag of 20 days was set for PCMCI, 99.9 % of the dependencies were found within the first 10 days.

The causal networks are too complex to visualize, with an average of 18 causal dependencies per mode for NCEP/NCAR and

20 for ERA5. For this reason, we choose to inspect only the most significant causal dependencies of each mode. Fig. ?? and ??285

in the appendix display the most significant causal dependencies for each mode in the two reanalysis datasets during the winter

months (DJF). Despite the lack of spatial information provided to the PCMCI causal discovery algorithm, the most significant

dependencies predominantly originate from neighboring modes. This finding indicates
::::::::
Discussed

::
in

:::::
more

:::::
detail

::
in

:::::::
appendix

:::
B,

:::
our

:::::::
findings

:::::::
indicate that the causal network estimation step identifies physically meaningful dependencies between the SLP

modes for both reanalysis datasets.290

3.2 Causal network evaluation (Step 3)
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Figure 2. Comparison of the climate models’ causal networks F1 scores with
::::::::::
NCEP-NCAR

:
(a
::::
green) NCEP-NCAR and

::::
ERA5

:
(b

:::
blue) ERA5

as reference. This figure illustrates the similarity between climate models’ causal networks and those of the reference reanalysis datasets,

averaged across all available members and seasons, using the F1 score. Higher F1 scores indicate greater similarity. The rank of each model’s

similarity is denoted on top of each bar.
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Figure 3. Similarities of the climate models’ causal networks when the modes are obtained from (a) NCEP/NCAR and (b) ERA5. This

figure illustrates the similarity between the causal networks of different climate models. Similarity is quantified using the F1 scores between

two models. Higher values denote greater similarity or lower independence. The causal networks of one climate model (row) are compared

against the causal networks of other climate models used as reference (columns). The values are averaged across the members of each climate

model and over all seasons.

Fig. 2 compares climate models’ causal networks’ F1 scores relative to (a) NCEP-NCAR and (b) ERA5 reference datasets.

Higher F1 scores indicate greater similarity between model networks and the references, averaged across all members and

seasons. Interestingly, the F1 scores are consistently higher when compared to ERA5 than to NCEP-NCAR, indicating that the

models’ dynamical SLP patterns generally match ERA5 more closely. The Spearman’s rank correlation coefficient is calculated295

between the rankings of climate models to assess variation in rankings across the different reference datasets (NCEP/NCAR and

ERA5), yielding a coefficient of 0.91. This confirms a strong
::
A

::::
more

:::::::
detailed

:::::::
analysis

::
of

:::
the

:
consistency between the climate

model rankings with the NCEP-NCAR and ERA5 references. The obtained p-value from the Student’s t-test is 1.1× 10−9,

rejecting the null hypothesis of no ordinal correlation between the rankings of models with NCEP/NCAR or ERA5 taken as

reference
:::::
model

:::::::::::
performance

::::::
across

::::::::
reanalysis

:::::::
datasets

:::
and

:::::::::::::
meteorological

::::::
seasons

::
is
:::::
given

::
in

::::::::
appendix

::
C.300

In Fig. D1, we varied
:::::::::
Sensitivity

::::
tests

:::
for

:
the significance level αMCIof PCMCI from 10−5 to 10−4 and 10−3. Fig. D2

demonstrates the effects of reducing the number of modes in the networks from 60 to 50 and decreasing the
:
,
:::
the

:
maximum

time lag in the PCMCIalgorithm from 20 to 10 days. While these variations affected the F1 score values moderately, they had

a minimal influence on the rankings of the climate models. This was evaluated by calculating the Spearman’s rank correlation

coefficient for the modified experiments against the baseline experiment presented in the main text (Figure 2a), which used the305

NCEP/NCAR reference with 60 modes and αMCI = 10−5. The correlation coefficients were close to 1, ranging from 0.95 to

0.98, confirming a strong ordinal correlation between the rankings of models in the different experiments. The p-values, all
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smaller than 10−11, rejected the null hypothesis of no ordinal correlation between the alternative experiments and the baseline

experiment.
::::::::
parameter

::
in

:::::::
PCMCI,

:::
and

:::
the

:::::::
number

::
of

::::::::::
components

:::::::
retained

::::::
during

:::
the

:::::::::
dimension

::::::::
reduction

:::
step

:::
are

::::::::
provided

::
in

::::::::
Appendix

::
D.

:
310

In Fig. 3, models with similar causal networks have high similarities. Climate models sharing development in their atmospheric

models exhibit the highest F1 scores
:::::
shared

:::::::::::::
developmental

::::::
features

::::::
exhibit

::::::
higher

::::::
causal

:::::::
network

::::::::
similarity,

:::::
likely

::::
due

::
to

::::
their

:::::::::
comparable

:::::::::
dynamical

:::::::::::::
representations. For example, the ACCESS, UKESM, HadGEM and K-ACE models share more similar

causal networks as measured by the F1 scores. As reported in the genealogy tree of CMIP6 models in Kuma et al. (2023),

the HadGEM2 model was an ancestor of the aforementioned models. Additionally, climate models developed by the same315

institute (such as the CNRM-CM6-1 and CNRM-ESM2-1) exhibit more similar causal networks, as indicated by the F1 scores.

This finding confirms that the evaluation of the SLP causal networks can identify models with similar physical cores and,

consequently, similar dynamical sea-level pressure processes. This result is consistent with previous literature, as Nowack

et al. (2020) showed that CMIP5 models with shared development and atmospheric models also exhibited more similar causal

networks.320
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Figure 4. Relationship between precipitation change over land under SSP2-4.5 (c,f), SSP3-7.0 (b,e) and SSP5-8.5 (a,d) scenarios and F1

scores, using NCEP/NCAR (a,b,c) and ERA5 (d,e,f) causal networks as references. The x-axis shows precipitation changes between 1850-

1900 and 2050-2099, while the y-axis represents F1 scores of climate model causal networks relative to the reference. F1 score values
:::::
scores

are averaged across all seasons and available members of a model.
:::
The

:::
red

::::
solid

:::
line

:::::
shows

:
a
:::::::::
polynomial

::
fit

:::
and

:::
the

::
red

:::::
filled

:::
area

::::::
depicts

::
the

::::
90%

::::::::
confidence

::::
band

:::::
based

::
on

:
a
::::::::
two-tailed

:::::
t-test.

:::
The

:::
blue

::::::
dashed

:::
line

:::::::::
corresponds

::
to

::::
linear

:::
fit.
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Fig. 4 shows the relationship between the F1 scores of the CMIP6 climate models’ causal network and the changes in

precipitation over land for the SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios. The shape indicates a parabolic relationship
::
an

::::::::::::
approximately

:::::::
parabolic

::::::::::
relationship

::::
over

:::
the

:::::
space

::
of

:::::::::::
opportunities

:::::::
covered

:::
by

::::::
CMIP6

::::::
models

:
between the F1 scores and the

precipitation changes. A statistical analysis confirms a parabolic
:::::::::
Statistically

:::::::::
significant

::::::::
parabolic

::::::::::
relationships

:
(polynomial of

degree 2) relationship with a p-value
::::
with

:::::::
p-values of less than 0.05 , indicating a strong and statistically significant relationship325

(except for a p-value of 0.06 for SSP3-7.0 and ERA5 reference)
:::
are

:::::
found. Significant parabolic relationships are found for all

SSPs and the two different references, underscoring the robustness of this relationship for different global warming scenarios

and reference reanalysis datasets. Notably, climate models with higher F1 scores, indicating better representations of observed

dynamical sea level pressure patterns, tend to cluster around the center of the parabola. These models project precipitation

changes in the mid-range compared to other CMIP6 models. On the contrary, climate models with lower F1 scores, indicating330

lower representations of observed dynamical sea level pressure patterns, tend to either overestimate or underestimate precip-

itation changes over land. Nowack et al. (2020) previously reported a significant parabolic relationship between precipitation

changes under the RCP8.5 scenario and F1 scores of CMIP5 models. Our findings extend this relationship to CMIP6 models

using daily data, compared to the three-day resolution in Nowack et al. (2020), suggesting that F1 scores may serve as a robust

constraint for projecting precipitation changes over land.335

Unlike emergent constraints, which typically display linear relationships, we present a different approach. On the x-axis , we

have
::
in

:::
Fig.

::
4,
:::

we
::::::::
consider a metric which is an observable (the causal network) relative to the observed values (the reference

causal network), rather than the observable itself. As a result, the relationship is not linear but rather a concave function with a

distinct peak, here a
::
an

::::::::::::
approximately

:
parabolic relationship between the F1 scores and the precipitation changes.

3.3 Causal weighting scheme based on performance and interdependence (Step 4)340

Table 1. Calibrated performance shape parameters σD for different target periods (columns), SSPs (rows) and reference reanalysis dataset

(sub-tables).

NCEP/NCAR 2041-2060 2081-2100

SSP2-4.5 0.4 0.3

SSP3-7.0 0.28 0.3

SSP5-8.5 0.53 0.29

ERA5 2041-2060 2081-2100

SSP2-4.5 0.36 0.26

SSP3-7.0 0.25 0.29

SSP5-8.5 0.48 0.28

The
:::
Our previous findings suggest that leveraging the climate models’ causal networks’ similarity to reference reanalysis

causal networks and the intermodel similarities can be promising to constrain precipitation changes over land. We found that

models sharing atmospheric characteristics exhibit higher causal network similarity, highlighting the ability of the methodology

in capturing sea level pressure (SLP) dynamics accurately. Furthermore, the parabolic relationship between F1 scores —

measuring a model’s ability to replicate observed SLP dynamics — and its projection of precipitation changes over land345
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Figure 5. Boxplots of weighted and unweighted projections of precipitation over land relative to 1995-2014 for (a) the SSP5-8.5, (b) SSP3-

7.0, (c) and SSP2-4.5 scenarios. The grey boxplots represent unweighted projections, the green boxplots represent projections weighted

using NCEP/NCAR as a reference, and the blue boxplots represent projections weighted using ERA5 as a reference. Each boxplot displays

the mean (black solid line), likely ranges (17–83 percentile), and very likely ranges (5–95 percentile). The y-axis indicates the precipitation

change over land, while the x-axis indicates the target period.

support the use of the F1 scores as a diagnostic to weight climate projections of precipitation based on their SLP representation

skill.

Using the notation of Eq. 1, the complement of the F1 score serves to measure the distance of models to a chosen reference

reanalysis dataset and to evaluate the interdependence among the different models. These distances are separately normalized

by the median over all models. After this normalization, the distances can range from 0 to values greater than 1.350

The interdependence shape parameter σS is calibrated first. We calculate the average distance between members of the same

model and the average distance between members of different models. A robust choice for σS should lie between these typical

distances. These distances are presented in Fig. E1, leading to a calibrated σS value of 0.9.

The model performance parameter σD is then calibrated using the perfect model test described in Sect. 2.6. A specific σD

value was calibrated for each SSP (SSP5-8.5, SSP3-7.0, SSP2-4.5), target period (2041-2060 and 2081-2100), and reference355

dataset (NCEP/NCAR and ERA5). The calibration results, reported in Table 1, range from 0.25 to 0.53.

3.4 Weighted projections of land precipitation changes

Using the calibrated shape parameters, the weights for each combination of SSP, target period, and reference dataset are derived

by applying Eq. 1. These weights are used to calculate the weighted projections for a medium (SSP2-4.5), high (SSP3-7.0) and

very high (SSP5-8.5) emission scenario.360

The weighted and unweighted projections are shown in Fig. 5. The boxplot indicates the mean, likely (17–83 percentile)

and very likely (5–95 percentile) ranges of projected precipitation changes over land relative to 1995–2014. In general, we

observed narrower ranges for the weighted projections. Across all scenarios and reference datasets, the weighted means of

precipitation over land do not significantly differ from the unweighted mean. However, the likely and very likely weighted
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ranges are generally reduced compared to the unweighted ranges, except for those based on the SSP2-4.5 scenario in the 2041-365

2060 period. The reduction in uncertainty is consistently higher when ERA5 is used in the dimension reduction and causal

model evaluation steps compared to NCEP/NCAR. In particular, the upper bounds of the weighted ranges (83th percentiles

for the likely range, 95th percentiles for the very likely range) are consistently shifted downward, indicating that ensembles

with larger projected precipitation changes over land are less probable. The most substantial reductions in uncertainty ranges

occur for the SSP5-8.5 scenario during the 2081-2100 period. This reduction in the weighted upper bound aligns with previous370

studies that constrained global (not only land) mean precipitation, which also reported lower upper bounds of projections

for various SSPs and target periods (Shiogama et al., 2022; Dai et al., 2024). In contrast, no consistent trend is observed

for the lower bounds of the weighted ranges across the SSPs and target periods. For the period 2081–2100, the very likely

range in the ERA5 weighted projections is narrowed compared to raw CMIP6 projections. Under SSP5-8.5, the range is

reduced from [0.099− 0.321] mm day−1 to [0.113− 0.299] mm day−1. Similarly, under SSP3-7.0, the range decreases from375

[0.070− 0.244] mm day−1 to [0.060− 0.216] mm day−1, and under SSP2-4.5, it is reduced from [0.055− 0.205] mm day−1

to [0.057− 0.188] mm day−1. This represents a decrease from 10 to 16 % in range sizes relative to the unweighted ranges and

across the different SSP scenarios. The reduction is even more pronounced for the likely ranges, decreasing substantially by

16 to 41 % relative to the unweighted ranges and across the different SSP scenarios. These findings highlight the effectiveness

of the weighting method in narrowing the projection uncertainty of precipitation over land.380

Given that the causal weighting accounts for models that better represent the dynamical pattern of SLP globally, we also

examine the spatial pattern of precipitation change over land under global warming. Fig. 6(a-c) shows the spatial distribution of

the causally weighted projections of mean precipitation changes for three SSP scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5)

for the period 2081–2100 relative to 1995–2014. ERA5 was used as a reference for the causally weighting. The projections in-

dicate substantial regional variability across all scenarios. Significant increases in mean precipitation are projected in Northern385

Europe, Northern Asia, parts of North America, as well as East and South Asia, and Central and Eastern Africa. These regions

could see increases of up to 1.2 mm day−1 under the SSP5-8.5 scenario. Conversely, decreases in precipitation are projected

for the Mediterranean basin, Central America, Northern South America with reductions reaching up to -1.2 mm day−1. These

trends are consistent across all three SSP scenarios, though the intensity varies, with the most pronounced changes observed

under the SSP5-8.5 scenario.390

Fig. 6(d-f) presents the difference between the absolute changes of the causally weighted and unweighted mean for the period

2081–2100 relative to 1995–2014, while Fig. 6(g-i) depicts the difference between the relative changes of the causally weighted

and unweighted mean. Despite the spatially averaged weighted projections of precipitation change over land showing no

significant deviation from the unweighted averages (refer to Figure 5), Fig. 6(d-i) highlights that the weighted patterns exhibit

notable spatial variations compared to the unweighted mean precipitation absolute change. Regions with positive absolute395

differences indicate areas where the weighted projections forecast greater increases in precipitation relative to the unweighted

mean. Conversely, negative absolute differences denote areas where the weighted projections give smaller increases or larger

decreases in precipitation than the unweighted mean. In particular, South America demonstrates the most significant variations

in the weighted projections, with absolute differences reaching up to ±0.4 mm day−1. However, the map of differences between
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Figure 6. Patterns of causally weighted projections of mean precipitation change over land in 2081–2100 relative to 1995–2014 for (a)

SSP5-8.5, (b) SSP3-7.0, (c) and SSP2-4.5 scenarios. The differences between the weighted and unweighted mean precipitation change are

shown in (d) for SSP5-8.5, (e) for SSP3-7.0, and (f) for SSP2-4.5 scenarios. The differences between the weighted and unweighted mean

precipitation relative change are shown in (d) for SSP5-8.5, (e) for SSP3-7.0, and (f) for SSP2-4.5 scenarios. ERA5 was used as a reference

for the causal weighting.

the relative changes of the weighted and unweighted mean precipitation suggests that these absolute changes are not the largest400

relative changes globally. The region of the Sahara, the Arabian Peninsula, Southwest and North America, and Northeastern

Greenland exhibit more pronounced relative changes, with values reaching up to 20 %.

A figure comparable to Fig. 6 is presented in Fig. F1 of the appendix, illustrating the projected changes for the period

2041–2060. The observed trends for 2081–2100 remain consistent for this earlier period.

4 Summary and discussion405

Climate projections derived from an ensemble of multiple climate models participating in the Coupled Model Intercomparison

Project Phase 6 (CMIP6, Eyring et al., 2016) continue to have large uncertainties for precipitation (Tebaldi et al., 2021). This

hinders accurate information to be delivered for mitigation and adaptation. Eyring et al. (2019) argue that advanced methods

for model weighting are needed to distil more credible information on regional climate changes, pointing out the importance
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of considering both model performances and interdependencies in model weighting studies as for example presented by Knutti410

et al. (2017) and Brunner et al. (2020). Machine learning can play an important role in pushing the frontiers of climate model

analysis Eyring et al. (2024a), including approaches to weight multimodel projections (Schlund et al., 2020a). Here we build

on a previous study that evaluates the performance of a CMIP ensemble with causal networks (Nowack et al., 2020) and expand

this concept to a weighting scheme for precipitation projections with causal discovery.

We first demonstrate that causal model evaluation of CMIP6 models can effectively identify specific causal fingerprints of415

sea level pressure (SLP) that influence precipitation patterns and their projections. Notably, we identify a parabolic relationship

between the ability of climate models to represent observed dynamical SLP patterns in causal networks, quantified by the

networks’ F1 scores, and the projected precipitation changes over land by the end of the century. CMIP6 models that better

represent reference dynamical interactions in their causal networks produce projections within the middle range of the CMIP6

ensemble, while models with lower skill either overestimate or underestimate the mean projections. This pattern is consistent420

across various global warming scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5) and reference reanalysis datasets (NCEP/NCAR

and ERA5). Similar findings were reported by Nowack et al. (2020) for the RCP8.5 simulations of CMIP5 models.

Additionally, our study reveals that CMIP6 models with shared development, such as those with a common ancestor model

or the same atmospheric model, exhibit more similar causal pathways. This result underscores the ability of the causal model

evaluation to effectively identify interdependencies of the CMIP6 models.425

Building on these findings, the study introduces a causal weighting scheme for climate projections based on the performance

and interdependence of their causal networks. By combining causal model evaluation with multimodel weighting, this approach

offers a convincing alternative to traditional weighting based on metrics such as root-mean-square error or trend analysis (Knutti

et al., 2017; Brunner et al., 2020; Liang et al., 2020; Tokarska et al., 2020).

The implementation of this causal weighting scheme for projecting precipitation over land significantly reduces the uncer-430

tainty range of the climate projections. While the weighted mean projections are closely aligned with the unweighted means,

the likely (17–83 percentile) and very likely (5–95 percentile) weighted ranges were notably narrower, and the spatial patterns

revealed regional differences in precipitation. For the end-of-century period 2081–2100, the sizes of the very likely weighted

ranges under SSP2-4.5, SSP3-7.0, and SSP5-8.5 are reduced by 10 to 16 %, while the likely ranges show an even greater

reduction, ranging from 16 to 41 %, when ERA5 was used as a reference.435

For future research, we consider several areas to be particularly promising. One potential direction is the development

of multi-diagnostic weighting (Schlund et al., 2020a), which involves integrating multiple metrics alongside the SLP causal

network distance metric into the weighting process.
:::
This

::::::::::::::
multi-diagnostic

::::::::
approach

:::::
could

:::::::
improve

:::::::::::
precipitation

::::::::::
projections

:::::
further

:::
by

:::::::::
addressing

::::::
model

::::::::::
differences

::::
more

:::::::::::::::
comprehensively.

:
By considering additional diagnostics, such as temperature

trends, weighted projections may further reduce the uncertainty of projected precipitation over land. Another promising di-440

rection is the regional weighting of precipitation change. This approach would focus the weighting scheme specifically on

regional precipitation projections, incorporating both global and region-specific diagnostics. Tailoring multimodel weighting

to specific regions could prove especially effective. Exploring alternative similarity measures is also a key area for future inves-
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tigation. Currently, F1 scores are used to measure the similarity between causal networks, but alternative measures that better

discriminate between causal networks or that consider causal effects could provide new insights.445

Finally, we want to emphasize that our methodology is not limited to projecting precipitation changes over land. Its applica-

bility could extend to any target variable, provided that pertinent variables and diagnostics exhibiting a robust and consistent

relationship (e.g., a parabolic relationship) with the target variable are selected. Our results highlight the importance of inte-

grating advanced evaluation methods and weighting schemes to reduce the uncertainty ranges of climate projections (Nowack

and Watson-Parris, 2024). Alongside the development of improved hybrid Earth system models with machine learning with450

demonstrated reduction of long-standing systematic errors (Eyring et al., 2024a, b), this research provides a novel methodol-

ogy to constrain uncertainties in multimodel climate projections towards more robust climate change information and more

effective mitigation and adaptation strategies.
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Appendix A: Maps of sea level pressure components

::
In

::::
Fig.

:::
A1

:::
and

::::
A2,

:::
we

:::::
show

:::
the

:::::::
centers

::
of

:::
the

:::
60

::::
first

::::::::::::
PCA-Varimax

:::::::::::
components.

:::
By

:::::::::
comparing

::::
the

::::::
spatial

:::::::
patterns

:::
for455

::::
each

::::::
season

:::::::
between

:::::
ERA5

::::
and

::::::::::::
NCEP/NCAR,

:::
we

:::
can

:::::::
observe

:::::::::
similarities

::::
and

:::::::::
differences

::
in

:::
the

::::::::::
distribution

::
of

:::::::::::
components.

::::::::
Generally,

:::
we

:::
see

::::::
similar

:::::::::
large-scale

:::::::
patterns

::::
since

::::
both

:::::::
datasets

:::
are

:::::::::
reanalyses

::
of

::::::::::
atmospheric

::::::::
variables.

::::::::
However,

::::::::::
differences

::::
arise

:::
due

::
to

::::::::
variations

::
in
::::
data

::::::::::
assimilation

::::::::
methods,

:::
and

::::::
model

:::::::
physics.

::::::::::::
PCA-Varimax

:::::::
identifies

::::::
major

:::::
modes

::
of

:::::::::
variability

:::
for

::
all

:::::::
seasons

:::
and

:::::::
datasets

::
as

::::::::
reported

::
in

:::::::::::::::::::
Vejmelka et al. (2015)

::
and

::::::::::::::::::
Nowack et al. (2020).

::::
The

::::::::::
components

:::::::::
explaining

:::
the

:::::
most

:::::::
variance

:::
are

::::::
located

::
in

:::
the

::::::
tropics

:::
(for

::::::::
example

::
El

::::
Niño

:::::::
region),

::::::::::
influencing

::::::::::
atmospheric

:::::::::
circulation

:::::::
globally.

:
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Figure A1. Principal Component Analysis (PCA) with Varimax rotation for the NCEP/NCAR dataset during DJF (December, January,

February), MAM (March, April, May), JJA (June, July, August) and SON (September, October, December). Here, each component is repre-

sented by its core, which consists of loadings greater than 80% of the maximum loading.
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Figure A2. Principal Component Analysis (PCA) with Varimax Rotation for the ERA5 dataset during DJF (December, January, February),

MAM (March, April, May), JJA (June, July, August) and SON (September, October, December). Here, each component is represented by its

core, which consists of loadings greater than 80% of the maximum loading.
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Appendix B: Causal network estimation results

B1 Simplified NCEP/NCAR causal network

::::::::
Although

:
a
:::::::::
maximum

::::
time

::
lag

:::
of

::
20

::::
days

::::
was

:::
set

::
for

::::::::
PCMCI,

::::
99.9

::
%

::
of

:::
the

:::::::::::
dependencies

::::
were

:::::
found

::::::
within

:::
the

::::
first

::
10

:::::
days.465

:::
The

::::::
causal

:::::::
networks

:::
are

:::
too

::::::::
complex

::
to

::::::::
visualize,

::::
with

:::
an

::::::
average

::
of

:::
18

:::::
causal

::::::::::::
dependencies

:::
per

:::::
mode

:::
for

:::::::::::
NCEP/NCAR

::::
and

::
20

:::
for

::::::
ERA5.

:::
For

::::
this

::::::
reason,

:::
we

::::::
choose

:::
to

::::::
inspect

::::
only

:::
the

:::::
most

:::::::::
significant

:::::
causal

::::::::::::
dependencies

::
of

::::
each

::::::
mode.

::::
Fig.

:::
B1

::
in

::
the

::::::::
appendix

:::::::
displays

:::
the

:::::
most

:::::::::
significant

:::::
causal

:::::::::::
dependencies

:::
for

::::
each

:::::
mode

:::
in

::
the

::::
two

:::::::::
reanalysis

::::::
datasets

::::::
during

:::
the

::::::
winter

::::::
months

::::::
(DJF).

::::::
Despite

:::
the

::::
lack

::
of

::::::
spatial

::::::::::
information

:::::::
provided

::
to
:::
the

:::::::
PCMCI

::::::
causal

::::::::
discovery

:::::::::
algorithm,

:::
the

::::
most

:::::::::
significant

:::::::::::
dependencies

::::::::::::
predominantly

::::::::
originate

::::
from

:::::::::::
neighboring

::::::
modes,

:::::::::
indicating

:::
that

:::
the

::::::
causal

:::::::
network

:::::::::
estimation

::::
step

::::::::
identifies470

::::::::
physically

::::::::::
meaningful

:::::::::::
dependencies

:::::::
between

:::
the

::::
SLP

::::::
modes

:::
for

::::
both

::::::::
reanalysis

::::::::
datasets.
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Figure B1. Most significant causal dependencies of each ERA5 mode in DJF (December, January, February)
::
for

::
the

:::
(a)

:::::::::::
NCEP/NCAR

::
or

::
(b)

:::::
ERA5

::::::
dataset. The PCMCI causal discovery algorithm identifies physically meaningful links. Despite the lack of spatial information

provided to the algorithm, the most significant dependency for a mode generally originates from a neighboring mode. Each mode has, on

average, 18
:
or

::
20

:
causal dependencies

::
for

::::::::::
NCEP/NCAR

::
or
:::::
ERA5

:::::::::
respectively, with time lags ranging from 1 to 20 days. Notably, 99.9 % of

these dependencies are found with a time lag of less than 10 days.
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B1 Simplified ERA5 causal network

Appendix C:
::::::
Causal

:::::::
network

::::::::::
evaluation

::::::
results

:::
For

:::
Fig.

::
2,
:::
the

::::::::::
Spearman’s

::::
rank

:::::::::
correlation

:::::::::
coefficient

::
is

:::::::::
calculated

:::::::
between

:::
the

:::::::
rankings

::
of

:::::::
climate

::::::
models

::
to

:::::
assess

::::::::
variation

::
in

:::::::
rankings

::::::
across

:::
the

:::::::
different

::::::::
reference

:::::::
datasets

:::::::::::::
(NCEP/NCAR

:::
and

:::::::
ERA5),

:::::::
yielding

::
a

:::::::::
coefficient

::
of

::::
0.91.

:::::
This

:::::::
confirms

::
a475

:::::
strong

::::::::::
consistency

:::::::
between

:::
the

:::::::
climate

::::::
model

:::::::
rankings

::::
with

:::
the

::::::::::::
NCEP-NCAR

::::
and

:::::
ERA5

::::::::::
references.

::::
The

:::::::
obtained

:::::::
p-value

::::
from

:::
the

::::::::
Student’s

::::
t-test

::
is
::::::::::
1.1× 10−9,

::::::::
rejecting

:::
the

:::
null

:::::::::
hypothesis

:::
of

::
no

::::::
ordinal

::::::::::
correlation

:::::::
between

:::
the

:::::::
rankings

::
of

:::::::
models

::::
with

::::::::::::
NCEP/NCAR

::
or

::::::
ERA5

:::::
taken

::
as

:::::::::
reference.

::
In

::::
Fig.

:::
C1

:
,
:::
we

::::::::
compare

:::
the

::::::
climate

::::::::
models’

:::::
causal

:::::::::
networks’

:::
F1::::::

scores

::::::
relative

::
to

:::
the

::::::::::::
NCEP-NCAR

:::
and

::::::
ERA5

::::::::
reference

::::::
datasets

::::::
across

:::::::
different

:::::::
seasons

:::::
(DJF,

::::::
MAM,

::::
JJA,

:::
and

::::::
SON).

::::::::
Although

:::
the

:::::::
structure

::
of

:::
the

::::::
causal

::::::::
networks

:::::::
exhibits

:::::::::
substantial

::::::::
seasonal

::::::::
variation,

:::
the

::::::::::
comparison

::
of

:::
F1::::::

scores
::::::::::
consistently

:::::::::
highlights480

::::::
similar

::::::::::
performance

:::::::
patterns

:::::
across

:::::::
seasons.

::::
This

::::::::::
consistency

:::::::::
reinforces

:::
the

::::::
validity

::
of

:::::
using

::::::::::::::
season-averaged

::
F1::::::

scores
::
in

:::
the

:::
rest

::
of

:::
this

::::::
study.
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Figure C1. Most significant causal dependencies
::::::::

Comparison
:

of each
::
the

::::::
climate

::::::
models’

:::::
causal

::::::::
networks

::
F1:::::

scores
::::
with

:::::::::::
NCEP-NCAR

:::::
(green)

:::
and

:
ERA5 mode in DJF (December, January, February

:::
blue)

::
as

:::::::
reference

:::
for

:::
the

:::
four

::::::::::::
meteorological

::::::
seasons. The PCMCI causal

discovery algorithm identifies physically meaningful links. Despite
:::
This

:::::
figure

:::::::
illustrates the lack

:::::::
similarity

:::::::
between

::::::
climate

::::::
models’

:::::
causal

:::::::
networks

:::
and

::::
those

:
of spatial information provided to the algorithm

:::::::
reference

::::::::
reanalysis

::::::
datasets,

:::::::
averaged

:::::
across

::
all

:::::::
available

::::::::
members,

::::
using the most significant dependency for a mode generally originates from a neighboring mode

::
F1 ::::

score. Each mode has, on average, 20

causal dependencies, with time lags ranging from 1 to 20 days
:::::
Higher

:::
F1 :::::

scores
::::::
indicate

:::::
greater

:::::::
similarity. Notably, 99.9 %

:::
The

::::
rank of these

dependencies are found with a time lag
:::
each

::::::
model’s

:::::::
similarity

::
is
::::::
denoted

::
on

:::
top

:
of less than 10 days

:::
each

:::
bar.
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Appendix D: Impact of the number of modes, maximum time lag of PCMCI, and αMCI

::
In

:::
Fig.

:::
D1

:
,
:::
we

:::::
varied

:::
the

::::::::::
significance

::::
level

::::::
αMCI ::

of
::::::
PCMCI

:::::
from

::::
10−5

::
to
:::::
10−4

:::
and

:::::
10−3.

::::
Fig.

:::
D2

:::::::::::
demonstrates

:::
the

::::::
effects

::
of

:::::::
reducing

:::
the

:::::::
number

::
of

::::::
modes

::
in

:::
the

::::::::
networks

::::
from

:::
60

::
to

::
50

::::
and

:::::::::
decreasing

:::
the

::::::::
maximum

:::::
time

:::
lag

::
in

:::
the

::::::
PCMCI

:::::::::
algorithm485

::::
from

:::
20

::
to

:::
10

:::::
days.

:::::
While

:::::
these

:::::::::
variations

:::::::
affected

:::
the

:::
F1:::::

score
::::::
values

::::::::::
moderately,

::::
they

::::
had

:
a
::::::::

minimal
::::::::
influence

:::
on

:::
the

:::::::
rankings

::
of

:::
the

::::::
climate

:::::::
models.

::::
This

::::
was

::::::::
evaluated

::
by

::::::::::
calculating

::
the

::::::::::
Spearman’s

::::
rank

:::::::::
correlation

:::::::::
coefficient

:::
for

:::
the

::::::::
modified

::::::::::
experiments

::::::
against

:::
the

:::::::
baseline

::::::::::
experiment

::::::::
presented

::
in
:::

the
:::::

main
::::
text

::::::
(Figure

::::
2a),

:::::
which

:::::
used

:::
the

::::::::::::
NCEP/NCAR

::::::::
reference

::::
with

::
60

::::::
modes

:::
and

:::::::::::::
αMCI = 10−5.

:::
The

::::::::::
correlation

:::::::::
coefficients

:::::
were

::::
close

::
to

::
1,

:::::::
ranging

::::
from

::::
0.95

::
to

:::::
0.98,

:::::::::
confirming

:
a
::::::
strong

::::::
ordinal

:::::::::
correlation

:::::::
between

:::
the

:::::::
rankings

::
of
:::::::
models

::
in

:::
the

:::::::
different

:::::::::::
experiments.

:::
The

::::::::
p-values,

:::
all

::::::
smaller

::::
than

::::::
10−11,

:::::::
rejected490

::
the

::::
null

:::::::::
hypothesis

::
of

:::
no

::::::
ordinal

:::::::::
correlation

:::::::
between

:::
the

:::::::::
alternative

::::::::::
experiments

::::
and

:::
the

:::::::
baseline

::::::::::
experiment.
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Figure D1. Impact of αMCI on climate models’ causal networks F1 scores with NCEP-NCAR as reference. The causal networks, composed

of 60 modes, were constructed using varying levels of αMCI . Specifically, αMCI was varied from (a) 10−4 to (b) 10−3, whereas αMCI =

10−5 was used in the main text. αMCI represents the significance level for the MCI step in PCMCI. A causal link is established if the MCI

test value is equal to or smaller than αMCI . The Spearman’s rank correlation coefficient was calculated to compare the variation in model

rankings relative to the main text results in Fig. 2a. The resulting Spearman’s rank correlation coefficient and the associated p-value from a

Student’s t-test, testing the null hypothesis of no ordinal correlation between the rankings, are displayed in red.
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D2 Impact of the number of modes and maximum time lag on the causal model evaluation step
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Figure D2. Impact of the number of PCA-Varimax modes on climate models’ causal networks F1 scores with NCEP-NCAR as reference.

The causal networks are composed of 50 modes, in contrast to the 60 modes used in the main text. Additionally, the maximum time lag in

PCMCI is set to 10 days instead of 20 days. The parameter αMCI of PCMCI is also varied from (a) 10−5 to (b) 10−4. The Spearman’s rank

correlation coefficient was calculated to compare the variation in model rankings relative to the main text results in Fig. 2a. The resulting

Spearman’s rank correlation coefficient and the associated p-value from a Student’s t-test, which tests the null hypothesis of no ordinal

correlation between the rankings, are displayed in red at the top of each subfigure.
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Appendix E: Calibration of interdependence shape parameter σS

::
In

:::
Fig.

::::
E1,

::
we

::::
note

::::
that

::::::
internal

:::::::::
variability

:::::
itself

:::::
offers

:::::::::::
opportunities

::
to

::::
learn

:::::
about

:::
the

:::::::::
robustness

::
of

:::
our

:::::::
method.

:::::::::::
Specifically,495

::
we

:::::
have

:::::
found

::::::::::
differences

:::::::
between

:::
the

::::::
causal

::::::::
networks

::
of

:::
the

:::::::
models,

::::::
which

::::
were

::::::
shown

::
to

:::
be

:::::
larger

::::
than

:::
the

::::::::::
differences

:::::::
between

:::
the

::::::
causal

::::::::
networks

::::::
across

::::::::
ensemble

::::::::
members

:::
of

:::::::::
individual

:::::::
models.

::::
This

::::::::
supports

:::
the

::::
idea

::::
that

:::
the

::::::::::
differences

::
we

:::::::
capture

:::
are

::::::::::
meaningful

::::
and

:::
not

::::::
purely

::::
due

::
to

:::::::
internal

:::::::::
variability.

::::
This

:::::::
finding

:::::
aligns

:::::
with

::::::
results

::::
from

::::::::
previous

:::::
work

:::::::::::::::::
(Nowack et al., 2020)

:
,
:::::
where

::::
this

:::
was

:::::::::::
demonstrated

:::::::
clearly.
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Figure E1. Distances between ensembles of the same model and intermodel distances for (a) NCEP/NCAR and (b) ERA5 taken as reference.

The distances are calculated using the complement of the F1 scores normalized by the median across all models. σS is set to 0.9 (orange

dashed line) which separates most of the intermodel distances and the intramodel distances.
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Appendix F: Weighted projections of land precipitation changes500
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Figure F1. Patterns of causally weighted projections of mean precipitation change over land in 2041–2060 relative to 1995–2014 for (a)

SSP5-8.5, (b) SSP3-7.0, (c) and SSP2-4.5 scenarios. The differences between the weighted and unweighted mean precipitation change are

shown in (d) for SSP5-8.5, (e) for SSP3-7.0, and (f) for SSP2-4.5 scenarios. The differences between the weighted and unweighted mean

precipitation relative change are shown in (d) for SSP5-8.5, (e) for SSP3-7.0, and (f) for SSP2-4.5 scenarios. ERA5 was used as a reference

for the causal weighting.
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