Table S1. Comparison of dust intensive optical properties – the lidar ratio (LR, in sr), particle linear depolarization ratio (PLDR), extinction Angstrom exponent over 355 to 532 nm (EAE₃₅₅₋₅₃₂), backscattering Angstrom exponent over 355 to 532 nm (BAE₃₅₅₋₅₃₂), extracted from literatures and simulated with the scattering models for the aerosol models defined in Table 1. "Sphd" and "Sph" refer to the Spheroid and Sphere models, respectively. The ranges of the simulations result from the variation of the CRI and those of the measurements represent the measurement errors provided by the literatures. The Floutsi-23 combines the results of Saharan, Central Asian and Middle Eastern dust reported by Floutsi et al. (2023); the Haarig-22 corresponds to a pure dust case reported by Haarig et al. (2022); and the Hu-20 corresponds to the pure dust layer of the "Case 3" in Hu et al. (2020).

VSD	Scat.	LR355	LR532	LR1064	PLDR355	PLDR532	PLDR ₁₀₆₄	EAE355-532	BAE355-532
type	model								
	IH	77±48	66±34	72±32	$0.39{\pm}0.03$	0.36 ± 0.03	0.26 ± 0.05	-0.06 ± 0.05	-0.2 ± 0.5
TD	Sphd	67±41	58±32	77±32	$0.30{\pm}0.06$	0.31 ± 0.05	0.27 ± 0.01	-0.18 ± 0.03	-0.4 ± 0.6
	Sph	30±25	27±32	36±25	0	0	0	-0.22 ± 0.01	-0.2 ± 0.7
	IH	91±61	58±29	50±23	$0.42{\pm}0.07$	0.43 ± 0.03	0.37 ± 0.02	-0.07 ± 0.01	$-0.7{\pm}0.9$
FD	Sphd	91±58	55±29	57±25	0.26 ± 0.06	$0.29{\pm}0.06$	0.31 ± 0.05	-0.14 ± 0.02	-1.2 ± 0.7
	Sph	37±31	21±16	20±15	0	0	0	-0.13 ± 0.02	$-1.1{\pm}1.0$
	IH	83±42	55±23	47 ± 20	0.27 ± 0.07	$0.30{\pm}0.04$	0.32 ± 0.02	0.62 ± 0.10	-0.2 ± 0.5
BD	Sphd	86±39	52±21	53±22	0.18 ± 0.04	0.21 ± 0.05	0.27 ± 0.04	0.67 ± 0.13	-0.5 ± 0.3
	Sph	44 ± 30	24±15	20±14	0	0	0	0.76 ± 0.12	-0.7 ± 0.7
Measurements		LR355	LR532	LR1064	PLDR355	PLDR532	PLDR ₁₀₆₄	EAE355-532	BAE355-532
Floutsi-23		47±14	47±14	_	$0.24{\pm}0.03$	$0.30{\pm}0.03$	_	$0.10{\pm}0.20$	$0.2{\pm}0.1$
Haarig-22		47 ± 8	50 ± 5	69±14	$0.24{\pm}0.02$	$0.30{\pm}0.02$	0.21 ± 0.01	-0.01 ± 0.19	$0.04{\pm}0.5$
Hu-20		51±8	45±7	_	$0.32{\pm}0.07$	$0.34{\pm}0.05$	0.31 ± 0.04	$0.02{\pm}0.30$	-0.3 ± 0.3

Figure S1. Same as Fig. 10 except that the optical datasets are generated by the Spheroid model and the retrieval configurations $(3\beta + 2\alpha + 3\delta, \text{Spheroid}), (3\beta + 2\alpha, \text{Spheroid}), \text{ and } (3\beta + 2\alpha, \text{Sphero})$ are used

Figure S2. Same as Fig. 12 except that the optical datasets are generated by the Spheroid model.

Figure S3. Same as Fig. 13 except that the optical datasets are generated by the Spheroid model.