
RC1 Comments and responses: 

We thank the Reviewer for her/his insightful comments. We appreciate the time and effort invested 

in providing detailed suggestions. Below, we address each comment in detail and outline the 

corresponding actions we have taken.  

In light of the reviewers’ comments, some major modifications to the structure of the manuscript 

have been introduced. Namely: (i) the introduction of a ‘Discussion’ section which now hosts material 

previously shown in two appendixes, (ii) the introduction of a new Appendix that hosts a wide part of 

the architectural design of the models, previously shown in the Methods section, and (iii) the addition 

of a case study section in the discussion section which shows an additional analysis performed for the 

reviews. 

Specific Comments 

Comment#1: The objective of applying LDM for dynamical downscaling is timely and relevant, but it 

should be made clearer to a general audience. Explicitly outline what key challenges the LDM 

addresses that previous models have struggled with. Highlight the main contributions more 

prominently in the abstract and methods sections. Emphasize the specific advancements over existing 

downscaling techniques, particularly the practical significance of LDM compared to UNET and GAN 

approaches.  

Reply: We understand the feedback of the Reviewer and have revised the manuscript to 

address the Reviewer’s concerns with the following specific actions: 

Action:  

• The abstract has been mainly re-written and now reads as follows: 

“Deep learning (DL)-based downscaling is a key application in Earth System Modeling, 

enabling the generation of high-resolution fields from coarse numerical simulations at 

reduced computational costs compared to traditional regional models. Additionally, 

generative DL models can potentially provide uncertainty quantification through 

ensemble-like scenario generation, a task prohibitive for conventional numerical 

approaches. In this study, we apply a Latent Diffusion Model (LDM) to demonstrate that 

recent advancements in generative modeling enable DL to deliver results comparable to 

those of numerical dynamical models, given the same input data, preserving the realism 

of fine-scale features and flow characteristics at reduced computational costs. We apply 

our LDM to downscale ERA5 data over Italy up to a resolution of 2 km. The high-resolution 

target data consists of 2-m temperature and 10-m horizontal wind components from a 

dynamical downscaling performed with COSMO_CLM. A selection of predictors from ERA5 

is used as input and a residual approach against a reference UNET is leveraged in applying 

the LDM. The performance of the generative LDM is compared with reference baselines of 

increasing complexity: quadratic interpolation of ERA5, a UNET, and a Generative 

Adversarial Network (GAN) built on the same reference UNET. Results highlight the 

improvements introduced by the LDM architecture combined with the residual approach, 

outperforming all the baselines in terms of spatial error, frequency distributions, and power 

spectra. These findings point out the potential of LDMs as cost-effective, robust 



alternatives for downscaling applications (e.g. downscaling of climate projections) where 

computational resources are limited but high-resolution data is critical.” 

• The last part of the Introduction has been re-written and now reads as follows: 

“In this study, we develop and evaluate a Latent Diffusion Model (LDM), which represents 

a novel approach for atmospheric downscaling tasks. This method offers two key 

advantages: first, the diffusion-based framework ensures significantly more stable training 

and more realistic generations compared to GAN models while retaining the capability to 

generate fine-scale features and enabling ensemble generation. These attributes have 

demonstrated superior performance in image processing applications compared to GANs 

(Saharia et al., 2023; Dhariwal and Nichol, 2021). Second, the latent-space approach 

improves upon pixel-space diffusion methods by substantially reducing computational 

costs for both training and inference (Rombach et al., 2021), making it especially suitable 

for scaling downscaling tasks to larger spatial domains and longer temporal scales. Lastly, 

the high-resolution output from a numerical dynamical downscaling simulation serves as 

our target-reference dataset allowing us to assess whether a well-trained LDM can emulate 

the accuracy of dynamical downscaling. If successful, this approach would provide a highly 

efficient alternative to traditional numerical methods by drastically reducing 

computational demands while maintaining accuracy, making it a promising tool for a wide 

range of critical downscaling applications.”  

• The central body of Section ‘3. Related work and Contribution’ has been adjusted/re-

written and now reads as follows: 

“On the other hand, diffusion models have recently overtaken the GANs in the computer 

vision domain for super-resolution applications because they are easier and more stable to 

train and can produce more realistic samples (Moser et al., 2024; Saharia et al., 2023; 

Dhariwal and Nichol, 2021). Indeed, diffusion models explicitly model the probability 

distribution of the data through a diffusion process, ensuring that fine details are preserved 

while generating diverse outputs. On the contrary, the adversarial training of the GANs 

sometimes leads to artifacts or limited variability in results. In the Earth system domain, 

diffusion models introduce a relatively younger approach but have already been proven 

very effective in weather forecasting and nowcasting applications (e.g., Leinonen et al., 

2023; Li et al., 2024). Diffusion models have yet to be widely tested and evaluated on the 

atmospheric downscaling task, but their characteristics and capabilities are undoubtedly 

promising for this application as shown for example in Addison et al. (2022) for 

precipitation, or in Mardani et al. (2023) for 2-m temperature, surface wind speed, and 

precipitation, or Merizzi et al. (2024) for wind speed.” 

 

Comment#2: The paper provides a detailed account of the architectures, but more 

information is needed on hyperparameter selection. Clarify how hyperparameters were optimized for 

each model to ensure a fair comparison. For instance, how is the timestep embedding in Figure 4 

implemented? The residual approach is a strong point, but a deeper explanation of why the residual 



method was adopted would strengthen the paper. What specific insights led to using a residual 

method, and how does it enhance the model's training stability?  

Reply:  

• Hyperparameters: We also received a similar comment from reviewer 2 and therefore 

understand that we need to assess this point more properly. We did not perform an 

automatic search for hyperparameters because we used the same hyperparameters 

chosen by the reference papers for each model. Specifically, for the GAN we referred to 

the network setting tuned by Esser et al. (2021) who already performed the search and 

optimization of the relevant hyperparameters of the patch-GAN we applied. Similarly, for 

the Latent Diffusion Model, we used hyperparameters derived from the LDCast 

implementation, proposed by Leinonen et al. (2023) but applied different architectural 

adjustments already described in the manuscript (e.g. the v-parameterization). 

• Figure 4: We understand the reviewer’s comment on the timestep embedding, as the 

former Figure 4 could be misleading. The LDM_res model does not embed any date/time 

information and does not take any extra information as input compared to the other 

models. The ‘timestep embedding’ in the former Figure 4 referred to the denoising 

timestep information which is intrinsic to the diffusion model.  

• Residual approach: We agree with the Reviewer’s comment. The residual approach is a 

strong point of the manuscript, and we, therefore, followed his suggestions to give it more 

relevance. The analysis of the residual approach’s role is now presented in the main text, 

compared against the performance of the latent diffusion model applied without the 

residual approach. This follows exactly the tests that we performed developing the model: 

we first applied the LDM, obtaining unsatisfactory results, and then moved to the residual 

approach, finally achieving a much better performance. Nevertheless, the residual 

approach does not enhance the model’s training stability: the training of the LDM model 

is stable and effective both with and without the residual approach. The residual has been 

introduced only to improve model performance. 
Action:  

• Hyperparameters: We improved the description of our training procedure for all the 

models following both the reviewers’ suggestions. For conciseness, as many additional 

results were added in the main text considering the reviews, we reorganized the Methods 

section moving a wide part of the architectural design and training procedure to a new 

appendix. The new Appendix A “Architecture and training procedure of the DL models” 

reports on all the requested additional information regarding the training 

procedure/hyperparameters, as follows: 

o UNET: "The loss function used for training is the Mean Squared Error (MSE) loss 

with mean reduction, which is suitable for regression-based tasks and ensures 

smooth convergence. The Adam optimizer (Kingma and Ba, 2015) is employed with 

a learning rate of 10−3 and no weight decay, chosen for its effectiveness in handling 

non-stationary objectives and sparse gradients. Training is conducted up to 100 

epochs with early stopping enabled to terminate training if validation performance 

does not improve over 10 consecutive epochs. Each epoch involved iterating 

through the dataset with a batch size of 16, chosen to balance memory constraints 

and training efficiency. The network is constantly fed with the whole target domain 

and no patch-training is applied." 



o GAN: "The hyperparameters set for the training are derived from the search and 

optimization already performed by Esser et al. (2021), while the parameters we 

manually fine-tuned are described in the following. The pixel loss we used is the 

Mean Absolute Error (MAE), while the discriminator loss is the hinge loss. The 

discriminator is activated after 50000 training steps, giving the generator time to 

learn to generate consistent outputs and thus stabilizing the adversarial training 

(Esser et al., 2021). After activating the discriminator, the network is trained by 

updating alternatively the gradients of the generator and the discriminator. The 

network is constantly fed with the whole target domain and no patch-training is 

applied. The Adam optimizer (Kingma and Ba, 2015) is used for both the generator 

and the discriminator, with a base learning rate equal to 4.5 * 10−6 multiplied by 

the number of the GPU and the batch size used for the training (i.e. 4.5 * 10−6 x 

1GPU x 4batch size) (Goyal et al., 2018), and beta parameters set to 0.5 and 0.9. 

Training is conducted for up to 100 epochs, with early stopping enabled to 

terminate training if validation performance does not improve over 10 consecutive 

epochs. Each epoch involved iterating through the dataset with a batch size of 4, 

chosen to balance memory constraints and training efficiency." 

o VAE: "The VAEs are trained on random 512x512 pixel patches of high-resolution 

target variables, with a 16 batch size. The training process for the VAEs leverages 

AdamW optimizer (Loshchilov and Hutter, 2019), with a base learning rate of 1 * 

10−3, beta parameters set to 0.5 and 0.9, and a weight decay of 1 * 10−3. The loss 

function combines a reconstruction loss, computed as the Mean Absolute Error 

(MAE) between predicted and target outputs, with the KL divergence term. The KL 

divergence, scaled by a weight factor (λKL = 0.01), enforces a standard normal 

distribution on the latent space. A ReduceLROnPlateau scheduler (PyTorch, 2023) is 

employed to dynamically adjust the learning rate by reducing it by a factor of 0.25 

if the validation reconstruction loss does not improve for three consecutive epochs. 

Training is conducted for up to 100 epochs, with early stopping enabled to 

terminate training if validation performance does not improve over 10 consecutive 

epochs" 

o DENOISER/CONDITIONER: "As shown in Figure A3, the conditioner and the denoiser 

are trained together, minimizing the Mean Square Error (MSE), and feeding the 

network with random patches of ERA5 predictors (64x64 pixels) and static data 

(512x512 pixels) for the conditioning, and high-resolution target variables 

(512x512 pixels) for the ground truth. The batch size is set to 4 and 8 for the 2-m 

temperature and 10-m wind components models respectively, tuned to balance 

memory constraints and training efficiency. The training is performed using the 

AdamW optimizer (Loshchilov and Hutter, 2019), with a base learning rate of 1 * 

10−4, beta parameters set to 0.5 and 0.9, and a weight decay of 1 * 10−3. A 

ReduceLROnPlateau scheduler (PyTorch, 2023) is employed to dynamically adjust 

the learning rate by reducing it by a factor of 0.25 if the validation loss does not 

improve for three consecutive epochs. Additionally, Exponential Moving Averaging 

(EMA) is applied to the network weights, following Rombach et al. (2021). Training 

is conducted for up to 100 epochs, with early stopping enabled to terminate 

training if validation performance does not improve over 10 consecutive epochs. 



The other hyperparameters set for the training are derived from the 

implementation of the LDCast model by Leinonen et al. (2023)." 

• Figure 4: We updated former Figure 4 specifying the wording ‘denoising timestep 

embedding’ instead of ‘timestep embedding’. The figure is now Figure A2, as it has now 

been moved to the new Appendix A “Architecture and training procedure of the DL 

models”. 

• Residual approach: In order to give more relevance and insights into the role of the residual 

approach, we improved the structure and contents of the manuscript as follows:  

o We created a new section: “6 Discussion” 

o We moved and enriched the analysis presented in the former "Appendix D: LDM 

residual versus non-residual results" to the new subsection “6.2 On the 

contribution of the residual approach” under the new section “6 Discussion”, 

providing a direct comparison of results from the LDM with and without the 

residual approach. We also added quantitative information on the results in terms 

of pdf and spectra as suggested by the second reviewer. The new section now 

reads as follows: 

“In this section, we compare the performance of the LDM trained with and without 

the residual approach, highlighting the significant improvements introduced by the 

residual methodology. The comparison focuses on the frequency distribution and 

the Radially Averaged Power Spectral Density (RAPSD), as shown in Figures 10 and 

9, respectively, along with their associated metrics, IQD and RASPL. The analysis 

reveals notable differences between the two models, particularly in: (i) accurately 

estimating the most frequent values of 2-m temperature, (ii) reconstructing the full 

frequency distribution of wind speed, (iii) reconstructing the 2-m temperature 

power spectra at small scales, where the non-residual LDM underperforms 

compared to the quadratic interpolation of ERA5, and (iv) reconstructing the 10-m 

wind speed power spectra across all scales, with the non-residual LDM exhibiting a 

quasi-constant lag across all wavelengths. The corresponding VAEs for the two 

models (VAE and VAE_res) show comparable performance except at the smallest 

scales of the 2-m temperature power spectra (not shown). Consequently, the 

diminished performance of the non-residual LDM can be attributed to the VAE only 

in this specific case (iii). All other deficiencies are solely due to the diffusion process. 

Training the diffusion model to reconstruct a residual field instead of the original 

target field significantly enhances performance, improving the reconstruction of 

frequency distributions and power spectra across all wavelengths, particularly for 

chaotic variables such as wind speed.” 



 
Figure 9. Comparison of Radially Averaged Power Spectral Density (RAPSD) distributions for results from LDM_res, 

VAE_res, and LDM against COSMO-CLM reference-truth and ERA5 quadratic interpolation. The left column refers to the 2-

m temperature, and the right column refers to the 10-m horizontal wind speed. The first row shows the averaged-in-time 

spectra, across the whole test dataset. Notice that in the first row y-axes are logarithmic to highlight the tail of the 

distributions, hence the high frequencies. The bottom rows show the distributions of single-time RAPSD values for fixed 

wavelengths, namely 269, 20, 9, and 5 km 

 



 
Figure 10. Comparison of frequency distributions for results from LDM_res, VAE_res, and LDM against COSMO-

CLM reference-truth and ERA5 quadratic interpolation. The left column refers to the 2-m temperature, and the right 

column refers to the 10-m wind speed. Counting of pixel-wise data is cumulated for the yearly test dataset over bins of 

0.5 °C and 0.05 m/s for temperature and wind speed, respectively. Notice that y-axes are logarithmic to highlight the tails 

of the distributions, hence the extreme values. The top row focuses on the tails of the distributions, i.e. on extreme values, 

while the bottom row focuses on the most frequent values and is a zoom-in on the dashed boxes for each variable 

o To compensate for the increased length of the main text of the manuscript we 

reduced the Methods section, moving a wide part of the architectural design and 

training procedure to the new Appendix A “Architecture and training procedure of 

the DL models”. 
 

Comment#3: The comparisons with UNET, GAN, and interpolation are useful, but the study lacks a 

broader context regarding recent advancements. It would improve the paper if comparisons with 

other state-of-the-art downscaling methods were included, such as recent transformer-based 

approaches or hybrid models that combine CNNs with probabilistic methods. 

Reply: We understand the concerns of the Reviewer and agree that a wide comparison with 

other state-of-the-art DL downscaling approaches would be beneficial. However, we find it difficult to 

incorporate such comparisons for several reasons. 

• Resource Limitations: Conducting a fair comparison would require retraining other models 

using our specific data, which would involve considerable time and resources that are 

currently beyond the scope of this study. 

• Data Preprocessing: Even running other pre-trained models, without re-training them, 

would necessitate significant additional data preprocessing, which would require further 

resources and time, as alternative models often rely on different sets of predictors than 

those we use in this work. 



• Lack of a Recognized Standard: while we would be very interested in comparing our results 

against a well-established "golden standard" deep learning model, at present, there is no 

universally accepted reference model for the downscaling tasks. The choice of model 

would therefore be somewhat arbitrary, which makes meaningful comparisons 

challenging.  

In summary, while we acknowledge the importance of comparing with other DL models, the 

constraints of time, resources, and the scope of our work prevent us from undertaking such 

comparisons at this stage. Additionally, we believe that the presented comparison against the 

reference UNET and GAN already brings credibility to the manuscript and the presented results, 

showing different performances against well-known networks. We hope that this explanation clarifies 

our position. Of course, a downscaling benchmark would be highly valuable in this field. We are aware 

that there is ongoing work by Langguth et al. (2024), who is developing a “Benchmark Dataset for 

Statistical Downscaling of Meteorological Fields with Deep Neural Networks”. This would allow a 

direct and fair comparison of different DL downscaling approaches over an out-of-domain testbed. 

Nevertheless, as far as we know, this project is still an ongoing work and not yet available for direct 

comparison. We would be very happy to join a model-score board once available. 

Action: We included citation on transformer-based architecture in our Introduction to give a 

wider overview of recent DL applications: 

“Additionally, the use of transformer-based architectures for downscaling is an emerging 

approach but remains relatively new within the Earth system science domain (Zhong et al., 2024).”  

 

Comment#4: The study used 21 years of data, but the explanation regarding "70% for training, 15% 

for validation, and 5% for testing (corresponding to 15, 3, and 1 year, respectively)" is unclear. Is the 

one year of test data randomly selected from a specific year, or does it include a few days from each 

season across multiple years? If only data from a particular year was used, it may not account for 

interannual variations. Additionally, have factors such as La Niña effects been considered in analyzing 

the temperature and wind fields? 

Reply: We appreciate the reviewer’s feedback and agree that our explanation of the dataset 

splitting lacked sufficient detail. The complete dataset comprises 21 years of hourly data. Specifically, 

the training dataset includes 128,873 samples (~15 years), the validation dataset consists of 27,616 

samples (~3 years), and the test dataset contains 8,760 samples (~1 year). These samples were 

randomly selected from the entire 21-year dataset. 

The figure below illustrates the distribution of samples across various time-based aggregations 

(i.e., years, months, and hours of the day) for the training, validation, and test datasets. As depicted, 

the random selection ensured a uniform distribution of samples across all temporal aggregations in 

each dataset. 

As for the La Niña effects, we did not perform a sensitivity test of the model's performance for 

different phases of the Nino/Nina indexes. The evaluation of the DL models is performed on the whole 

test dataset, which presents a distribution of El Nino/La Nina index values consistent with the 

distribution of the training and validation datasets (last row of the following Figure). To produce these 

plots, we used Nino 4 monthly Anomalies released by the Climate Prediction Center of the US National 

Weather Service (calculated using ersstv5, https://psl.noaa.gov/data/climateindices/list/). 

 

https://ams.confex.com/ams/104ANNUAL/meetingapp.cgi/Paper/434645


 
Action: Section 3.5 ‘Dataset splitting strategy’ has been updated and now reads:  

“The experimental database consists of hourly data spanning from 2000 to 2020, totaling 

approximately 184,000 hourly samples, for both low and high-resolution data. The dataset was 

randomly divided into three subsets: 70% for training (~15 years, 128,873 samples), 15% for validation 

(~3 years, 27,616 samples), and 5% for testing (~1 year, 8,760 samples). This random splitting ensures 

a uniform distribution of samples across years, months, and hours of the day in all three datasets. The 

testing dataset was limited to 1 year (5% of the total dataset) to address time constraints associated 

with running all models during evaluation, particularly the diffusion model.” 

 

Comment#5: The evaluation is thorough, but it could be strengthened by including the following: A 

case study of an extreme weather event to showcase the model's performance in challenging 

scenarios. A discussion of the model’s performance across different seasons within the study area to 

illustrate robustness in various conditions. 

Reply: We agree with the Reviewer that evaluating the models’ performance in a case study 

of an extreme event and across different seasons would enhance the manuscript. In response, we 

conducted both these analyses and reported the results in the manuscript.  

Action:  

• EXTREME EVENT: We performed an analysis of the reconstruction of an extreme event and 

added a new subsection “6.3 On the reconstruction of extreme events: a case study of 

strong winds” under the new section “6 Discussion”, which reads as follows: 

“To evaluate the performance of the deep learning models in a challenging scenario, we 

selected February 7, 2022, as a case study. This analysis represents a preliminary 



investigation of the deep learning models’ ability to reconstruct a single strong wind event 

and their performance in reproducing time series when applied to consecutive timesteps. 

The selected event provides independent data, separate from the training, validation, and 

test datasets previously discussed. February 7, 2022, is particularly noteworthy due to 

widespread strong winds across Italy, prompting weather alerts in various regions and 

causing significant wind-related damage. On this day, the Italian peninsula was affected 

by a pronounced pressure gradient, resulting from the southward descent of a low trough 

from Northeastern Europe toward the Ionian Sea and the simultaneous presence of a high-

pressure system centered over the Bay of Biscay (see Figure 11). This synoptic configuration 

generated widespread föhn conditions, with strong northerly to northwesterly winds 

affecting Northern regions and areas downwind of the Apennine ridges. 

 

Figure 11. First three panels show the evolution of geopotential height at 500 hPa [dam] from 06 UTC on Feb. 7, 

2022, to 15 UTC on Feb. 7, 2022, (ERA5 data). Last panel shows the location of 5 weather stations used for the analysis. 

The performance of the models was assessed at five locations of interest, corresponding 

to Italian weather stations that recorded hourly wind speeds exceeding 20 m/s during the 

case study. These stations, situated in complex terrain, are highlighted in the final panel of 

Figure 11. Figure 12 presents the time series of 10-m wind components and wind speeds 

at each target location. For 10-m wind speed, observational data collected by the weather 

stations are included as a reference for comparison. As illustrated in Figure 13, significant 

differences are observed between ERA5 and COSMO-CLM data across all reference 

stations. The dynamical downscaling approach of COSMO-CLM produces substantially 

higher wind speeds compared to the low-resolution ERA5 data, with discrepancies 

reaching up to 10–13 m/s. While COSMO-CLM still underestimates wind speeds compared 



to observations, its temporal evolution of wind flux generally aligns well with 

measurements. The deep learning models demonstrate remarkable performance, with 

the target ground truth being the COSMO-CLM output. All three models effectively 

reconstruct wind intensities for both components, showing minimal dependency on the 

underestimation present in the input low-resolution data. Notably, the models accurately 

capture the temporal evolution of wind components, frequently correcting the phase 

discrepancies in wind speed trends (increases or decreases) present in the low-resolution 

data. This capability is particularly noteworthy given that the models are trained 

exclusively for image-to-image downscaling without access to temporal information from 

adjacent timesteps. Among the deep learning models, results are generally comparable. 

However, the GAN and UNET models tend to produce smoother temporal signals 

compared to the LDM_res model and the COSMO-CLM baseline.” 

 

Figure 12. Hourly evolution of 10-m wind components and 10-m wind speed as reconstructed by all models on 

February 7, 2022, in the selected target locations. Available 10-m wind speed observations from each weather station are 

also reported. 

 

• SEASONAL EVALUATION: To investigate the models’ performance across different seasons 

we calculated all the metrics already presented in the manuscript for each season, splitting 

the test dataset accordingly. Each season subset is composed of ~2200 hourly samples. In 

addition to RMSE, BIAS, R2, and PCC we also calculated two additional metrics, leveraging 

the suggestions from Reviewer2 - comments #5 and #6 -, to quantify results in terms of 

frequency distribution and power spectra: the Integrated Quadratic Distance, and the 

Radially Averaged Log Spectral Distance (RALSD)-score. In the manuscript, we added 



Figure 5 summarizing results for each metric, for each model (see below), and we 

discussed these results in each related section.  

Text added to section 5.2 Verification deterministic metrics: 

“A more detailed evaluation of the models’ performance using these metrics is provided in 

Figure 5, where the test dataset is divided into meteorological seasons for seasonal 

analysis. The figure demonstrates that the results remain consistent across seasons, 

reinforcing the evaluations previously discussed. Notably, the summer season exhibits 

slightly lower metric values across all models. Additionally, deep learning models display 

more stable performance across different seasons compared to quadratic interpolation.” 

Text added to section 5.4 Frequency distributions: 

“These qualitative evaluations can be quantified by calculating a divergence score on the 

underlying empirical Cumulative Distribution function (CDF) of the data such as the 

Integrated Quadratic Distance (IQD), as proposed by Thorarinsdottir et al. (2013) (see 

Appendix B for details). Values of IQD score are indicated in Figure 7. Consistently with the 

associated frequency distributions, values of IQD scores are lower for 2-m temperature 

compared to wind speed across all models. Notably, the LDM_res model achieves the best 

performance, with IQD scores two orders of magnitude lower than the UNET and the GAN 

for 2-m temperature, and one order of magnitude lower than the GAN for wind speed, 

highlighting its superior accuracy. IQD scores were also computed for each season within 

the test dataset, with the results presented in Figure 5. The models’ scores align with the 

yearly analysis across all seasons. In particular, LDM_res exhibits the smallest score 

variations across seasons, indicating minimal sensitivity to seasonal changes.” 

Text added to section 5.5 Radially Averaged Power Spectral Density (RAPSD): 

“The RALSD scores were also computed for each season within the test dataset, with the 

results presented in Figure 5. As for IQDs, the models’ RALSD scores align with the yearly 

analysis across all seasons. In particular, LDM_res exhibits the smallest score variations 

across seasons (together with the GAN for wind speed), indicating minimal performance 

sensitivity to seasonal changes.” 

Figure 5. Comparison of different metrics/scores across seasons for the analyzed models (top row refers to the 2-m 



temperature and bottom row refers to the 10-m wind speed). Notice that y axes are not shared between panels. The 

dashed line highlights the reference value for each metric 

 

Minor Comments 

Comment#1: In Figure 6, the second column zooms in on Sardinia Island. Consider resizing this image 

to match the first column, as this would make the figure more aesthetically pleasing. 

Reply: We fully agree with the Reviewer’s comment.  
Action: We recreated former Figure 6, Figure A1, and Figure A2 to make them more 

aesthetically pleasing and substituted them in the manuscript. After the reviews, the numbers of 

these images are now Figure 3, Figure B1, and Figure B2, respectively. 

 

Comment#2: The future work section is informative. It would be beneficial to add some 

thoughts on how this approach could be integrated into existing modeling frameworks or operational 

systems, which could help bridge the gap between research and practical applications. 

Reply: We agree with the reviewer and updated the Future Work section based on this 

comment and comment#8 from the other reviewer.  
Action: We re-wrote the Future work section, which now reads as follows: 

“The results presented in this work suggest several promising directions for further 

investigation into the application of latent diffusion models for downscaling. Addressing the 

primary limitations of our DL approach, namely (i) inter-variable consistency and (ii) temporal 

consistency of the generated fields, is a key priority. Applying LDM_res with a multi-variable 

approach requires no architectural adjustments and could yield valuable insights, such as 

whether additional variables necessitate larger network architectures to optimize 

performance. The potential and efficiency of a multi-variable approach have already been 

demonstrated in pixel-space diffusion downscaling by Mardani et al. (2023). Further evaluation 

of the temporal consistency of downscaled data in this version of LDM_res is also relevant. 

Enhancements in this area could involve conditioning the diffusion process on a (short-) 

temporal sequence of low-resolution fields or incorporating previous high-resolution outputs 

in an auto-regressive approach. Additionally, the generative capabilities of LDM_res need to 

be explored, to assess the potential added value of a DL-generated ensemble. 

Future developments could explore the integration of latent diffusion models into existing 

modeling frameworks and operational systems, such as using them as post-processing tools 

for real-time weather forecasts, seasonal forecasts, and climate projections. These 

integrations would require tailored training procedures, alignment with operational inputs and 

reference data, and rigorous validation to ensure robustness and compatibility with practical 

applications. For example, ongoing research, funded as an Innovation project on this research’s 

funding, is already investigating the effectiveness of LDM_res in downscaling precipitation and 

temperature, in a multi-variable approach, from climate projections predictors. This 

exploration is expected to further elucidate the versatility and robustness of the proposed 

approach and showcase its practical applications.” 

 



Comment#3: Wind speed downscaling is evidently more challenging than temperature, and while 

some explanations are given, providing references would lend more credibility to the discussion. 

Additionally, consider exploring whether other variables, such as boundary layer height or 

atmospheric vorticity, could be used to improve downscaling performance for wind speed.  

Reply:  

• References: We agree with the reviewer that the manuscript lacked literature references 

on this specific point.  

• Additional predictors: At the beginning of our study, we considered a wider set of input 

predictors, including, for example, the BLH. We ended up with a smaller set of predictors 

on the basis of two considerations: 

o Literature review for the selection of the parameters (already cited in the 

manuscript). For example, regarding specifically the BLH, the Analysis of feature 

importance presented by Höhlein et al. (2020) surprisingly showed that 

“Perturbations in BLH also have only a slight impact on prediction performance [of 

100-m wind speed components]” for a wide range of tested DL models.  

o The model we developed and tested on matching reanalysis is meant to be further 

tested and applied to different applications, such as the downscaling of numerical 

seasonal predictions and climate projections. The selection of predictors has 

therefore been guided by the availability of the variables in a wide range of these 

alternative input sources.  

 

Action: 

• References: We added a paragraph to the “Related work and contribution” section, which 

reads as follows: 

“Downscaling temperature and wind poses distinct challenges due to their inherent 

differences as meteorological variables (De et al., 2023; Höhlein et al., 2020). The 2-m 

temperature is generally easier to predict, being a scalar variable and predominantly 

aligning with well-established patterns, such as dependence on terrain elevation and 

diurnal cycles. In contrast, wind is a vector field, comprising both magnitude and direction, 

is influenced by small-scale processes (such as turbulence and localized interactions) and 

therefore exhibits greater variability, and strong scale dependency, especially over complex 

terrain (Serafin et al., 2018; Rotach and Zardi, 2007). These characteristics make wind 

considerably more challenging to downscale, regardless of the downscaling methodology 

applied, as widely acknowledged for example by Pryor and Hahmann (2019). The difference 

in downscaling the two variables is also clear in the already proposed deep learning-based 

approaches, tackling the downscaling of both these variables (Mardani et al., 2023).” 

 


