

1 **A novel formation mechanism of sulfamic acid and its enhancing**
2 **effect on methanesulfonic acid-methylamine aerosol particle**
3 **formation in agriculture-developed and coastal industrial areas**

4 **Hui Wang^{a,‡}, Shuqin Wei^{a,‡}, Jihuan Yang^a, Yanlong Yang^a, Rongrong Li^a, Rui Wang^a,**
5 **Chongqin Zhu^{b,*}, Tianlei Zhang^{a,*}, Changming Zhang^c**

6 *^a Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi
7 University of Technology, Hanzhong, Shaanxi 723001, P. R. China*

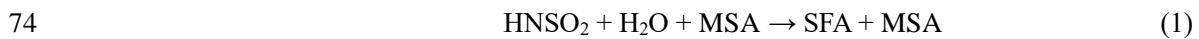
8 *^b College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of
9 Ministry of Education, Beijing Normal University, Beijing 100190, China.*

10 *^c School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001,
11 P. R. China*

12 **Abstract**

13 Sulfamic acid (SFA) significantly impacts atmospheric pollution and poses potential risks to human
14 health. Although traditional source of SFA and its role on sulfuric acid-dimethylamine new particle
15 formation (NPF) has received increasing attention, the formation mechanism of SFA from HNSO_2
16 hydrolysis with methanesulfonic acid (MSA) and its enhancing effect on MSA-methylamine (MA)
17 NPF has not been studied, which will limit the understanding for the source and loss of SFA in
18 agriculture-developed and coastal industrial areas. Here, the gaseous and interfacial formation of
19 SFA from HNSO_2 hydrolysis with MSA was investigated using quantum chemical calculations and
20 BOMD simulations. Furthermore, the role of SFA in MSA-MA system was assessed using the
21 ACDC kinetic model. Our simulation results indicate that the gaseous SFA formation from the
22 hydrolysis of HNSO_2 with MSA can be competitive with that catalyzed by H_2O within an altitude
23 of 5-15 km. At the air-water interface, two types of reactions, the ions forming mechanism and the
24 proton exchange mechanism to form $\text{SFA}^{\cdot-}\cdots\text{H}_3\text{O}^+$ ion pair were observed on the timescale of
25 picosecond. Considering the overall environment of sulfuric acid emission reduction, the present
26 findings suggest that SFA may play a significant role in NPF and the growth of aerosol particle as
27 *i*) SFA can directly participate in the formation of MSA-MA-based cluster and enhance the rate of
28 NPF from these clusters by approximately 10^3 times at 278.15 K; and *ii*) the $\text{SFA}^{\cdot-}$ species at the air-
29 water interface can attract gaseous molecules to the aqueous surface, and thus promote particle
30 growth.

* Corresponding authors, Tel: +86-0916-2641083, Fax: +86-0916-2641083.
E-mail: cqzhu@bnu.edu.cn (C. Q. Zhu), ztianlei88@163.com (T. L. Zhang).


‡ These authors contributed equally to this work.

31 **1 Introduction**

32 As a well-studied nitrogen derivative of sulfuric acid (Rennebaum et al., 2024), sulfamic acid
33 (SFA) was not only recognized as a potent aerosol and cloud nucleating agent (Xue et al., 2024;
34 Zhang et al., 2023; Pszona et al., 2015; Li et al., 2018), but also can harm human health through
35 atmospheric deposition into water bodies (Van Stempvoort et al., 2019). In agriculture-developed
36 and industrial areas with high ammonia (NH_3) concentrations, such as the Yangtze River Delta in
37 China (Yu et al., 2020), Indo-Gangetic Plains (Kuttipurath et al., 2020), Pakistan, Bangladesh
38 (Warner et al., 2016), and the southern Italy (Tang et al., 2021), the atmospheric concentration of
39 SFA estimated by theoretical method of CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311++G(3df,3pd)
40 (Li et al., 2018) was expected to reach up to 10^8 molecules· cm^{-3} , and thus lead to it becoming a
41 significant air pollutant. So, the sources of SFA in the atmosphere has been focused by several
42 groups (Lovejoy and Hanson, 1996; Pszona et al., 2015; Li et al., 2018; Larson and Tao, 2001;
43 Manonmani et al., 2020; Zhang et al., 2022). The traditional source of SFA was mainly taken from
44 the ammonolysis of SO_3 (Lovejoy and Hanson, 1996; Larson and Tao, 2001; Li et al., 2018).
45 Experimentally, the rate coefficient for the ammonolysis of SO_3 was detected to be 2.0×10^{-11}
46 $\text{cm}^3 \cdot \text{molecules}^{-1} \cdot \text{s}^{-1}$ at 295 K (Lovejoy and Hanson, 1996), which was close to the value for the
47 hydrolysis of SO_3 assisted by water molecule ($10^{-11}\text{--}10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$) (Kim et al., 1998;
48 Hirota et al., 1996; Shi et al., 1994; Kolb et al., 1994; Long et al., 2013; Long et al., 2023; Ding et
49 al., 2023; Cheng et al., 2023; Wang et al., 2024). Theoretically, the ammonolysis of SO_3 to produce
50 SFA can be catalyzed by NH_3 . In arid and heavily polluted regions with high NH_3 concentrations,
51 the effective rate coefficient for the ammonolysis of SO_3 can be sufficiently rapid, making it
52 competitive with the conventional loss pathway of SO_3 with water (Li et al., 2018).

53 In addition to the ammonolysis of SO_3 , new sources of SFA formation have received increasing
54 attention (Zhang et al., 2022; Manonmani et al., 2020, Li et al., 2018, Xue et al., 2024). The
55 existence of HNSO_2 was proposed in the reaction between SO_3 and NH_3 , and was regarded as the
56 most stable for nine different isomers of HNSO_2 , HONSO, HOSNO, HOS(O)N, HSNO₂, HSONO,
57 HON(O)S, HOOSN, and HOONS (Deng et al., 2016). Owing to its similarity with SO_3 and the
58 potential role of SO_3 in the atmosphere, the hydrolysis of HNSO_2 to produce SFA formation has
59 been focused by several groups (Zhang et al., 2022; Manonmani et al., 2020). As the direct

60 hydrolysis of HNSO_2 with a high energy barrier takes place hardly in the gas phase (Zhang et al.,
61 2022; Manonmani et al., 2020), the addition of a second water molecule (Manonmani et al., 2020),
62 formic acid and sulfuric acid (H_2SO_4 , SA) (Zhang et al., 2022) have been proved to promote the
63 product of SFA through the hydrolysis of HNSO_2 . It was noted that, with the global reduction in the
64 concentration of H_2SO_4 resulting from SO_2 emission restrictions, the contribution of
65 methanesulfonic acid (MSA) to aerosol nucleation has received the widespread attention of
66 scientists. As a major inorganic acidic air pollutant (Chen et al., 2020), the concentration of MSA
67 in the atmosphere was noted to be notably high across various regions, spanning from coastal to
68 continental, with levels found to be between 10% and 250% of those measured for SA (Shen et al.,
69 2019; Dawson et al., 2012; Bork et al., 2014; Shen et al., 2020; Berresheim et al., 2002; Hu et al.,
70 2023). However, to the best of our knowledge, the gaseous hydrolysis of HNSO_2 with MSA has not
71 yet been investigated, which will confine the understanding for the source of SFA in regions with
72 significant pollution and high levels of MSA. Thus, understanding the hydrolysis of HNSO_2 with
73 MSA in the gas phase was necessary for exploring its impact on aerosols and human health.

75 As a supplement to gas-phase reactions, interfacial reactions at the air-water interface not only
76 can accelerate the rates of atmospheric reactions but also may introduce new mechanisms (Freeling
77 et al., 2020; Zhong et al., 2019). For instance, the Criegee intermediates reacting with MSA at the
78 air-water interface can form the ion pair of $\text{CH}_3\text{C}(\text{H})(\text{OOH})(\text{SO}_3\text{CH}_3)$ anhydride and H_3O^+ (Ma et
79 al., 2020), which differs from the corresponding gaseous reaction where the MSA molecule acts
80 solely as a reactant reacting with Criegee intermediates directly. As far as we know, HNSO_2 exhibit
81 a significant interfacial preference, as the fact that the total duration time of HNSO_2 at the interface
82 approximately accounts for 49.1% of the 150 ns simulation time (Fig. S1). However, the hydrolysis
83 of HNSO_2 with MSA has not been studied at the air-water interface, which will limit our
84 understanding of how the hydrolysis of HNSO_2 with MSA differs in the gas phase and air-water
85 interfaces.

86 From a structural point of view, two functional groups of $-\text{NH}_2$ and $-\text{SO}_3\text{H}$ in the SFA molecule
87 can act as both hydrogen donors and acceptors to interact with atmospheric species. Previous studies
88 have demonstrated that SFA has a potential role in new particle formation (NPF), as it not only
89 clusters efficiently with itself and SA (Lovejoy and Hanson, 1996), but also can promote the

90 nucleation rate of NPF initiated from SA-DMA by a factor of two in dry and severely contaminated
91 areas with NH₃ (Li et al., 2018). Due to the concentration of SA in the atmosphere has decreased
92 significantly with the scenario of SO₂ emission control measures, MSA-driven NPF has attracted
93 growing attention (Dawson et al., 2012; Nishino et al., 2014; Chen and Finlayson-Pitts, 2017; Chen
94 et al., 2020; Shen et al., 2020). Initially, the binary nucleation of MSA with inorganic ammonia and
95 organic amines in the atmosphere has been reported, where MA exhibits the strongest enhancing
96 capability (Chen et al., 2016; Chen and Finlayson-Pitts, 2017; Shen et al., 2019; Hu et al., 2023).
97 Subsequently, some reported results suggested that the triadic MSA-MA-driven NPF can exhibit
98 greater nucleation rates competed to the binary of MSA-driven (Zhang et al., 2022; Hu et al., 2023).
99 For example, both formic acid (Zhang et al., 2022) and trifluoroacetic acid (Hu et al., 2023) exhibit
100 an excellent catalytic influence on MSA-MA-driven NPF. However, the SFA involved in MSA-
101 MA-driven NPF has not been investigated, which is worth important to investigate whether SFA
102 can exhibit a similar enhancing effect in MSA-MA as observed in SA-DMA.

103 Herein, this work studied the catalytic effect of SFA on H₂SO₄ hydrolysis and MSA-MA
104 nucleation particle formation. Specifically, quantum chemical calculations were used firstly to
105 assess the atmospheric processes of the gaseous hydrolysis of H₂SO₄ with MSA. Then, the gaseous
106 and interfacial mechanisms differences of the H₂SO₄ hydrolysis with MSA were investigated
107 applying the Born-Oppenheimer Molecular Dynamic (BOMD) simulation method. Finally, the
108 atmospheric implications and mechanism of SFA in the MSA-MA-dominated NPF process have
109 been evaluated through density functional theory and the Atmospheric Clusters Dynamic Code
110 (ACDC) (McGrath et al., 2012; Hu et al., 2023; Zhao et al., 2020; Zhang et al., 2024; Tsona Tchinda
111 et al., 2022; Liu et al., 2020) models to evaluate the potential effect of SFA on nucleation and NPF.
112 This work will not only deepen our understanding of the source of SFA, but also reveal significant
113 implications for new particle formation and aerosol particle growth in MSA polluted areas.

114 **2 Methodology**

115 **2.1 Quantum Chemical Calculations**

116 The gaseous hydrolysis of H₂SO₄ with MSA was comprehensively studied through quantum
117 chemistry simulations. Optimization of all the species were carried out by using the method of M06-
118 2X with 6-311++G(2df,2pd) basis set (Zhao and Truhlar, 2008; Elm et al., 2012; Bork et al., 2014).

119 Vibrational frequencies were subsequently computed at the M06-2X/6-311++G(2df,2pd) level to
120 ensure the reality of all stationary point's frequencies and the presence of only one imaginary
121 frequency in transition states. It is noted that the calculated bond distances and bond angles at the
122 M06-2X/6-311++G(2df,2pd) level (Fig. S2) agree well with the available values (Fig. S2) from the
123 experiment and three different theoretical levels of M06-2X/6-311++G(3df,2pd), M062X/6-
124 311++G(3df,3pd) and M06-2X/aug-cc-pVTZ levels. Also, at the M06-2X/6-311++G(2df,2pd) level,
125 internal reaction coordinate (IRC) analyses were conducted to verify the connection from the
126 transition states to the corresponding products (or reactants). All calculations regarding for
127 geometries and frequency were conducted with the aid of the Gaussian 09 (Frisch, 2009) program.
128 Furthermore, single point energies were performed at the CCSD(T)-F12/cc-pVDZ-F12 (Kendall et
129 al., 1992; Adler et al., 2007) level utilizing the ORCA (Neese, 2012) program, based on the
130 optimized geometries mentioned above. The CCSD(T)/aug-cc-pVDZ method was chosen to
131 calculate the relative energies as the fact that, compared with unsigned error (Table S1) calculated
132 at the CCSD(T)/CBS//M06-2X/6-311++G(2df,2pd) level, unsigned errors calculated at CCSD(T)-
133 F12/cc-pVDZ-F12//M06-2X/6-311++G(2df,2pd) was 0.71 kcal·mol⁻¹.

134 **2.2 Rate coefficients calculations**

135 The rate coefficients for the hydrolysis of H₂SO₃ with MSA were calculated through a two-
136 step process. Initially, the high-pressure-limit (HPL) rate coefficients were computed applying
137 VRC-VTST methods within the Polyrate package (Chuang et al., 1999). It's worth noting that the
138 electronic structure method for VRC-TST calculations is based on Gaussian 09 program using the
139 M06-2X/6-311++G(2df,2pd). Meanwhile, two pivot points were selected (Bao et al., 2016; Long et
140 al., 2021; Georgievskii and Klippenstein, 2003; Meana-Pañeda et al., 2024) to produce a single-
141 faceted dividing surface for the H₂SO₃ hydrolysis (shown in Part S1 in the Supplement).
142 Subsequently, on the basis of the HPL rate coefficients, the rate coefficients for the hydrolysis of
143 H₂SO₃ with MSA were calculated within the temperature range of 212.6-320.0 K and pressures
144 applying the Master Equation Solver for Multi-Energy Well Reactions (MESMER) program
145 (Glowacki et al., 2012). The rate coefficients for the barrierless steps transitioning between reactants
146 and pre-reactive complexes were assessed applying the Inverse Laplace Transform (ILT) method
147 within MESMER calculations, while the step transitioning between pre-reactive complexes and
148 post-reactive complexes via transition states were evaluated using the RRKM theory (Mai et al.,

149 2018) in combination with the asymmetric Eckart model. The details of the rate coefficient for the
150 hydrolysis of HNSO_2 without and with X ($X = \text{H}_2\text{O}$ and MSA) were given in Part 1, Table 1 and
151 Table S4.

152 **2.3 BOMD Simulations**

153 BOMD simulations were conducted applying DFT implemented in CP2K program
154 (Vandevondele et al., 2005; Hutter et al., 2014). The exchange and correlation interactions were
155 addressed using the Becke-Lee-Yang-Parr (BLYP) functional (Becke, 1988; Lee et al., 1988),
156 while Grimme's dispersion was applied to address weak dispersion interaction (Grimme et al.,
157 2010). The Goedecker-Teter-Hutter (GTH) conservation pseudopotential (Goedecker et al.,
158 1996; Hartwigsen et al., 1998) combine with Gaussian DZVP basis set (Vandevondele and
159 Hutter, 2007) and an auxiliary plane wave basis set were used to represent core and valence
160 electrons. Energy cutoffs (Zhong et al., 2017; Zhong et al., 2018; Zhong et al., 2019) of 280 Ry
161 for the plane wave basis set and 40 Ry for the Gaussian basis set were applied. The gaseous
162 reactions were simulated in the NVT ensemble at 300 K, with $15 \times 15 \times 15 \text{ \AA}^3$ supercells and the
163 time step of 1 fs. To simulate the water microdroplet, the system containing 191 water molecules
164 (Zhong et al., 2017) was utilized in $35 \times 35 \times 35 \text{ \AA}^3$ supercells. This setup included HNSO_2 and
165 MSA along with the water drop. Prior to the interfacial simulation, a 10 ps relaxation period in
166 the BOMD simulation was used to equilibrate the water microdroplet system with 191
167 molecules.

168 **2.4 ACDC kinetics simulation**

169 The ACDC model (McGrath et al., 2012; Hu et al., 2023; Zhao et al., 2020; Zhang et al., 2024;
170 Tsona Tchinda et al., 2022; Liu et al., 2020) was utilized to simulate the $(\text{MSA})_x(\text{MA})_y(\text{SFA})_z$ ($0 \leq y \leq x + z \leq 3$) cluster formation rates and explore the potential mechanisms, where the most
171 stable structure of $(\text{SFA})_x(\text{MSA})_y(\text{MA})_z$ ($0 \leq z \leq x + y \leq 3$) clusters were searched with
172 ABCluster software (Zhang and Dolg, 2015) (The details in Part S1 of the Supplement). This
173 simulation encompasses a variety of temperatures and monomer concentrations to capture the
174 dynamics under different environmental conditions. Thermodynamic parameters, obtained from
175 quantum chemical calculations executed at the M06-2X/6-311++G(2df,2pd) level, were used
176 as inputs for the ACDC model. Notably, many benchmark studies (Zhao et al., 2020; Zhang et al.,
177 2024; Tsona Tchinda et al., 2022; Liu et al., 2020) show that the M06-2X functional has good

179 performance compared to other common functionals for gaining the Gibbs free energies. For all the
180 M06-2X calculations with the 6-311++G(2df,2pd) basis set was used, as it is a good compromise
181 between accuracy and efficiency and does not yield significant errors in the thermal contribution to
182 the free energy compared to much larger basis sets such as 6-311++G(3df,3pd), with the differences
183 of relative ΔG less than 1.75 kcal·mol⁻¹ (Table S7). The temporal progression of cluster
184 concentrations was determined by numerically integrating the birth-death equation, leveraging
185 MATLAB's ode15s solver for enhanced accuracy.

186
$$\frac{dc_i}{dt} = \frac{1}{2} \sum_{j < i} \beta_{j,(i-j)} c_j c_{(i-j)} + \sum_j \gamma_{(i+j) \rightarrow i} c_{i+j} - \sum_j \beta_{i,j} c_i c_j - \frac{1}{2} \sum_{j < i} \gamma_{i \rightarrow j} c_i + Q_i - S_i \quad (2)$$

187 Here, c_i represents the concentration of a specific cluster, labelled as i ; the term $\beta_{i,j}$ was used to
188 denote the collision coefficient, which was a measure of the frequency at which clusters i and j
189 collide with each other in a given environment or system; the coefficient $\gamma_{(i+j) \rightarrow i}$ was defined
190 as the evaporation rate constant that describes the process of a larger cluster, consisting of
191 combined elements i and j , breaking down into the individual smaller clusters i and j ; and Q_i
192 encompasses all other source terms contributing to the formation of cluster i . S_i signifies
193 alternative sink terms for cluster i that may remove it from the system. Considering the
194 formation Gibbs free energy (Table S8) and evaporation rates (Table S9) of all clusters, the
195 clusters containing pure MSA and MA molecules as well as the clusters containing a SFA
196 molecule are mostly more stable and therefore are allowed to form larger clusters and contribute
197 to particle formation rates. In this case, clusters (MSA)₄·(MA)₃, (MSA)₄·(MA)₄ and
198 SFA·(MSA)₃·(MA)₃ are set as the boundary clusters.

199 **3. Results and discussions**

200 **3.1 The hydrolysis of H₂SO₄ with MSA in the gas phase**

201 Given the low chance of three molecules of H₂SO₄, H₂O and MSA colliding simultaneously
202 under atmospheric conditions, the hydrolysis of H₂SO₄ with MSA (Channel MSA) was likely a
203 sequential bimolecular process. As the concentration of water molecule (10¹⁸ molecules·cm⁻³
204 (Anglada et al., 2013)) in the atmosphere is much higher than those of H₂SO₄ and MSA (10⁵-10⁹
205 molecules·cm⁻³ (Shen et al., 2020)), the reaction pathway of H₂SO₄·MSA + H₂O is hard to occur
206 in actual atmospheric conditions. So, Channel MSA proceeds through the initial formation of dimers

207 (HNSO₂···H₂O and MSA···H₂O) via collisions between HNSO₂ (or MSA) and H₂O. Subsequently,
208 the generated dimer interacts with the third reactant, either MSA or HNSO₂. As seen in Fig. 1, the
209 calculated Gibbs free energy of MSA···H₂O complex was -0.9 kcal·mol⁻¹, which was 4.5 kcal·mol⁻¹
210 lower than that of HNSO₂···H₂O. Consequently, it was predicted the primary route for the
211 hydrolysis reaction of HNSO₂ with MSA takes place via the HNSO₂ + MSA···H₂O reaction.

212 Starting from the HNSO₂ + MSA···H₂O reactants, the Channel MSA was initiated through the
213 intermediate complex designated as IM_MSA1. From a geometric perspective, IM_MSA1 complex
214 exhibits a cage-like configuration by a van der Waals force (S1···O1, 2.00 Å) and the involvement
215 of three hydrogen bonds of H2···O4 (1.53 Å), H4···N1 (1.60 Å) and H5···O3 (2.07 Å). The Gibbs
216 free energy of IM_MSA1 complex relative to HNSO₂ + MSA···H₂O reactants was 1.7 kcal·mol⁻¹.
217 Subsequently, as presented in Fig. 1, Channel MSA progresses through transition state TS_MSA1
218 to yield complex IMF_MSA1. At TS_MSA1, the MSA moiety facilitates two hydrogen atom
219 transfer, with TS_MSA1 lying only 0.8 kcal·mol⁻¹ above complex IM_MSA1. Complex
220 IMF_MSA1 exhibits a cage-like structure with a Gibbs free energy was 23.4 kcal·mol⁻¹ lower than
221 that of IM_MSA1, revealing thermodynamic favorability of HNSO₂ hydrolysis with MSA. To
222 evaluate the relative catalytic impact of MSA and H₂O, Fig. S4 illustrates the profiles of Gibbs free
223 energy for the hydrolysis of HNSO₂ and the corresponding reaction assisted by H₂O. Compared to
224 complex HNSO₂···(H₂O)₂, the Gibbs stabilization energy of IM_MSA1 increased by 5.6 kcal·mol⁻¹,
225 potentially shortening the S1···O1 bond distance by 0.21 Å. Considering the Gibbs free energy
226 barrier and rate coefficients, MSA demonstrates a greater catalytic role compared to H₂O in
227 lowering the energy barrier for the hydrolysis of HNSO₂. In particular, MSA facilitates hydrogen
228 atom to extraction from H₂O, further reducing the reaction energy barriers to 7.7 kcal·mol⁻¹.
229 Meanwhile, the calculated rate coefficients for HNSO₂ hydrolysis with MSA was 3.08×10^{-11} - 3.50
230 $\times 10^{-11}$ cm³·molecule⁻¹·s⁻¹ within 212.6-320.0 K, exceeding corresponding values for reactions
231 involving H₂O by 2 orders of magnitude. Besides, the Gibbs free energy of IMF_MSA1 was 2.0
232 kcal·mol⁻¹ lower than that of the product complex IMF_WM1 (SFA···H₂O), suggesting SFA has a
233 higher affinity for MSA compared to H₂O. Besides, MSA-assisted HNSO₂ hydrolysis is reduced by
234 4.9 kcal·mol⁻¹ in energy barrier than the NH₃-assisted ammonolysis of SO₃ with its rate constant at
235 298 K (2.85×10^{-11} cm³·molecule⁻¹·s⁻¹) close to the value of ammonolysis of SO₃ with NH₃ ($4.35 \times$
236 10^{-10} cm³·molecule⁻¹·s⁻¹) (Li et al., 2018). However, due to the absence of the concentration of

237 H₂SO₂, the competitiveness of these two reactions cannot be further confirmed.

238 To evaluate the comparative catalytic ability of X ($X = \text{H}_2\text{O}$ and MSA) in the atmosphere, the
239 effective rate coefficients (k') for X -assisted H₂SO₂ hydrolysis were calculated in Table 1. Notably,
240 k' serves as a metric for gauging the comparative catalytic ability of a series of gaseous catalysts in
241 atmospheric reactions (Sarkar et al., 2017; Zhang et al., 2020; Zhang et al., 2019; Buszek et al.,
242 2012; Gonzalez et al., 2011; Parandaman et al., 2018; Anglada et al., 2013). When X was present,
243 the calculated k' was given by Eq. (3).

$$244 k'_X = k_X \times K_{\text{eq}}(X \cdots \text{H}_2\text{O}) \times [X] \quad (3)$$

245 In Eq. (3), k_X was the rate coefficient for X -assisted H₂SO₂ hydrolysis (Table 1), while $K_{\text{eq}}(X \cdots \text{H}_2\text{O})$
246 denotes the equilibrium coefficients of $X \cdots \text{H}_2\text{O}$ (Table S2). $[X]$ represents the available
247 concentrations of H₂O (Anglada et al., 2013) and MSA (Shen et al., 2020). As indicated in Table 1,
248 at experimental concentrations ($[\text{H}_2\text{O}] = 5.16 \times 10^{16} - 2.35 \times 10^{18} \text{ molecules} \cdot \text{cm}^{-3}$) within 280.0-320.0
249 K (at 0 km), the computed k'_{WM} ranged from $5.99 \times 10^{-18} - 7.79 \times 10^{-17} \text{ cm}^3 \cdot \text{molecule}^{-1} \cdot \text{s}^{-1}$. This range
250 exceeded k'_{MSA} ($4.60 \times 10^{-21} - 4.81 \times 10^{-20} \text{ cm}^3 \cdot \text{molecule}^{-1} \cdot \text{s}^{-1}$) by 2-4 orders of magnitude,
251 highlighting pronounced impact of H₂O compared to MSA at 0 km in enhancing the rate of H₂SO₂
252 hydrolysis. However, with the significant decrease in atmospheric water molecules with increasing
253 altitude, the calculated k'_{MSA} ranged from $1.96 \times 10^{-19} \cdot \text{s}^{-1} - 1.30 \times 10^{-17} \cdot \text{cm}^3 \cdot \text{molecule}^{-1} \cdot \text{s}^{-1}$,
254 surpassing k'_{WM} ($9.85 \times 10^{-27} - 6.51 \times 10^{-22} \cdot \text{cm}^3 \cdot \text{molecule}^{-1} \cdot \text{s}^{-1}$) by 3-10 orders of magnitude. This
255 illustrates that MSA has a significantly greater catalytic ability than H₂O in accelerating the rate of
256 H₂SO₂ hydrolysis within 5-15 km. So, H₂SO₂ hydrolysis with MSA may represent a potential
257 formation pathway for SFA across an altitude scope of 5-15 km.

258 **3.2 Reactions at the air-water interface**

259 The interfacial mechanism of MSA-assisted H₂SO₂ hydrolysis at the air-water interface has
260 not been thoroughly investigated. Interestingly, our simulations show that H₂SO₂ and MSA
261 molecules spend approximately 49.1% and 12.1% of the time, respectively, at the air-water interface
262 during the 150 ns simulation (Fig. S1 and Fig. S6). This reveals that the presence of H₂SO₂ and
263 MSA at the air-water interface should not be disregarded. Therefore, BOMD simulations were
264 performed to clarify the interfacial mechanism of MSA-assisted H₂SO₂ hydrolysis at the air-water
265 interface. Comparable to the reactions of SO₃ at the air-water interface with acidic molecules (Cheng
266 et al., 2023; Zhong et al., 2019a), the hydrolysis of H₂SO₂ with MSA at the air-water interface may

267 occur through three pathways: (i) the adsorbed MSA interacts with HNSO_2 at the air-water interface;
268 (ii) the adsorbed HNSO_2 interacts with MSA at the air-water interface; and (iii) the $\text{HNSO}_2\cdots\text{MSA}$
269 complex reacts at the air-water interface. Nevertheless, because of the high reactivity of MSA at
270 the air-water interface, the lifetime of MSA was minimal (seen in Fig. S9) on the water droplet,
271 which was around a small number of picoseconds leading to the rapid formation of MSA^- ion.
272 Meanwhile, although HNSO_2 remains stable at the air-water interface (seen in Fig. S8) and does not
273 dissociate within 10 ps, the hydrated form of HNSO_2 illustrated in Fig. S8 was not conducive to
274 HNSO_2 hydrolysis at the air-water interface. So, model (iii) was primarily considered for HNSO_2
275 hydrolysis with MSA at the air-water interface. It was worth noting that $\text{HNSO}_2\cdots\text{MSA}$ complex
276 can persist at the air-water interface for approximately 34.2% of the 150 ns simulation time (see in
277 Fig. S7). For model (iii), two types of reactions were found at the air-water interface: (a) the
278 NH_2SO_3^- and H_3O^+ ions formation mechanism, and (b) the proton exchange mechanism.

279 **NH_2SO_3^- and H_3O^+ ions forming mechanism.** Fig. 2(a), Fig. S10 and Movie 1 illustrates the
280 formation mechanism of NH_2SO_3^- and H_3O^+ ions through the chain structure. At 4.57 ps, a chain
281 hydrolyzed transition state was observed, accompanied by two protons transfer events. Specially,
282 an H2 atom transferred from the OH moiety of MSA molecule to the terminal N atom of HNSO_2
283 molecule, resulting in the breaking of the O3-H2 bond (with the length of 1.49 Å) and forming the
284 H2-N bond (with the length of 1.14 Å). Concurrently, an interfacial water molecule decomposes,
285 leading to the elongation of the O1-H1 bond to over 1.00 Å, with the S1 atom of HNSO_2 obtaining
286 the OH moiety of the interfacial water molecule ($d_{(\text{S1-O1})} = 1.60$ Å). By 4.61 ps, The N-H2 and S1-
287 O1 bonds both shortened to 0.99 Å and 1.01 Å, revealing the formation of the SFA molecule.
288 However, due to its strong acidity, the SFA molecule could only persist on the water droplet surface
289 for a ps time-scale. As a result, at 7.43 ps, the proton of SFA transferred to another interfacial water
290 molecule, completing the deprotonation of SFA. The loop structure mechanism (Fig. 2(b), Fig. S11
291 and Movie 2) was similar with the chain structure mechanism. However, in this case, the proton of
292 SFA transferred to CH_3SO_3^- rather than to an interfacial water molecule.

293 **Proton exchange mechanism.** As depicted in Fig. 3, the proton exchange mechanism
294 illustrates the deprotonation of MSA concurrent with HNSO_2 hydration at the air-water interface.
295 As shown in Fig. 3(a), Fig. S12 and Movie 3, MSA-mediated hydration HNSO_2 with a single water
296 molecule was observed. Initially, the $\text{HNSO}_2\cdots\text{MSA}$ complex quickly associates with an interfacial

water molecule, and forms a loop structure complex that accelerates the rate of proton transfer. By 4.38 ps, an eight-membered loop structure complex, $\text{HNSO}_2\cdots\text{H}_2\text{O}\cdots\text{MSA}$, emerges, characterized by two hydrogen bonds ($d_{(\text{H}_2\text{-N})} = 1.82 \text{ \AA}$ and $d_{(\text{H}_1\text{-O}_2)} = 1.92 \text{ \AA}$) and a van der Waals forces ($d_{(\text{S1-O1})} = 2.35 \text{ \AA}$). Thereafter, at 4.77 ps, a transition state-like configuration was identified where the water molecule within the loop complex dissociated, elongating the O1-H1 bond to over 1.00 \AA , and the S atom of HNSO_2 attaches to the OH group of the interfacial water molecule. Concurrently, the CH_3SO_3^- ion receives the proton from the separated interfacial water molecule. The entire reaction for MSA-mediated hydration HNSO_2 with one water molecule was completed at 4.80 ps, resulting in the formation of SFA and MSA molecules. MSA-mediated hydration of HNSO_2 with two water molecules (Fig. 3(b), Fig. S13 and Movie 4) at the air-water interface was similar with mechanism identified with one water molecule. However, the inclusion of two water molecules enlarges the loop, significantly reducing the stress on the loop structures. Consistent with the prediction in Fig. 4, the loop structures preferred to include two water molecules rather than one water molecule. This observation agrees well with the reported hydration of Criegee intermediate at the air-water interface (Zhu et al., 2016; Kumar et al., 2018; Liu et al., 2021; Zhang et al., 2023a). Additionally, MSA-mediated hydration of HNSO_2 with three water molecules (Fig. S14 and Movie 5) has been observed in the proton exchange mechanism. However, its probability of occurrence was smaller due to the relatively larger entropy effect. It was noteworthy that the SFA and MSA molecules formed in the proton exchange mechanism were not stable at the air-water interface, which can further interact with an interfacial water molecule to form the corresponding ions of NH_2SO_3^- and CH_3SO_3^- .

At the air-water interface, a sum of 50 BOMD trajectories, each lasting 10 ps, were conducted to investigate HNSO_2 hydrolysis with MSA. Two distinct mechanisms were observed: the formation of NH_2SO_3^- and H_3O^+ ions formation (shown in blue and yellow in Fig. 4) and the proton exchange mechanism (represented by orange, purple and green in Fig. 4). In the mechanism involving the formation of NH_2SO_3^- and H_3O^+ ions, approximately 22% (Fig. 2(a), Fig. 4, Fig. S10 and Movie 1) of the reactions took place via a chain structure, while the majority (~18%) (Fig. 2(b), Fig. 4, Fig. S11 and Movie 2) proceeded through a loop structure mechanism. This discrepancy can be attributed to the uncertainty regarding the direction of proton transfer from SFA. Since the number of water molecules near the water microdroplet far exceeded that of CH_3SO_3^- , protons were predominantly transferred to interface water molecules, making the loop structure mechanism weaker than the

327 chain structure mechanism. Approximately 60% of the reactions were observed to be due to the
328 proton exchange mechanism in BOMD simulations. Through water-mediated mechanisms, these
329 reactions resulted in SFA formation. Similarly to gas-phase reactions, loop structures were observed
330 in these reactions. Approximately 10% of the reactions formed a loop structure involving one water
331 molecule (Fig. 3(a), Fig. 4, Fig. S12 and Movie 3), while the most common loop structure involved
332 two water molecules (about 42%) (Fig. 3(b), Fig. 4, Fig. S13 and Movie 4). Smaller loops were
333 found to experience more stress than loop structures with two water molecules. In cases of loop
334 structures with three water molecules (about 8%) (Fig. 4, Fig. S14 and Movie 5), the entropy effect
335 was deemed to be more significant than the strain effect and likely played a dominant role. The two
336 water molecules contained in the loop structure not only acted as a reactant but also facilitated proton
337 transfer as a bridge.

338 **3.3 New Particle Formation from the atmospheric products**

339 **3.3.1. The influence of SFA on the stability of atmospheric MSA-MA-based
340 clusters**

341 Electrostatic Potential (ESP) mapping on the molecular van der Waals (vdW) surface was
342 employed to analyze the interactions between SFA and other key nucleation precursors like MSA
343 and MA. As shown in Fig. 5, sites with more negative ESP often attract more positive ESP sites,
344 namely hydrogen bonds in the studied system. Specifically, the hydrogen atoms of the -SO₃H and -
345 NH₂ groups (site 4 and 5) in SFA, possessing more positive ESP values, have the potential to attract
346 groups with negative ESP values, such as the oxygen atom within the -SO₃H group of MSA (site 6)
347 and the nitrogen atom of MA (site 1), thus forming hydrogen bonds as proton donors. Additionally,
348 the sulfur atom of the -SO₃H functional group (site 7) in SFA, with a negative ESP of -30.75, acts
349 as proton acceptor, facilitating direct binding with MSA and MA molecules via the hydrogen bonds.
350 Therefore, the introduction of SFA was believed to enhance the stability of MSA-MA clusters by
351 promoting the formation of more hydrogen bonds and facilitating proton transfers.

352 **3.3.2. The cluster formation rates in the SFA-MSA-MA system**

353 Simulations were conducted to determine the cluster formation rates (J) for the MSA-MA-SFA
354 system, varying parameters such as temperature and the concentrations of the precursors were
355 involved. To assess the promotional impact of SFA on J under varying atmospheric conditions, the
356 enhancement factor (R) was computed as the ratio of $J_{MSA-MA-SFA}$ to J_{MSA-MA} . As depicted in Fig. 6

357 (a), the J of MSA-MA-SFA system exhibits a negative correlation with temperature, attributed to
358 the decrease in ΔG value and evaporation rates of clusters at lower temperatures. Conversely, a
359 positive correlation of R with temperature was observed (Fig. 6(b)), indicating that SFA's
360 enhancement of nucleation was more pronounced in regions with relatively higher temperatures.
361 Furthermore, both J and R show an increase as the [SFA] increases, suggesting a positive correlation
362 of J and R with [SFA]. In short, in regions with high [SFA], such as the Yangtze River Delta of
363 China, Bangladesh, and the east coast of India, SFA was expected to significantly boost the J of
364 MSA-MA based nucleation. It is noted that in Fig. 6(b), due to the competitive relationship between
365 MSA and SFA, at low concentrations of SFA, the binding capacity of MSA with MA is stronger
366 than that of SFA with MA, resulting in only a small amount of SFA participating in cluster formation.
367 However, as the concentration of SFA increases, the number of $(MSA)_x \cdot (MA)_y \cdot (SFA)_z$ (where $y \leq$
368 $x + z \leq 3$) ternary clusters increase, leading to the formation of more hydrogen bonds and a
369 significant increase in R_{SFA} . Additionally, Fig. 7 illustrates the J and R of MSA-MA-SFA clusters
370 under different [MSA] and [MA]. On one hand, larger values of [MSA] and [MA] correspond to
371 higher J , as the increased concentration of nucleation precursors leads to a rise in the number of
372 MSA-MA-FSA clusters. On the other hand, increasing [MSA] and [MA] result in a decrease in the
373 R attributed to the effect of SFA on nucleation. This was because as [MSA] and [MA] increases,
374 the prevalence of pure MSA-MA clusters rise during the clustering process, consequently reducing
375 the impact of SFA.

376 **3.3.3. The growth paths of cluster under different atmospheric conditions**

377 Li et al. studied the atmospheric concentration of SFA estimated by theoretical method (Li et
378 al., 2018) was expected to reach up to 10^8 molecules· cm^{-3} in high NH_3 concentrations, such as
379 Yangtze River Delta in China (Yu et al., 2020), Indo-Gangetic Plains (Kuttippurath et al., 2020),
380 Pakistan, Bangla desh (Warner et al., 2016), and the southern Italy (Tang et al., 2021). Considering
381 the high-atmospheric concentrations of MSA and MA detected in coastal industrial areas (Stieger
382 et al., 2021; Mochizuki et al., 2017;), SFA could be an important contributor to MSA-MA-driven
383 NPF, such as the Yangtze River Delta in China, the east coast of India, the south of Bangladesh and
384 Italy. To further evaluate the implication of SFA for the MSA-MA nucleation in the atmosphere,
385 the growth paths of cluster was calculated under different atmospheric conditions. In Fig. 8 (a), two
386 main types of cluster formation routes were found: (i) the pure MSA-MA pathway and (ii) the MSA-

387 MA-SFA pathways at 278.15 K in the studied system. In the pure MSA-MA pathway, cluster
388 growth primarily occurs through the collisional addition of MSA or MA monomers. Conversely, in
389 the SFA-involved pathways, SFA can directly participate in the formation of stable larger clusters
390 subsequently, such as $(MSA)_2 \cdot (MA)_2 \cdot SFA$ and $(MSA)_2 \cdot (MA)_2 \cdot (SFA)_2$ clusters, and then
391 subsequently grow out. The involvement of SFA in the cluster formation pathway was significantly
392 influenced by atmospheric conditions. Firstly, as the temperature rises from 238.15 K to 278.15 K,
393 the contribution of the SFA-involved cluster formation pathways rises from 68% to 90% (Fig. 8
394 (b)), implying that the pathway involving SFA becomes increasingly important at lower altitudes or
395 in warmer conditions. Secondly, as depicted in Fig. 8(c) and Fig. S22, the contribution of SFA to
396 the MSA-MA system is primarily influenced by [SFA] and [MSA], with negligible dependence on
397 [MA]. To assess the role of SFA in MSA-MA nucleation in the atmosphere, the specific contribution
398 of the MSA-MA cluster growth paths at varying [SFA] to NPF was calculated at 278.15 K, as
399 illustrated in Fig. 8(c), under the ambient conditions typical of the corresponding regions. Generally,
400 as [SFA] increases from 10^4 to 10^8 molecules·cm⁻³, the contribution of the SFA-involved pathway
401 increases gradually. Specifically, at low [SFA] (10^4 molecules·cm⁻³), the contributions of SFA-
402 involved clustering pathways are 77% and 41% in regions with relatively low [MSA] in non-sea
403 regions (Berresheim et al., 2002). In regions with high [SFA] (10^6 , 10^8 molecules·cm⁻³), the
404 contributions of the SFA-MSA-MA growth pathways are dominant in their NPF. Particularly in
405 areas with high [MSA], such as the Pacific Rim (6.26×10^8 molecules·cm⁻³ (Saltzman et al., 1986)),
406 the central Mediterranean Sea (2.11×10^8 molecules·cm⁻³ (Mansour et al., 2020)) and the Amundsen
407 Sea (3.65×10^9 molecules·cm⁻³ (Jung et al., 2020)), nucleation is primarily driven by the SFA-
408 MSA-MA pathway, contributing to approximately 88% of cluster formation. These results suggest
409 that the influence of SFA is more pronounced in regions with relatively high [MSA]. It is important
410 to note that the [SFA] values discussed in this work are estimated from limited observational data
411 based on the reaction between SO_3 and NH_3 in the atmosphere. Accurate determination of
412 atmospheric [SFA] requires extensive field observations to enable more comprehensive research.

413 **3.4 Interfacial implications of products on aerosol particle growth**

414 As the discussion above, the formation of $SFA^- \cdots H_3O^+$ and $MSA^- \cdots H_3O^+$ ions pairs can occur
415 within a few picoseconds at the air-water interface. The atmospheric affinity of MSA^- , SFA^- and
416 H_3O^+ for gaseous precursors was further probed by evaluating the free energies of interaction. It

417 was worth noting that compounds such as MSA, MA, HNO₃ (NA), and (COOH)₂ (OA) were
418 identified as candidate species for consideration (Wang et al., 2024; Kulmala et al., 2004). As
419 presented in Table 2, the computed binding energies demonstrate that the interactions of SFA⁻
420 \cdots MSA, SFA⁻ \cdots NA, SFA⁻ \cdots OA, H₃O⁺ \cdots MA, MSA⁻ \cdots MSA, MSA⁻ \cdots OA, and MSA⁻ \cdots NA were
421 stronger than those of MSA \cdots MA (one of the primary precursors for atmospheric aerosols), with
422 their Gibbs free energies increased by 14.3-50.9 kcal \cdot mol⁻¹. The findings indicate that the presence
423 of SFA⁻, MSA⁻, and H₃O⁺ at the interface facilitates the capture of potential gaseous species onto
424 the surface of water microdroplet.

425 Furthermore, we investigated the possibility of SFA⁻ contributing to the enlargement of
426 particles within the MSA-MA cluster, taking into account the geometric configuration and the free
427 energy of formation for the (MSA)₁ \cdot (MA)₁ \cdot (SFA⁻)₁ clusters aggregating. Compared with other
428 clusters, such as (MSA)₁ \cdot (MA)₁ \cdot (X)₁ (where X = HCOOH, CH₃COOH, CHOCOOH, OA,
429 CH₃COCOOH, HOOCCH₂COOH, HOOC(CH)₂COOH, HOOC(CH₂)₂COOH,
430 HOOC(CH₂)₃COOH, C₆H₅(COOH) and C₁₀H₁₆O₃) clusters (Zhang et al, 2022), the quantity of
431 hydrogen bonds within the (MSA)₁ \cdot (MA)₁ \cdot (SFA⁻)₁ cluster has increased, and the loop of complex
432 was expanded. It has been demonstrated that SFA⁻ has the greatest capacity to stabilize MSA-MA
433 clusters and facilitate MSA-MA nucleation in these clusters. This was attributed to its acidic nature
434 and structural characteristics, which include a greater number of intermolecular hydrogen bond
435 binding sites. Therefore, relative to (MSA)₁ \cdot (MA)₁ \cdot (X)₁ cluster (Table 2), the Gibbs formation free
436 energy ΔG of the (MSA)₁ \cdot (MA)₁ \cdot (SFA⁻)₁ cluster was lower, indicating that the NH₂SO₃⁻ ion
437 exhibits a more potent nucleation capacity at the air-water interface compared to the X species in
438 the gas phase. Consequently, our forecast was that the presence of NH₂SO₃⁻ at the air-water interface
439 will foster enhanced particle growth.

440 **4. Summary and Conclusions**

441 In this study, quantum chemical calculations, BOMD simulations and ACDC kinetic model
442 were utilized to characterize the gaseous and interfacial hydrolysis of HNSO₂ with MSA, and to
443 examine the influence exerted by SFA on MSA-MA-based clusters.

444 In the gaseous reaction, the activation energy for the hydrolysis of HNSO₂ catalyzed by MSA
445 was only 0.8 kcal \cdot mol⁻¹, significantly lower by 7.7 kcal \cdot mol⁻¹ than the energy barrier of H₂O-assisted

446 HNSO₂ hydrolysis. The effective rate coefficients reveal that the SFA formation from MSA-
447 catalyzed hydrolysis of HNSO₂ can be competitive with that catalyzed by H₂O within an altitude of
448 5-15 km. Moreover, kinetic simulations utilizing the ACDC have disclosed that SFA has an
449 unexpectedly positive impact on the NPF process, markedly enhancing the assembly of MSA-MA-
450 based cluster. Notably, the “participant” mechanism of SFA for cluster formation has been identified
451 by tracing the growth paths of the system in agriculture-developed and coastal industrial areas,
452 especially significant in the Yangtze River Delta of China, Bangladesh, and the east coast of India.

453 At the air-water interface, the NH₂SO₃⁻ and H₃O⁺ ions forming mechanism (~40%) and the
454 proton exchange mechanism (~60%) were observed in the hydrolysis of HNSO₂ with MSA, which
455 can take place in a few picoseconds. Notably, the formed SFA⁻, MSA⁻, and H₃O⁺ ions at the air-
456 water interface possess the ability to attract potential precursor molecules like MSA, MA, and
457 HNO₃. This attraction facilitates the transition of gaseous molecules onto the surface of water
458 microdroplet. Moreover, the assessment of the potential of *X* in the formation of the ternary MSA-
459 MA-*X* cluster revealed that SFA⁻ exhibits the greatest propensity to stabilize MSA-MA clusters and
460 to foster nucleation of MSA-MA in the context of *X*.

461 Overall, this work not only elucidates a novel mechanism underlying the hydrolysis of HNSO₂
462 with MSA, but also highlight the potential contribution of SFA on aerosol particle growth and new
463 particle formation.

464 **Acknowledgments**

465 This work was supported by the National Natural Science Foundation of China (No: 22203052;
466 22073059); the Key Cultivation Project of Shaanxi University of Technology (No: SLG2101); the
467 Education Department of Shaanxi Provincial Government (No. 23JC023).

468 **Declaration of competing interest**

469 The authors declare that they have no known competing financial interests or personal
470 relationships that could have appeared to influence the work reported in this paper.

471 Reference

472 Adler, T. B., Knizia, G., and Werner, H. J.: A simple and efficient CCSD(T)-F12 approximation, *J. Chem.*
473 *Phys.*, 127, 22, 2007.

474 Anglada, J. M., Hoffman, G. J., Slipchenko, L. V. M., Costa, M., Ruiz-Lopez, M. F., and Francisco, J. S.:
475 Atmospheric significance of water clusters and ozone-water complexes, *J. Phys. Chem. A*, 117, 10381-
476 10396, 2013.

477 Bao, J. L., Zhang, X., and Truhlar, D. G.: Barrierless association of CF_2 and dissociation of C_2F_4 by
478 variational transition-state theory and system-specific quantum Rice-Ramsperger-Kassel theory, *Proc.*
479 *Natl. Acad. Sci. USA.*, 113, 13606-13611, 2016.

480 Becke, A. D.: Density-functional exchange-energy approximation with correct asymptotic behavior,
481 *Phys. Rev. A.*, 38, 3098-3100, 1988.

482 Berresheim, H., Elste, T., Tremmel, H. G., Allen, A. G., Hansson, H. C., Rosman, K., Dal Maso, M.,
483 Mäkelä, J. M., Kulmala, M., and O'Dowd, C. D.: Gas-aerosol relationships of H_2SO_4 , MSA, and OH:
484 Observations in the coastal marine boundary layer at Mace Head, Ireland, *J. Geophys. Res. Atmos.*, 107,
485 PAR 5-1-PAR 5-12, 2002.

486 Bork, N., Elm, J., Olenius, T., and Vehkamäki, H.: Methane sulfonic acid-enhanced formation of
487 molecular clusters of sulfuric acid and dimethyl amine, *Atmos. Chem. Phys.*, 14, 12023-12030, 2014.

488 Bork, N., Du, L., Reiman, H., Kurten, T., and Kjaergaard, H. G.: Benchmarking ab initio binding energies
489 of hydrogen-bonded molecular clusters based on FTIR spectroscopy, *J. Phys. Chem. A*, 118, 5316-5322,
490 2014.

491 Buszek, R. J., Torrent-Sucarrat, M., Anglada, J. M., and Francisco, J. S.: Effects of a single water
492 molecule on the $\text{OH} + \text{H}_2\text{O}_2$ reaction, *J. Phys. Chem. A*, 116, 5821-5829, 2012.

493 Chen, D., Li, D., Wang, C., Luo, Y., Liu, F., and Wang, W.: Atmospheric implications of hydration on the
494 formation of methanesulfonic acid and methylamine clusters: A theoretical study, *Chemosphere.*, 244,
495 125538-125547, 2020.

496 Chen, H. and Finlayson-Pitts, B. J.: New particle formation from methanesulfonic acid and
497 amines/ammonia as a function of temperature, *Environ. Sci. Technol.*, 51, 243-252, 2017.

498 Chen, H., Varner, M. E., Gerber, R. B., Finlayson-Pitts, B. J., Reactions of methanesulfonic acid with
499 amines and ammonia as a source of new particles in air. *J. Phys. Chem. B* 2016, 120, 1526-1536.

500 Cheng, Y., Ding, C., Wang, H., Zhang, T., Wang, R., Muthiah, B., Xu, H., Zhang, Q., and Jiang, M.:
501 Significant influence of water molecules on the $\text{SO}_3 + \text{HCl}$ reaction in the gas phase and at the air-water
502 interface, *Phys. Chem. Chem. Phys.*, 25, 28885-28894, 2023.

503 Chuang, Y., Corchado, J., Fast, P., Villa, J., Coitino, E., Hu, W., Liu, Y., Lynch, G., Nguyen, K., and
504 Jackels, C.: Polyrate-version 8.2, University of Minnesota, Minneapolis, 1999.

505 Dawson, M. L., Varner, M. E., Perraud, V., Ezell, M. J., Gerber, R. B., and Finlayson-Pitts, B. J.:
506 Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via
507 experiments and ab initio calculations, *Proc. Natl. Acad. Sci. USA.*, 109, 18719-18724, 2012.

508 Dawson, M. L., Varner, M. E., Perraud, V. M., Ezell, M. J., Wilson, J. M., Zelenyuk, A., Gerber, R. B.,
509 and Finlayson-Pitts, B. J.: Amine-amine exchange in aminium-methanesulfonate aerosols, *J. Phys. Chem.*
510 C., 118(50):29431-29440, 2014.

511 Deng, G., Wu, Z., Li, D., Linguerri, R., Francisco, J. S., and Zeng, X. J. J. o. t. A. C. S.: Simplest N-
512 Sulfonylamine HNSO_2 , *J. Am. Chem. Soc.*, 140, 138, 11509-11512, 2016.

513 Ding, C., Cheng, Y., Wang, H., Yang, J., Li, Z., Lily, M., Wang, R., and Zhang, T.: Determination of the

514 influence of water on the $\text{SO}_3 + \text{CH}_3\text{OH}$ reaction in the gas phase and at the air-water interface, *Phys.*
515 *Chem. Chem. Phys.*, 25, 15693-15701, 2023.

516 Elm, J.: Clusteromics II: methanesulfonic acid-base cluster formation, *ACS omega.*, 6, 17035-17044,
517 2021.

518 Elm, J., Bilde, M., and Mikkelsen, K. V.: Assessment of density functional theory in predicting structures
519 and free energies of reaction of atmospheric prenucleation clusters, *J. Chem. Theory Comput.*, 8, 2071-
520 2077, 2012.

521 Freeling, F., Scheurer, M., Sandholzer, A., Armbruster, D., Nödler, K., Schulz, M., Ternes, T. A., and
522 Wick, A.: Under the radar – Exceptionally high environmental concentrations of the high production
523 volume chemical sulfamic acid in the urban water cycle, *Water Research.*, 175, 115706, 2020.

524 Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani,
525 G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P.,
526 Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R.,
527 Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A.
528 Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N.,
529 Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi,
530 M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J.,
531 Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W.,
532 Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich,
533 S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J.: Gaussian09
534 Revision D. 01, Gaussian Inc. Wallingford CT, Gaussian Inc. Wallingford CT, See also: URL: <http://www.gaussian.com>, 2009.

535 Georgievskii, Y. and Klippenstein, S.: Variable reaction coordinate transition state theory: analytic results
536 and application to the $\text{C}_2\text{H}_3 + \text{H} \rightarrow \text{C}_2\text{H}_4$ reaction, *JCP*, 118, 5442-5455, 2003.

537 Glowacki, D. R., Liang, C.-H., Morley, C., Pilling, M. J., and Robertson, S. H.: MESMER: an open-
538 source master equation solver for multi-energy well reactions, *J. Phys. Chem. A*, 116, 9545-9560, 2012.

539 Goedecker, S., Teter, M., and Hutter, J.: Separable dual-space Gaussian pseudopotentials, *Phys. Rev. B.*,
540 54, 1703, 1996.

541 Gonzalez, J., Anglada, J. M., Buszek, R. J., and Francisco, J. S.: Impact of water on the $\text{OH} + \text{HOCl}$
542 reaction, *J. Am. Chem. Soc.*, 133, 3345-3353, 2011.

543 Grimme, S., Antony, J., Ehrlich, S., and Krieg, H.: A consistent and accurate ab initio parametrization of
544 density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *J. Chem. Phys.*, 132, 154104,
545 2010.

546 Hartwigsen, C., Goedecker, S., and Hutter, J.: Relativistic separable dual-space Gaussian
547 pseudopotentials from H to Rn, *Phys. Rev. B.*, 58, 3641-3662, 1998.

548 Hirota, K., Mäkelä, J., and Tokunaga, O.: Reactions of sulfur dioxide with ammonia: Dependence on
549 oxygen and nitric oxide, *Ind. Eng. Chem. Res.*, 35, 3362-3368, 1996.

550 Hu, Y., Chen, S., Ye, S., Wei, S., Chu, B., Wang, R., Li, H., and Zhang, T.: The role of trifluoroacetic acid
551 in new particle formation from methanesulfonic acid-methylamine, *Atmos. Environ.*, 311, 120001, 2023.

552 Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J.: Cp2k: atomistic simulations of condensed
553 matter systems, *WIREs COMPUT MOL SCI.*, 4, 15-25, 2014.

554 Jung, J., Hong, S. B., Chen, M., Hur, J., Jiao, L., Lee, Y., Park, K., Hahm, D., Choi, J. O., Yang, E. J.,
555 and Physics: Characteristics of methanesulfonic acid, non-sea-salt sulfate and organic carbon aerosols
556 over the Amundsen Sea, Antarctica, *Atmos. Chem. Phys.*, 20, 5405-5424, 2020.

558 Kendall, R. A., T. H. D., and Harrison, R. J.: Electron affinities of the first-row atoms revisited.
559 Systematic basis sets and wave functions, *J. Chem. Phys.*, 96, 6796-6806, 1992.

560 Kim, T. O., Ishida, T., Adachi, M., Okuyama, K., and Seinfeld, J. H.: Nanometer-sized particle formation
561 from $\text{NH}_3/\text{SO}_2/\text{H}_2\text{O}/\text{air}$ mixtures by ionizing irradiation, *Aerosol Sci. Tech.*, 29, 111-125, 1998.

562 Kolb, C., Jayne, J., Worsnop, D., Molina, M., Meads, R., and Viggiano, A.: Gas phase reaction of sulfur
563 trioxide with water vapor, *J. Am. Chem. Soc.*, 116, 10314-10315, 1994.

564 Kulmala, M., Vehkämäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V. M., Birmili, W., and
565 McMurry, P. H.: Formation and growth rates of ultrafine atmospheric particles: a review of observations,
566 *J. Aerosol Sci.*, 35, 143-176, 2004.

567 Kumar, M., Li, H., Zhang, X., Zeng, X. C., and Francisco, J. S.: Nitric acid-amine chemistry in the gas
568 phase and at the air-water interface, *J. Am. Chem. Soc.*, 140, 6456-6466, 2018.

569 Kuttippurath, J., Singh, A., Dash, S., Mallick, N., Clerbaux, C., Van Damme, M., Clarisse, L., Coheur,
570 P.-F., Raj, S., and Abbhishek, K.: Record high levels of atmospheric ammonia over India: Spatial and
571 temporal analyses, *Sci. Total Environ.*, 740, 139986, 2020.

572 Larson, L. J. and Tao, F.-M.: Interactions and reactions of sulfur trioxide, water, and ammonia: An ab
573 initio and density functional theory study, *J. Phys. Chem. A*, 105, 4344-4350, 2001.

574 Lee, C., Yang, W., and Parr, R. G.: Development of the colle-Salvetti correlation-energy formula into a
575 functional of the electron density, *PHYS REV B*, 37, 785, 1988.

576 Li, H., Zhong, J., Vehkämäki, H., Kurtén, T., Wang, W., Ge, M., Zhang, S., Li, Z., Zhang, X., Francisco,
577 J. S., and Zeng, X. C.: Self-Catalytic reaction of SO_3 and NH_3 to produce sulfamic acid and its implication
578 to atmospheric particle formation, *J. Am. Chem. Soc.*, 140, 11020-11028, 2018.

579 Liu, J., Liu, Y., Yang, J., Zeng, X. C., and He, X.: Directional proton transfer in the reaction of the simplest
580 criegee intermediate with water involving the formation of transient H_3O^+ , *J. Phys. Chem. Lett.*, 12,
581 3379-3386, <https://doi.org/10.1021/acs.jpclett.1c00448>, 2021.

582 Liu, L., Yu, F., Tu, K., Yang, Z., and Zhang, X.: Influence of atmospheric conditions on the role of
583 trifluoroacetic acid in atmospheric sulfuric acid-dimethylamine nucleation, *Atmos. Chem. Phys.*, 21,
584 6221-6230, 2021.

585 Long, B., Chang, C.-R., Long, Z.-W., Wang, Y.-B., Tan, X.-F., and Zhang, W.-J.: Nitric acid catalyzed
586 hydrolysis of SO_3 in the formation of sulfuric acid: a theoretical study, *Chem. Phys. Lett.*, 581, 26-29,
587 2013

588 Long, B., Wang, Y., Xia, Y., He, X., Bao, J. L., and Truhlar, D. G.: Atmospheric Kinetics: Bimolecular
589 Reactions of Carbonyl Oxide by a Triple-Level Strategy, *J. Am. Chem. Soc.*, 143, 8402-8413, 2021.

590 Long, B., Xia, Y., Zhang, Y.-Q., and Truhlar, D. G.: Kinetics of sulfur trioxide reaction with water vapor
591 to form atmospheric sulfuric acid, *J. Am. Chem. Soc.*, 145, 19866-19876, 2023.

592 Lovejoy, E. R. and Hanson, D. R.: Kinetics and products of the reaction $\text{SO}_3 + \text{NH}_3 + \text{N}_2$, *J. Phys. Chem.*,
593 100, 4459-4465, 1996.

594 Ma, X., Zhao, X., Huang, Z., Wang, J., Lv, G., Xu, F., Zhang, Q., and Wang, W.: Determination of
595 reactions between Criegee intermediates and methanesulfonic acid at the gas-liquid interface, *Sci. Total
596 Environ.*, 707, 135804, 2020.

597 Mai, T. V. T., Duong, M. V., Nguyen, H. T., and Huynh, L. K.: Ab initio kinetics of the $\text{HOSO}_2 + {}^3\text{O}_2 \rightarrow$
598 $\text{SO}_3 + \text{HO}_2$ reaction, *Phys. Chem. Chem. Phys.*, 20, 6677-6687, 2018.

599 Manonmani, G., Sandhiya, L., and Senthilkumar, K. J. I. J. O. Q. C.: Hydrolysis of HNSO_2 : A potential
600 route for atmospheric production of H_2SO_4 and NH_3 , *Int. J. Quantum Chem.*, 120, e26182, 2020.

601 Mansour, K., Decesari, S., Bellacicco, M., Marullo, S., Santoleri, R., Bonasoni, P., Facchini, M. C.,

602 Ovadnevaite, J., Ceburnis, D., and O'Dowd, C.: Particulate methanesulfonic acid over the central
603 Mediterranean Sea: source region identification and relationship with phytoplankton activity, *Atmos.*
604 *Res.*, 237, 104837, 2020.

605 McGrath, M.J., Olenius, T., Ortega, I.K., Loukonen, V., Paasonen, P., Kurtén, T., Kulmala, M.,
606 Vehkamäki, H., Atmospheric cluster dynamics code: a flexible method for solution of the birth-death
607 equations. *Atmos. Chem. Phys.* 12, 2345-2355, 2012.

608 Meana-Pañeda, R., Zheng, J., Bao, J. L., Zhang, S., Lynch, B. J., Corchado, J. C., Chuang, Y.-Y., Fast, P.
609 L., Hu, W.-P., and Liu, Y.-P.: Polyrate 2023: A computer program for the calculation of chemical reaction
610 rates for polyatomics. New version announcement, *Comput Phys Commun*, 294, 108933, 2024.

611 Neese, F.: The ORCA program system, *WIREs Comput. Mol. Sci.*, 2, 73-78, 2012.

612 Parandaman, A., Perez, J. E., and Sinha, A.: Atmospheric decomposition of trifluoromethanol catalyzed
613 by formic acid, *J. Phys. Chem. A*, 122, 9553-9562, 2018.

614 Pszona, M., Haupa, K., Bil, A., Mierzwicki, K., Szewczuk, Z., and Mielke, Z.: Clustering of sulfamic
615 acid: ESI MS and theoretical study, *J. Mass Spectrom.*, 50, 127-135, 2015.

616 Rennebaum, T., van Gerven, D., Sebastian, S. S., and Wickleder, M. S.: Hydrazine sulfonic acid, NH_3NH
617 (SO_3) , the bigger sibling of sulfamic acid, *CHEM-EUR J*, 30, e202302526, 2024.

618 Saltzman, E., Savoie, D., Prospero, J., and Zika, R.: Methanesulfonic acid and non-sea-salt sulfate in
619 Pacific air: Regional and seasonal variations, *J. Atmos. Chem.*, 4, 227-240, 1986.

620 Sarkar, S., Mallick, S., Kumar, P., and Bandyopadhyay, B.: Isomerization of methoxy radical in the
621 troposphere: Competition between acidic, neutral and basic catalysts, *Phys. Chem. Chem. Phys.*, 19,
622 27848-27858, 2017.

623 Shang, D., Tang, L., Fang, X., Wang, L., Yang, S., Wu, Z., Chen, S., Li, X., Zeng, L., Guo, S., and Hu,
624 M.: Variations in source contributions of particle number concentration under long-term emission control
625 in winter of urban Beijing, *Environ. Pollut.*, 304, 119072, 2022.

626 Shen, J., Elm, J., Xie, H.-B., Chen, J., Niu, J., and Vehkamaki, H.: Structural effects of amines in
627 enhancing methanesulfonic acid-driven new particle formation, *Environ. Sci. Technol.*, 54, 13498-13508,
628 2020.

629 Shen, J., Xie, H.-B., Elm, J., Ma, F., Chen, J., and Vehkamaki, H.: Methanesulfonic acid-driven new
630 particle formation enhanced by monoethanolamine: A computational study, *Environ. Sci. Technol.*, 53,
631 14387-14397, 2019.

632 Chen, H.; Varner, M. E.; Gerber, R. B.; Finlayson-Pitts, B. J.: Reactions of methanesulfonic acid with
633 amines and ammonia as a source of new particles in air, *J. Phys. Chem. B*, 120, 1526-1536, 2016.

634 Shi, Z., Ford, J., and Castleman Jr, A.: Cluster reactions of sulfur trioxide and ammonia, *Chemical*
635 *physics letters*, 220, 274-280, 1994.

636 Tang, Y. S., Flechard, C. R., Dämmgen, U., Vidic, S., Djuricic, V., Mitosinkova, M., Uggerud, H. T., Sanz,
637 M. J., Simmons, I., and Dragosits, U.: Pan-European rural monitoring network shows dominance of NH_3
638 gas and NH_4NO_3 aerosol in inorganic atmospheric pollution load, *Atmos. Chem. Phys.*, 21, 875-914,
639 2021.

640 Tsona Tchinda, N., Du, L., Liu, L., and Zhang, X.: Pyruvic acid, an efficient catalyst in SO_3 hydrolysis
641 and effective clustering agent in sulfuric-acid-based new particle formation, *Atmos. Chem. Phys.*, 22,
642 1951-1963, 2022.

643 Van Stempvoort, D., Spoelstra, J., Brown, S., Robertson, W., Post, R., and Smyth, S.: Sulfamate in
644 environmental waters, *Sci. Total Environ.*, 695, 133734, 2019.

645 VandeVondele, J. and Hutter, J.: Gaussian basis sets for accurate calculations on molecular systems in

646 gas and condensed phases, *J. Chem. Phys.*, 127, 114105, 2007.

647 VandeVondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., and Hutter, J.: Quickstep: Fast
648 and accurate density functional calculations using a mixed Gaussian and plane waves approach, *Comput.*
649 *Phys. Commun.*, 167, 103-128, 2005.

650 Wang, R., Cheng, Y., Chen, S., Li, R., Hu, Y., Guo, X., Zhang, T., Song, F., and Li, H.: Reaction of SO_3
651 with H_2SO_4 and its implications for aerosol particle formation in the gas phase and at the air-water
652 interface, *Atmos. Chem. Phys.*, 24, 4029-4046, 2024.

653 Wang, S., Nan, J., Shi, C., Fu, Q., Gao, S., Wang, D., Cui, H., Saiz-Lopez, A., and Zhou, B.: Atmospheric
654 ammonia and its impacts on regional air quality over the megacity of Shanghai, China, *Sci. Rep.*, 5, 15842,
655 2015.

656 Warner, J. X., Wei, Z., Strow, L. L., Dickerson, R. R., Nowak, J. B., and Physics: The global tropospheric
657 ammonia distribution as seen in the 13-year AIRS measurement record, *Atmos. Chem. Phys.*, 16, 5467-
658 5479, 2016.

659 Xue, J., Shao, X., Li, J., Li, J., Trabelsi, T., Francisco, J. S., and Zeng, X.: Observation of the Water-
660 HNO_2 complex, *J. Am. Chem. Soc.*, 146, 5455-5460, 2024.

661 Yu, X., Shen, L., Hou, X., Yuan, L., Pan, Y., An, J., and Yan, S.: High-resolution anthropogenic ammonia
662 emission inventory for the Yangtze River Delta, China, *CHEMOSPHERE*, 251, 126342, 2020.

663 Zhang, J. and Dolg, M.: AB Cluster: the artificial bee colony algorithm for cluster global optimization,
664 *Phys. Chem. Chem. Phys.*, 17, 24173-24181, 2015.

665 Zhang, R., Khalizov, A., Wang, L., Hu, M., and Xu, W.: Nucleation and growth of nanoparticles in the
666 atmosphere, *Chem. Rev.*, 112, 1957-2011, 2012.

667 Zhang, R., Shen, J., Xie, H. B., Chen, J., and Elm, J.: The role of organic acids in new particle formation
668 from methanesulfonic acid and methylamine, *Atmos. Chem. Phys.*, 22, 2639-2650, 2022.

669 Zhang, T., Wen, M., Cao, X., Zhang, Y., Zeng, Z., Guo, X., Zhao, C., Lily, M., and Wang, R.: The
670 hydrolysis of NO_2 dimer in small clusters of sulfuric acid: A potential source of nitrous acid in
671 troposphere, *Atmos. Environ.*, 243, 117876, 2020.

672 Zhang, T., Wen, M., Ding, C., Zhang, Y., Ma, X., Wang, Z., Lily, M., Liu, J., and Wang, R.: Multiple
673 evaluations of atmospheric behavior between Criegee intermediates and HCHO : Gas-phase and gas-
674 liquid interface reaction, *J. Environ. Sci.*, 127, 308-319, 2023.

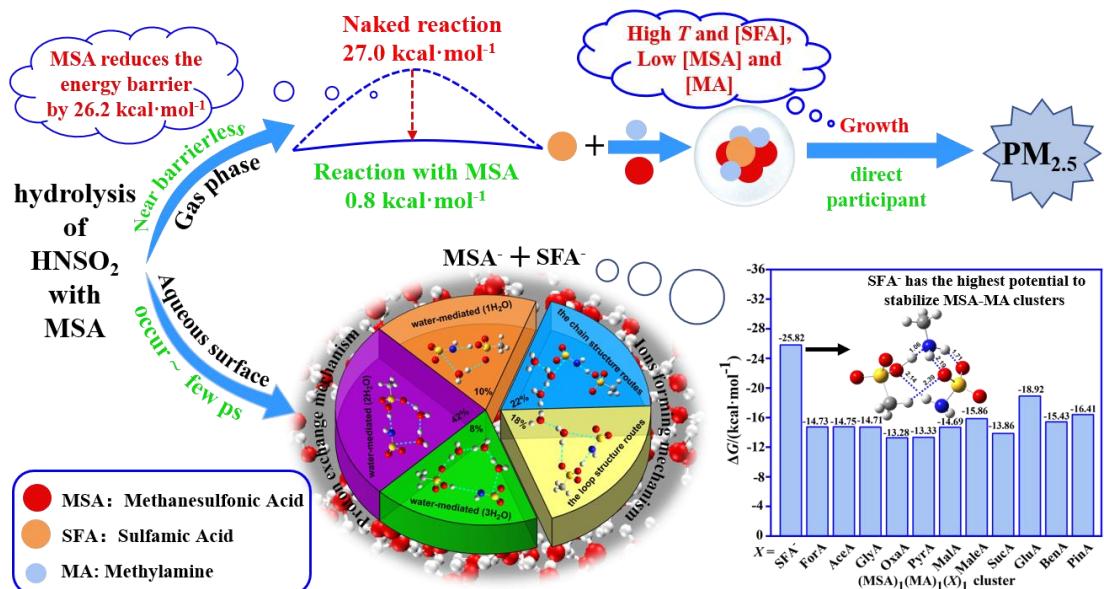
675 Zhang, T., Wen, M., Zhang, Y., Lan, X., Long, B., Wang, R., Yu, X., Zhao, C., and Wang, W.: Atmospheric
676 chemistry of the self-reaction of HO_2 radicals: stepwise mechanism versus one-step process in the
677 presence of $(\text{H}_2\text{O})_n$ ($n = 1-3$) clusters, *Phys. Chem. Chem. Phys.*, 21, 24042-24053, 2019.

678 Zhang, T., Zhang, Y., Tian, S., Zhou, M., Liu, D., Lin, L., Zhang, Q., Wang, R., and Muthiah, B.: Possible
679 atmospheric source of $\text{NH}_2\text{SO}_3\text{H}$: the hydrolysis of HNO_2 in the presence of neutral, basic, and acidic
680 catalysts, *Phys. Chem. Chem. Phys.*, 24, 4966-4977, 2022.

681 Zhang, X., Lian, Y., Tan, S., Yin, S., and Physics: Organ sulfate produced from consumption of SO_3
682 speeds up sulfuric acid-dimethylamine atmospheric nucleation, *Atmos. Chem. Phys.*, 24, 3593-3612,
683 2024.

684 Zhang, Y., Wang, Z., Wang, H., Cheng, Y., Zhang, T., Ou, T., and Wang, R.: Atmospheric chemistry of
685 $\text{NH}_2\text{SO}_3\text{H}$ in polluted areas: an unexpected isomerization of $\text{NH}_2\text{SO}_3\text{H}$ in acid-polluted regions, *J. Phys.*
686 *Chem. A*, 127, 8935-8942, 2023.

687 Zhao, X., Shi, X., Ma, X., Zuo, C., Wang, H., Xu, F., Sun, Y., and Zhang, Q.: 2-Methyltetrol sulfate ester-
688 initiated nucleation mechanism enhanced by common nucleation precursors: A theory study, *Sci. Total*
689 *Environ.*, 723, 137987, 2020.


690 Zhao, Y. and Truhlar, D. G.: The M06 suite of density functionals for main group thermochemistry,
691 thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new
692 functionals and systematic testing of four M06-class functionals and 12 other functionals, *Theor. Chem.
693 Acc.*, 120, 215-241, 2008.

694 Zhong, J., Kumar, M., Francisco, J. S., and Zeng, X. C.: Insight into chemistry on cloud/aerosol water
695 surfaces, *Acc. Chem. Res.*, 51, 1229-1237, 2018.

696 Zhong, J., Kumar, M., Zhu, C. Q., Francisco, J. S., and Zeng, X. C.: Frontispiece: surprising stability of
697 larger criegee intermediates on aqueous interfaces, *ANGEW CHEM INT EDIT*, 56, 7740-7744, 2017.

698 Zhong, J., Li, H., Kumar, M., Liu, J., Liu, L., Zhang, X., Zeng, X. C., and Francisco, J. S.: Mechanistic
699 insight into the reaction of organic acids with SO_3 at the air-water interface, *ANGEW CHEM INT EDIT.*,
700 131, 8351-8355, 2019.

701 Zhu, C., Kumar, M., Zhong, J., Li, L., Francisco, J. S., and Zeng, X. C.: New mechanistic pathways for
702 Criegee-water chemistry at the air/water interface, *J. Am. Chem. Soc.*, 138, 11164-11169, 2016.

703

704

Graphical abstract

Figure Captions

Fig. 1 The potential energy profile (ΔG) for the hydrolysis reaction of HNSO_2 with MSA at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311++G(2df,2pd) level of theory

Fig. 2 BOMD simulation trajectories and snapshots of NH_2SO_3^- and H_3O^+ ions forming mechanism (chain structure (a) and loop-structure (b)) in the HNO_2 hydrolysis with MSA at the air-water interface

Fig. 3 BOMD simulation trajectories and snapshots of proton exchange mechanism in MSA-mediated hydration H₂SO₄ with one (a) and two (b) water molecules at the air-water interface

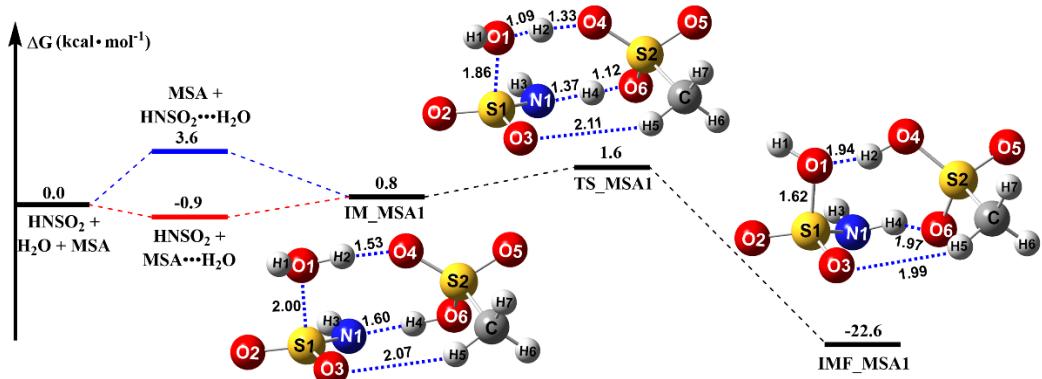

Fig. 4 Percentages of different mechanisms for the HNO_2 hydrolysis with MSA at the air-water interface observed in BOMD simulations

Fig. 5 ESP-mapped molecular vdW surface of MA, SFA and MSA molecules at M06-2X/6-311++G(2df,2pd) level of theory. Surface local minima and maxima of ESP of the different functional groups in MA, SFA and MSA molecules are represented as blue and yellow spheres, respectively. The values of maximum and minimum are shown in kcal mol⁻¹ in the parentheses. The green, red and blue arrows refer to the tendencies to form hydrogen bonds and proton transfer events, respectively. (green = carbon, red = oxygen, blue = nitrogen, yellow = sulfur and white = hydrogen.)

Fig. 6 The J ($\text{cm}^{-3} \text{s}^{-1}$) (a) and R (b) versus [SFA] with $[\text{MSA}] = 10^6 \text{ molecules cm}^{-3}$, $[\text{MA}] = 2.5 \times 10^8 \text{ molecules cm}^{-3}$ and four different temperatures (green line: 298.15 K, blue line: 278.15 K, red line: 258.15 K, black line: 238.15 K).

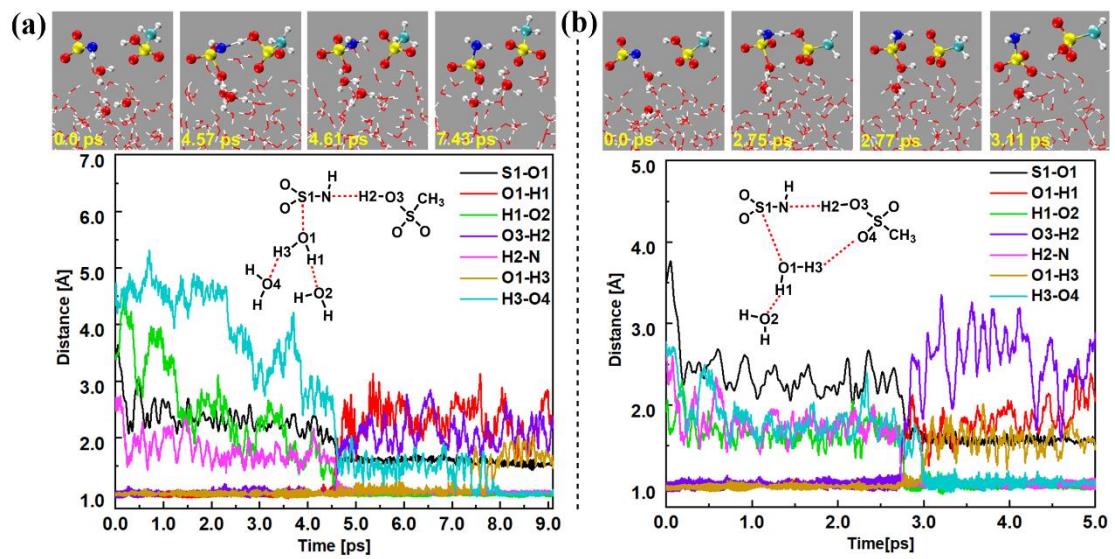
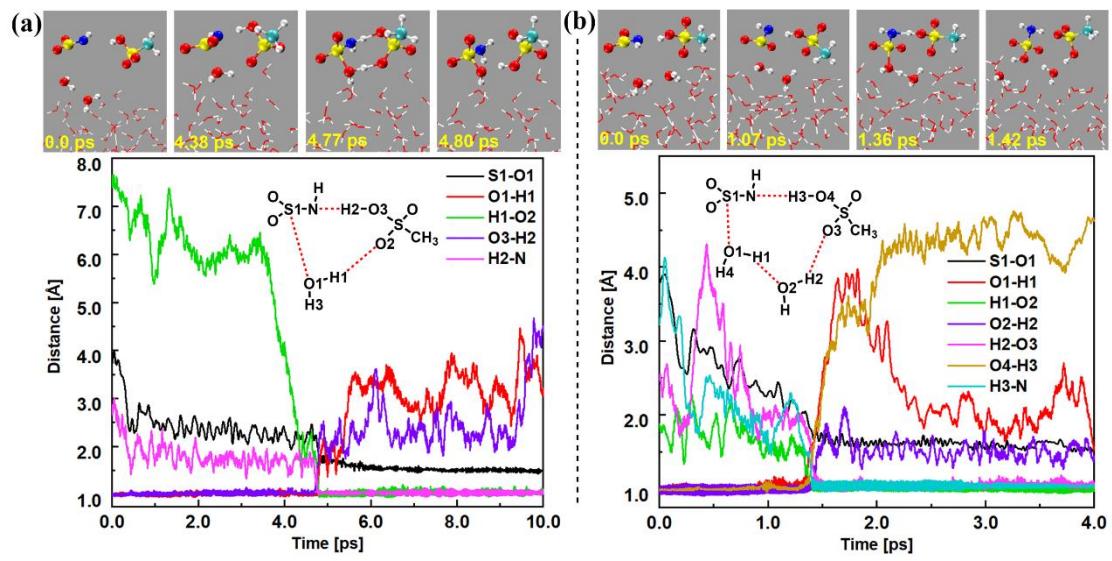

Fig. 7 The J ($\text{cm}^{-3} \text{s}^{-1}$) (a) and R (b) as a function of [MSA] with [SFA] = 10^8 molecules cm^{-3} and three different [MA] (black line: $[\text{MA}] = 2.5 \times 10^7$ molecules cm^{-3} , red line: $[\text{MA}] = 2.5 \times 10^8$ molecules cm^{-3} , blue line: $[\text{MA}] = 2.5 \times 10^9$ molecules cm^{-3}) at 278.15 K.

Fig. 8 Main cluster formation mechanism of MSA-MA-SFA-based system at 278.15 K, $[MSA] = 10^7 \text{ molecules}\cdot\text{cm}^{-3}$, $[MA] = 2.5 \times 10^8 \text{ molecules}\cdot\text{cm}^{-3}$, and $[SFA] = 10^6 \text{ molecules}\cdot\text{cm}^{-3}$. (a) The black arrows indicate the pure MSA-MA-based growth pathways. Blue arrows represent the pathways containing SFA. The influence of (b) temperature, (c) $[SFA]$ and $[MSA]$ on the relative contribution of the pure MSA-MA-based clustering pathway and the SFA participation pathway to the system flux is analyzed. Others in (b), and (c) indicate that the pathway contribution of the cluster growing out of the studied system is less than 5%

748
749


Fig. 1

750

751

Fig. 2

752

753

754

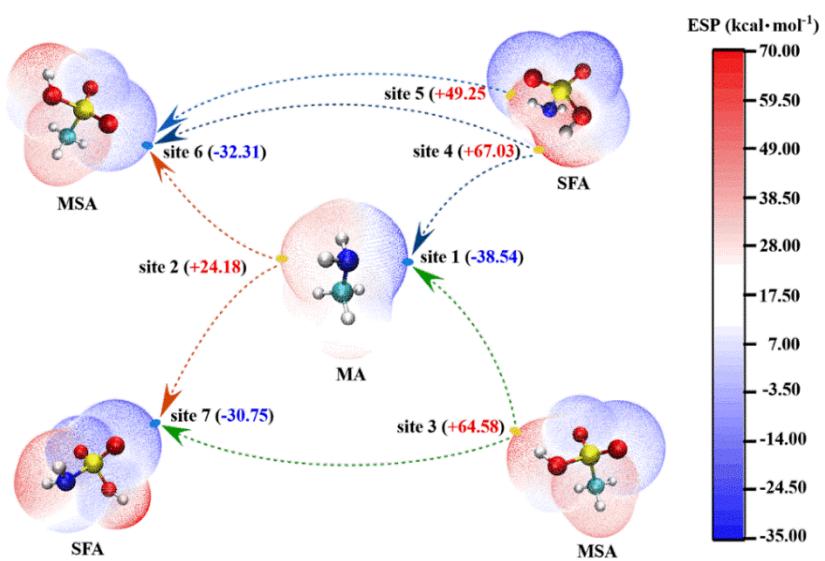

Fig. 3

Fig. 4

755

756

757

758

Fig. 5

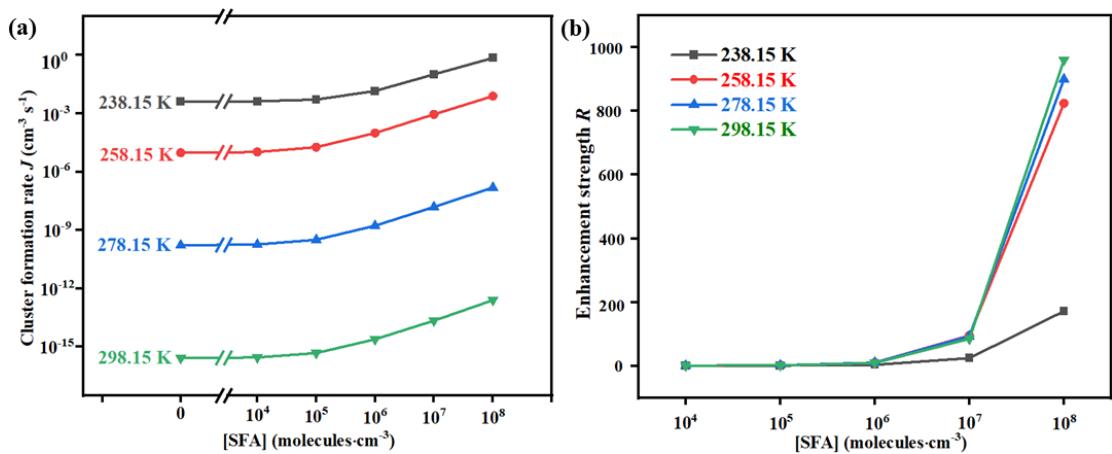


Fig. 6

759

760

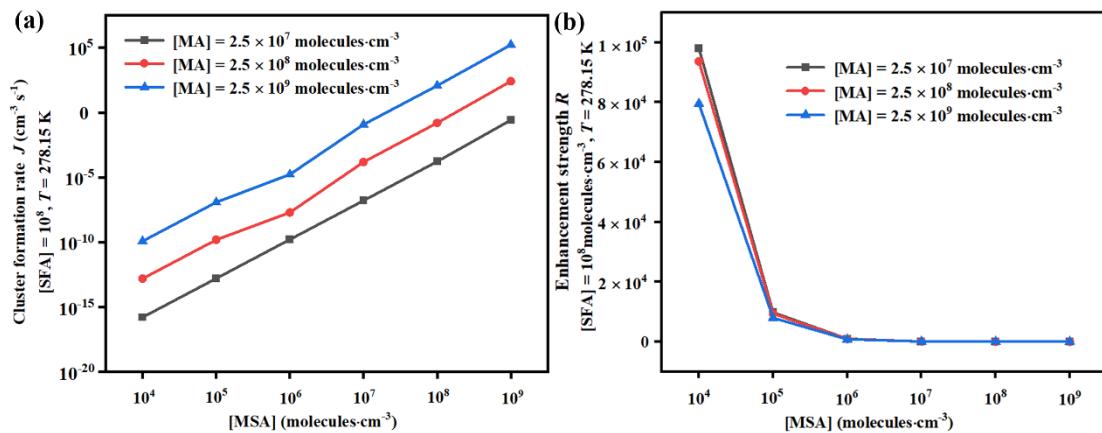


Fig. 7

761

762

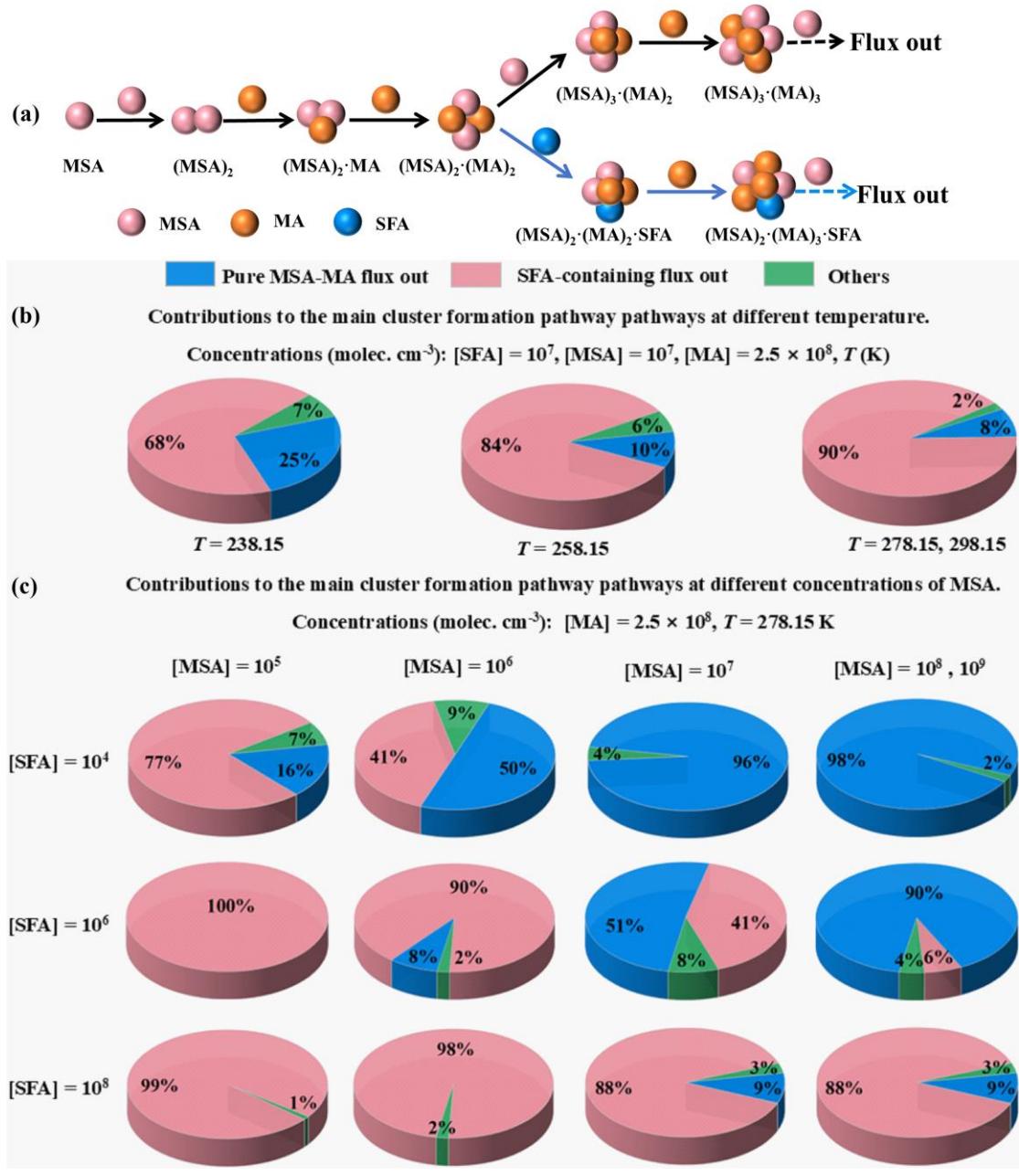


Fig. 8

Table 1 Rate coefficients (k , $\text{cm}^3 \cdot \text{molecule}^{-1} \cdot \text{s}^{-1}$) and effective rate constants (k' , $\text{cm}^3 \cdot \text{molecule}^{-1} \cdot \text{s}^{-1}$) for the hydrolysis of HNSO_2 with H_2O and MSA calculated by master equation within the temperature range of 213–320 K and altitude range of 0–15 km

Altitude	0 km			5 km			10 km			15 km		
T/K	280	290	298	300	310	320	259.3	229.7	212.6	2.22 $\times 10^{-12}$	2.22 $\times 10^{-12}$	2.22 $\times 10^{-12}$
k_{WM}	7.64×10^{-13}	6.45×10^{-13}	5.63×10^{-13}	5.44×10^{-13}	4.59×10^{-13}	3.88×10^{-13}	1.09×10^{-12}	1.72×10^{-12}	2.22×10^{-12}	2.22×10^{-12}	2.22×10^{-12}	2.22×10^{-12}
	3.08×10^{-11}	2.96×10^{-11}	2.85×10^{-11}	2.82×10^{-11}	2.67×10^{-11}	2.52×10^{-11}	3.32×10^{-11}	3.32×10^{-11}	3.49×10^{-11}	3.50×10^{-11}	3.50×10^{-11}	3.50×10^{-11}
k_{MSA}	5.99×10^{-18}	7.96×10^{-18}	9.64×10^{-18}	1.03×10^{-17}	1.29×10^{-17}	1.36×10^{-17}						
	1.19×10^{-17}	1.58×10^{-17}	1.99×10^{-17}	2.07×10^{-17}	2.60×10^{-17}	3.12×10^{-17}						
k'	1.79×10^{-17}	2.38×10^{-17}	2.98×10^{-17}	3.11×10^{-17}	3.90×10^{-17}	4.68×10^{-17}	9.85×10^{-27}	1.71×10^{-22}	6.51×10^{-22}	6.51×10^{-22}	6.51×10^{-22}	6.51×10^{-22}
	2.39×10^{-17}	3.17×10^{-17}	3.97×10^{-17}	4.14×10^{-17}	5.21×10^{-17}	6.24×10^{-17}						
k_{RH}	2.97×10^{-17}	3.96×10^{-17}	4.97×10^{-17}	5.18×10^{-17}	6.50×10^{-17}	7.79×10^{-17}						
	4.81×10^{-19}	2.50×10^{-19}	1.57×10^{-19}	1.40×10^{-19}	7.90×10^{-20}	4.60×10^{-20}	1.96×10^{-20}	2.37×10^{-19}	1.30×10^{-18}	1.30×10^{-18}	1.30×10^{-18}	1.30×10^{-18}
k'_{MSA}	$100\% \text{RH}$	4.81×10^{-19}	2.50×10^{-19}	1.57×10^{-19}	1.40×10^{-19}	7.90×10^{-20}	4.60×10^{-20}	1.96×10^{-20}	2.37×10^{-19}	1.30×10^{-18}	1.30×10^{-18}	1.30×10^{-18}
$k'_{\text{MSA}}/k_{\text{WM}}$	$[\text{MSA}] = 10^8$	1.62×10^{-4}	6.42×10^{-5}	3.16×10^{-5}	2.69×10^{-5}	1.22×10^{-5}	5.90×10^{-5}	3.01×10^1	1.38×10^3	1.38×10^3	1.38×10^3	1.38×10^3

k_{WM} and k_{MSA} are respectively the rate constant for the hydrolysis of HNSO_2 with H_2O and MSA; k'_{WM} and k'_{MSA} are respectively the effective rate constant for the hydrolysis of HNSO_2 with H_2O and MSA.

766 **Table 2.** Gibbs free energy (ΔG) for the formation of $\text{SFA}^{-}\cdots\text{MSA}$, $\text{SFA}^{-}\cdots\text{NA}$, $\text{SFA}^{-}\cdots\text{OA}$,
 767 $\text{H}_3\text{O}^{+}\cdots\text{MA}$, $\text{MSA}^{-}\cdots\text{MSA}$, $\text{MSA}^{-}\cdots\text{OA}$, and $\text{MSA}^{-}\cdots\text{NA}$, $\text{MSA}^{-}\cdots\text{MA}$, $(\text{MSA})_1\cdot(\text{MA})_1\cdot(X)_1$ at 298
 768 K

	$\text{SFA}^{-}\cdots\text{MSA}$	$\text{SFA}^{-}\cdots\text{HNO}_3$	$\text{SFA}^{-}\cdots\text{OA}$	$\text{MSA}^{-}\cdots\text{MSA}$	$\text{MSA}^{-}\cdots\text{NA}$
ΔG	-23.8	-21.5	-25.2	-23.9	-22.6
	$\text{MSA}^{-}\cdots\text{OA}$	$\text{MSA}^{-}\cdots\text{H}_3\text{O}^{+}$	$\text{MSA}^{-}\cdots\text{H}_3\text{O}^{+}$	$\text{MSA}^{-}\cdots\text{MA}$	
ΔG	-25.8	-35.8	-57.9	-7.0 (-7.2) ^b	
	HCOOH $\cdots\text{MSA}\cdots\text{MA}$	CH_3COOH $\cdots\text{MSA}\cdots\text{MA}$	CHOCOOH $\cdots\text{MSA}\cdots\text{MA}$	OA $\cdots\text{MSA}\cdots\text{MA}$	
ΔG	-14.7 (-15.8) ^a	-14.8 (-14.3) ^a	-14.7 (-15.6) ^a	-13.3 (-12.7) ^a	
	CH_3COCOOH $\cdots\text{MSA}\cdots\text{MA}$	$\text{HOOCCH}_2\text{COOH}$ $\cdots\text{MSA}\cdots\text{MA}$	$\text{HOOC}(\text{CH})_2\text{COOH}$ $\cdots\text{MSA}\cdots\text{MA}$	$\text{HOOC}(\text{CH}_2)_2\text{COOH}$ $\cdots\text{MSA}\cdots\text{MA}$	
ΔG	-13.3 (-13.0) ^a	-14.7 (-16.7) ^a	-15.9 (-15.3) ^a	-13.9 (-14.3) ^a	
	$\text{HOOC}(\text{CH}_2)_3\text{COOH}$ $\cdots\text{MSA}\cdots\text{MA}$	$\text{C}_6\text{H}_5(\text{COOH})$ $\cdots\text{MSA}\cdots\text{MA}$	$\text{C}_{10}\text{H}_{16}\text{O}_3$ $\cdots\text{MSA}\cdots\text{MA}$	SFA^{-} $\cdots\text{MSA}\cdots\text{MA}$	
ΔG	-18.9 (-17.9) ^a	-15.4 (-15.3) ^a	-16.4 (-15.3) ^a	-25.8	

769 ^a The value was taken from reference (Zhang, R., Shen, J., Xie, H. B., Chen, J., and Elm, J.: The role of organic acids
 770 in new particle formation from methanesulfonic acid and methylamine, *Atmos. Chem. Phys.*, 22, 2639-2650,
 771 10.5194/acp-22-2639-2022, 2022b.)

772 ^b The value was taken from reference (Zhong, J., Li, H., Kumar, M., Liu, J., Liu, L., Zhang, X., Zeng, X. C., and
 773 Francisco, J. S.: Mechanistic Insight into the Reaction of Organic Acids with SO_3 at the Air-Water Interface, *Angew. Chem. Int. Ed.*, 131, 8439-8443, 2019.)