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Abstract. The continued monitoring of the ozone layer and its long-term evolution leans on comparative studies of merged
satellite records. Comparing such records presents unique challenges due to differences in sampling, coverage, and retrieval
algorithms between observing platforms, complicating the detection of trends. Here we examine the effects of broad nadir av-
eraging kernels on vertically resolved ozone trends, using one record as an example. We find errors as large as 1 % per decade
and displacements in trend profile features by as much as 6 km in altitude due to the vertical redistribution of information by
averaging kernels. Furthermore, we show that averaging kernels tend to increase (by 10-80 %, depending on the location) the
length of record needed to determine whether trend estimates are distinguishable from natural variability with good statisti-
cal confidence. We conclude that trend uncertainties may be underestimated, in part because averaging kernels misrepresent
decadal to multi-decadal internal variability, and in part because the removal of known modes of variability from the observed
record can yield residual errors. The study provides a framework to reconcile differences between observing platforms and
highlights the need for caution when using records from instruments with broad averaging kernels to quantify trends and their

uncertainties.

1 Introduction

Since the discovery of the Antarctic ozone hole (Farman et al., 1985) and the advent of the World Meteorological Organiza-
tion (WMO)/United Nations Environment Programme (UNEP) Ozone Assessment reports in 1989, there have been a number
of activities dedicated to monitoring the state of the ozone layer and attributing long-term changes in ozone distribution.
Notwithstanding declining levels of ozone-depleting substances (ODSs) (WMO, 2022), the search for evidence of the begin-
ning recovery of the global ozone layer is ongoing. A number of chemistry-climate feedbacks complicate this search. The
greenhouse-driven cooling of the stratosphere is thought to aid the recovery in the mid-to-upper stratosphere by slowing down
reactions that deplete ozone (Fels et al., 1980). In contrast, the acceleration of the Brewer-Dobson circulation widely predicted

by climate-chemistry models (e.g., Eyring et al., 2013a; Meul et al., 2014; Abalos et al., 2021) is expected to redistribute
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stratospheric ozone from the tropics to the midlatitudes (e.g., Rind et al., 1990; Mahfouf et al., 1994; Shepherd, 2008) and to
decrease stratospheric ozone abundances in the tropics (Shepherd, 2008; Li et al., 2009; Waugh et al., 2009; SPARC, 2010;
Oman et al., 2010; Plummer et al., 2010; Meul et al., 2014; Banerjee et al., 2016; Chiodo et al., 2018; Dietmiiller et al., 2021),
with large impacts on surface warming (Nowack et al., 2015) and ultraviolet radiation (Hegglin and Shepherd, 2009). Similarly,
the expansion of the troposphere was also found to decrease stratospheric ozone by eroding the ozone layer from below (Match
and Gerber, 2022). Because of these feedbacks, projected rates of recovery from climate-chemistry models are sensitive to
model formulation (Dietmiiller et al., 2014) and greenhouse gas emission scenarios (Revell et al., 2012). Lastly, emerging
influences are adding new complexity to our understanding of the composition of the stratosphere, for instance, large wildfires
and associated aerosols (Santee et al., 2022; Solomon et al., 2023), recent noncompliant ODS emissions (e.g., Montzka et al.,
2018; Rigby et al., 2019; Chipperfield et al., 2020), new estimates for ODS lifetimes (Lickley et al., 2021), possibly increasing
dynamical variability (Diallo et al., 2018, 2019), and large volcanic eruptions (e.g., the Hunga eruption in 2022, WMO, 2022;
Wang et al., 2023; Evan et al., 2023; Santee et al., 2023; Wilmouth et al., 2023; Manney et al., 2023).

In light of such complexity, the analysis of observed trends continues to present challenges. The last WMO report (WMO,
2022) found a small but positive trend (0.3 4= 0.2 %/decade) in the near-global (60°S-60°N) total column ozone. Vertically
resolved trends reveal regional patterns hinting at competing influences on ozone abundances. The analysis of merged satel-
lite products (e.g., Sofieva et al., 2017; Steinbrecht et al., 2017; Ball et al., 2017; Bourassa et al., 2018; WMO, 2018;
Petropavlovskikh et al., 2019) found large positive post-2000 trends across the upper stratosphere (above 5 hPa), in agree-
ment with the climate-chemistry model initiative (CCMI) simulations (Eyring et al., 2013b; Godin-Beekmann et al., 2022).
However, agreement is lacking in the lower stratosphere (50 — 10 hPa): negative though uncertain trends are found in several
satellite records, and though CCMI trends agree in sign below 30 hPa (Petropavlovskikh et al., 2019), the range across models
and even across ensemble members of a single model is large (Stone et al., 2018). In the lowermost stratosphere (50 — 100
hPa), modeled and measured ozone and its trends remain highly uncertain. In addition, reanalysis products present varying
degrees of realism in ozone trends (Davis et al., 2017) and should be used only with great caution (Box 3.2 in WMO, 2022).
Whether models are flawed in their representation of stratospheric ozone or whether the statistical confidence placed in trend
estimates is sufficient to address disagreements between models and observations, the need to improve our ability to distinguish
trends from internal variability is clear.

In this paper, we turn to the nontrivial effects of error propagation in algorithms used to retrieve ozone abundances from
spaceborne nadir measurements. Such errors are generally known to reduce the statistical confidence placed in trend estimates
from merged records (Tummon et al., 2015; Hubert et al., 2016; Steinbrecht et al., 2017; Ball et al., 2017). This is especially
concerning given that trends originally assigned high statistical confidence can still suddenly change magnitude or even sign
after the addition of just a few years of record (Chipperfield et al., 2018; Ball et al., 2019). Past literature provides extensive
discussion about quantifying and reducing uncertainty in ozone trends (e.g., Stolarski and Frith, 2006; Harris et al., 2015;
Petropavlovskikh et al., 2019), but methods have not yet been developed to systematically account for the limitations of satellite

records. Using the example of the SBUV merged record (McPeters et al., 2013), we utilize a novel method (Rivoire et al., 2024)
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to determine whether current trend estimates are distinguishable from natural variability, particularly when accounting for the

effects of errors attributable to the SBUV averaging kernels.

2  Model output and observational data

In this section we introduce the data sets used in this study, namely:

A pre-industrial chemistry-climate control simulation used as reference for internal variability;

Chemistry-climate simulations used to estimate the time of emergence of future long-term ozone trends;

The SBUV merged record, used as reference for the effects of satellite kernels;

Other merged satellite records, used to compare against SBUV.
2.1 Simulations used as reference for internal variability

In order to determine whether a trend derived from the observational record reflects natural variability or arises because of
anthropogenic forcings, we need to compare said trend to a reference distribution of naturally occurring trends in a pre-
industrial setting. Since the satellite era only covers the past 40-50 years, satellite records cannot be used to determine such
a reference distribution. We therefore turn to a long simulation of the pre-industrial climate from a chemistry-climate model,
building on standard practice (e.g., Kay et al., 2015).

Two runs from the Geophysical Fluid Dynamics Laboratory’s Earth System Model version 4.1 (ESM4.1, Dunne et al., 2020)
are used as reference: 1) a 500-year pre-industrial run (“piControl” in CMIP6 nomenclature), and 2) a historical run from 1850
to the end of 2014 (“historical”). The historical run provides a benchmark for the model’s performance given forcings and
boundary conditions matching the historical record, including aerosol optical depths, 43 short-lived and long-lived greenhouse
gases (GHGs), land use, solar forcing, sea surface temperatures, and sea ice concentrations. The pre-industrial run excludes
such time-dependent forcings and is instead run with a prescribed global annual mean atmospheric CO5 concentration equal
to that of 1850 (Eyring et al., 2016) and with a time-invariant volcanic aerosol forcing equivalent to the historical average
(1850-2014). We use this simulation to quantify internal variability in the pre-industrial climate over any time period of chosen
length. Solar irradiance is also maintained constant following the specifications for the CMIP6 pre-industrial run (documented
at http://goo.gl/r8up31). The Quasi-biennial Oscillation (QBO) in the model is internally generated.

The ESM4.1 model is the product of development efforts to capture coupled ocean-atmosphere and land-atmosphere inter-
actions, biogeochemical cycles and ecosystem physics, sea ice, aerosol processes, and—importantly for this study—interactive
ozone chemistry. The ozone chemistry includes an improved representation of ozone precursors (methane, carbon monox-
ide, nitrogen oxides, and volatile organic compounds) and accounts for heterogeneous reactions that occur on the surface of
aerosols (Austin et al., 2013). ESM4.1 features 49 vertical levels with a model top at 1 Pa (~80 km) to better capture strato-

spheric chemistry and dynamics compared to the previous model generation (Horowitz et al., 2020). In the lower stratosphere,
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ESM4.1 simulated fields have vertical resolution of about 2 — 3 km, compared to the 4 — 6 km vertical resolution of SBUV
(see Section 2.3). Coupled model simulations rarely include fully interactive chemistry in their extended control runs, making
the ESM4.1 control run a unique asset for our study.

In order to ensure that the simulation provides suitable reference trend distributions, we assess the realism of the model’s
representation of stratospheric ozone variability. Simulated and observed variability are portrayed by power density spectra
in Figure 1. The spectra are estimated using the multitaper method (Thomson, 1982) that is suitable for short records. On
interannual to multidecadal scales, it is inherently difficult to test whether the ozone variability produced by the model under
pre-industrial conditions is realistic, since we have no historical record that spans the pre-industrial era. However, we can test
whether the simulated ozone variability is on par with observations when the model is provided with historical radiative and
chemical forcings that correspond to greenhouse gas and ODS emissions. If the model can capture the historical variability,
we can at least say that it is skilled in capturing processes that are relevant to our current understanding of the atmosphere.
One caveat in this reasoning is the fact that model improvements are tested against the historical record, which contains
anthropogenic forcings, i.e., it is possible that some model improvements target modes of variability that are specific to external
forcings rather than to natural climate variability. That being said, the historical model simulation exhibits improvements in the
representation of total column ozone interannual variability and trends over previous versions of the model (Horowitz et al.,
2020).

The pre-industrial simulation produces less ozone variability on decadal to secular periods than the historical run. This be-
havior is expected since the pre-industrial run excludes forcings that affect ozone on these time scales (ODSs, GHGs, volcanic

eruptions). This result means that trend uncertainties estimated from pre-industrial simulations are likely to be underestimated.
2.2 Simulations used to estimate trends

We use the average ozone trends from 2000-2020 from the same data set as in Godin-Beekmann et al. (2022): the multi-
model mean (16 models) from the CCMI’s 1960-2100 period (REF-C2, Eyring et al., 2013b). The purpose of the REF-C2
experiments is to capture future climate trends, and as such they follow the WMO (2011) A1 scenario for ODSs and the
RCP6.0 for other greenhouse gas, ozone precursor, and aerosol precursor emissions. Depending on model capabilities, ocean
conditions and forcings for the 11-year solar cycle and the QBO are either simulated separately or internally generated. Though
the recommendation was not to use volcanic forcings, some models do include them (Godin-Beekmann et al., 2022). More

information about the forcings can be found in Eyring et al. (2013a); Hegglin et al. (2016); Morgenstern et al. (2017).
2.3 SBUY satellite record

The merged SBUV dataset (MOD, version 2 release 1, https://acd-ext.gsfc.nasa.gov/Data_services/merged/, see Frith et al.
(2014, 2017)) combines retrievals from backscattered ultraviolet radiation sensors onboard a series of polar-orbiting satellites
to provide total column and profile ozone products with monthly frequency. Retrievals include those from first- and second-
generation SBUV sensors (algorithm version 8.7) and from Nadir Profilers included in the Ozone Mapping and Profiling Suite

(OMPS NP, algorithm version 2.8). We use the 2000-2020 portion (21 years) of the MOD, a) to focus on the time period after



120

125

Historical simulation vs. observations
T T T T

102 5
Z‘ 3
2 ]
c
[} 4
o
g \/\/—/
; ]
o |
o 4
o
(5}
N -
E —SBUV
1S —— ESM4 historical
2 (sampled like SBUV)|]

-1 L L L L L L L L L

2 mo 4 mo 6 mo lyr 2yr 3yr 5yr 10yr 25yr 50 yr 100 yr

Historical simulation vs. control simulation
——— ——

10?

2

‘@

c

S

5 10t

2

]

a

g

S 10° —

5] —— ESM4 historical

1S —— ESM4 pre-industrial ]

§ (sampled like ESM4 historical) | 1
1071 L Lovu 1 L 1 L L L Lovv i 1 | 1 | | L 1

2mo 4 mo 6 mo 1yr 2yr 3yr 5yr 10 yr 25yr 50 yr 100 yr

Period

Figure 1. Comparison between observed and simulated normalized variability in the de-seasonalized zonal mean ozone for the 10-16 hPa
layer in the Northern midlatitudes (37.5°N-57.5°N), pictured by power spectral densities (PSD) estimated with the multitaper method.
Shaded areas indicate chi-squared 95 % confidence intervals. To ensure comparability between spectra, the ESM4.1 historical run (1850-
2014) is sub-sampled in 13-year periods, matching the longest continuous period given by the SBUV record (dashed line in the top panel),
and the resulting power spectra are subsequently averaged. Similarly, in the bottom panel, the ESM4.1 pre-industrial run (500 years) is sub-
sampled in 165-year periods, corresponding to the length of the historical run. Further, spectral density is normalized by the area under each

power spectrum to remove changes in total power.

which the decline of ozone in the upper stratosphere stopped (Newchurch et al., 2003; WMO, 2007), b) for consistency with
other studies, and c) to avoid issues with coverage gaps in the earlier parts of the record. Indeed, the MOD provides nearly
global spatial coverage but suffers from substantial gaps in its temporal coverage. For instance, no reliable measurements
were available from April 1976 through November 1978 and following large volcanic eruptions that injected aerosols in the
stratosphere and affected the retrieval (e.g., mid-1991 through 1993, see Bhartia et al. (1993)). Early portions of the dataset
are also unsuitable for trend analysis due to partial instrument failure (May 1970 to April 1976). Note that among existing
merged datasets, the SBUV record provides the densest and most spatially uniform sampling over the 2000-2020 time period
(Tummon et al., 2015). Moreover, the MOD record merges data from similar SBUV instruments, and its sampling and retrieval
characteristics are more homogeneous over the time period we use than other merged records that rely on more varied data

sources.
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Both total column and profile ozone products used in this study have 5-degree horizontal resolution and are zonally averaged
to minimize instrumental uncertainty. The ozone profile product provides ozone amounts in 7 layers (DU/layer) spanning the
mid-to-upper stratosphere, with layer edges near 25,16,10,6.4,4,2.5,1.6, and 1 hPa, or approximately 23,27, 31, 35,40, 46, 50,
and 54 km near the equator (i.e., 4 — 6 km resolution, which is comparable to that of other nadir-viewing instruments). Data
across these layers have accuracy suitable for long-term trend analysis and compare well with ozone records from other space-
borne and ground-based instruments (within 5 %, Bhartia et al., 2013; McPeters et al., 2013). Data outside the 25 — 1 hPa
range tend to be heavily influenced by the a priori ozone climatology used in the retrieval algorithm (Bhartia et al., 1996) and
are therefore not relevant to this analysis (see Methods section). Total column ozone data lie within 1 % of the ground-based

instrumental record (McPeters et al., 2013).
2.4 Merged satellite trend estimates

We use trend estimates from the SPARC/IO3C/GAW Report on Long-term Ozone Trends and Uncertainties in the Stratosphere
(LOTUS, Petropavlovskikh et al., 2019) to provide context for trends derived using the SBUV record alone. The homogenized

satellite record used in the LOTUS report includes six merged datasets:

— Two that rely on nadir-viewing instruments with relatively broad averaging kernels and low vertical resolution: the SBUV
MOD (v8.6, Frith et al., 2014) and the SBUV cohesive dataset from NOAA;

— Four that rely on limb-viewing instruments and occultation techniques characterized by relatively narrow averaging ker-
nels and high vertical resolution: the Global OZone Chemistry And Related trace gas Data records for the Stratosphere
(GOZCARDS v2.20, Froidevaux et al., 2015), the Stratospheric Water and Ozone Satellite Homogenized database
(SWOOSH v2.6, Davis et al., 2016), the SAGE-OSIRIS-OMPS dataset corrected for sampling effects (corr-SAGE-
OSIRIS-OMPS, Damadeo et al., 2018), and the SAGE-CCI-OMPS dataset from ESA (Sofieva et al., 2017).

The LOTUS trend estimates are based on multi-linear regression and include proxies to correct for the effects of a range of
known climate oscillations (El Nifio Southern Oscillation, ENSO; the QBO, the 11-year solar cycle, the Arctic and Antarctic
Oscillations, the North Atlantic Oscillation), as well as changes in the stratospheric meridional circulation, tropopause height,
stratospheric sulfate aerosol abundances, and changing long-term trends in chemically reactive halogens (Steinbrecht et al.,
2017). A comprehensive list of references for these proxies is provided in the LOTUS report (Petropavlovskikh et al., 2019).
Trends are calculated as the unweighted average of trends from each of the six merged datasets. Trend uncertainties account
for the degree of dependency between the datasets and the propagation of errors in the regression model (see section 5.3.2 in
Petropavlovskikh et al., 2019). In this study we use trend estimates for the 2000-2020 period, shown in Figures 8 and 9 for

three broad latitude bands.
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3 Methods
3.1 Synthetic SBUV observations for the pre-industrial era

In order to quantify the impact of satellite averaging kernels on the observed variability of stratospheric ozone, we create
synthetic observations by applying the SBUV kernels to the ESM4.1 pre-industrial control run. As discussed in the previous
section, the model run itself is used as reference, and the “kernelized” run is used as equivalent observations of the atmosphere

had satellites equipped with SBUV sensors flown during the pre-industrial era.
3.1.1 Averaging kernels for synthetic observations

Ozone profiles retrieved by remote sensing are not perfect measurements of the ozone concentrations in each layer of the
atmosphere with independent errors, but rather best estimates made given measured radiances and some prior knowledge about
the state of the atmosphere. Retrievals are an estimate of some smoothed function of the actual state, with errors that are
correlated between different altitudes. As described in Rodgers (1990, 2000), the retrieved ozone profile Z is related to the true

ozone profile x and an a priori z, used in its retrieval by:
T—xq=A(x—x4)+ €

where A is the averaging kernel matrix and ¢, represents random and systematic measurement errors. The i-th row of A
describes where in the column the information attributed to the i-th vertical level actually comes from. Thus, averaging kernels
are peaked functions whose half-widths correspond to the vertical resolution of the retrieval. Two examples for SBUV are
shown in Figure 2 (also see Figure 2 in Kramarova et al. (2013a) for more examples). The blue line shows the row of the
kernel matrix that corresponds to the 10.1 — 6.4 hPa layer and the red line shows the same for the 101.3 — 63.9 hPa layer.
The averaging kernel for the upper level has a peak at the target level, so the concentration attributed to the 10.1 — 6.4 hPa
layer is the weighted average of concentrations between about 2 and 25 hPa, but with the largest weight at the target level.
The averaging kernel that is intended to represent the 101.3 — 63.9 hPa layer has a peak around 50 hPa and exhibits large
sensitivity to tropospheric ozone, as discussed in Bhartia et al. (2012). Visualizing the kernels helps to demonstrate the limits
of SBUV ozone retrievals in the lower stratosphere, compared to the middle to upper stratosphere; for vertical levels below 25
hPa, averaging kernels have broad peaks that are significantly shifted away from their respective target levels, indicating that
the retrieval for those levels heavily relies on a priori information (Rodgers, 2000). For this reason, as stated in the data section,
the analysis with SBUV is limited to the pressure levels 25.45 hPa through 1.013 hPa (levels number 9 through 15 in the MOD
files) and to total column. Kernel matrices are produced for each retrieval but are only available as monthly averages. We use
the monthly averaged kernels for one representative year, chosen to be 2005. For simplicity and to reduce the computational
cost of the study, we only use the SBUV kernels, even though the MOD record includes OMPS retrievals; note that MOD relies
at least in part on SBUV until March 2018.

A priori information typically consists of a climatology obtained via independent measurements. For instance, a priori states

for the SBUV merged data set come from a combination of independent satellite retrievals and reanalysis data validated by
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comparison with balloon-borne ozonesondes from the Southern Hemisphere ADditional OZonesondes (SHADOZ) network
(Ziemke et al., 2021). However, no such independent climatology exists when it comes to creating synthetic retrievals using a
pre-industrial model run. Synthetic a priori information is therefore created using the model monthly mean state itself, that is
to say, the averaging kernels are applied to the departure of the model state from its monthly climatology. The synthetic a priori
is therefore unbiased by construction, and the synthetic retrievals represent a best-case scenario. As a consequence, variability
in the synthetic retrievals may be underestimated, but this approach has the added benefit of isolating the effects of the SBUV
kernels on the retrieved variability in stratospheric ozone from any effect of the a priori. The relationship between the synthetic

retrieval and the simulated ozone (the reference, or ‘true’ quantity) is written as:
T=T4+Alx—T)+e,

where Z denotes the monthly averaged zonal mean simulated ozone profile. As in Rodgers and Connor (2003), the simulated
ozone profile is first interpolated onto the coarser SBUV vertical grid so that it can be convolved with the SBUV averaging
kernel matrix to produce synthetic retrievals. While the vertical interpolation leads to a loss of some of the higher-resolution
information from the model, it is necessary in order to isolate the effects of the averaging kernels, which are illustrated in
Figure 2. The synthetic profile appears smoother than the true profile (hence the expression ‘smoothing’ errors) and is closer
to the a priori than the true profile. Below 25 hPa in the lower stratosphere, the averaging kernels become broader and the
retrieval’s quality degrades accordingly, hindering the accurate retrieval of large vertical gradients in ozone concentration.
Note that the SBUV kernels are not defined during polar night, which means that the synthetic SBUV data effectively capture
the seasonal dependence of the SBUV sampling.

3.1.2 Considerations of known sources of errors

Random errors (e.g., instrumental noise) in retrieved SBUV profiles are of order 1 % (N. Kramarova, personal communication),
but since retrievals are averaged zonally and monthly across ~1000 profiles, random errors in the MOD product are neglected,
consistent with Kramarova et al. (2013b). This substantial sample size also allows us to ignore the effects of the spatial sampling
of SBUV platforms: monthly zonal means in the pre-industrial model are equated with monthly zonal means in the SBUV
dataset.

Several non-random error sources in ¢, produce latitude- and month-dependent biases; these include errors in a priori
profiles as well as calibration-related errors in atmospheric attenuation estimates (so-called “N values”, see Bhartia et al.,
2013). However, errors that normally affect a priori states are not relevant to this study since the a priori states are known with
certainty (see section 3.1.1). In addition, since we analyze decadal trends, data are de-seasonalized and calibration errors that
normally affect the seasonal cycle can thus be ignored. Other, more sporadic sources of errors, including polar mesospheric
clouds, volcanic aerosols, ash, and smoke, are also neglected. Accounting for errors resulting from the merging of different
SBUYV records and biases from non-uniform temporal sampling (orbital drift) is also challenging because of the nature of our

analysis. Therefore, such errors are also neglected.
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Figure 2. (left) Two rows of the averaging kernel matrix and their corresponding SBUV layers (see legend) for 47.5°N in July 2005,
normalized using the SBUV a priori as in Kramarova et al. (2013a) (their equation 3). (right) One example of a model profile and its
synthetic SBUV counterpart for the same time and location, shown as deviations from the model a priori to emphasize vertical structures; in
this case, maximum deviations are of order 1 % of the a priori above (i.e., at pressures lower than) 25 hPa, where the a priori profile peaks,

and 1 — 10 % below. The model profile is interpolated onto the SBUV vertical grid to isolate the effects of the averaging kernels.

Given these considerations, the error term €, is considered negligible. What differs between the synthetic retrievals and the
simulated ozone is their respective evolution over the course of the 500 years of simulation—any differences being attributable
to the averaging kernels. The impact of these differences on ozone variability is shown in Figure 3: decadal to multi-decadal
variability is misrepresented throughout the upper and middle stratosphere, with errors in integrated power frequently exceeding
25 % and occasionally approaching or exceeding 100 %. Unless these errors are explicitly accounted for, they will affect the
apparent variability about SBUV trend estimates, and by extension the degree of statistical significance associated with those
trend estimates, in a general signal-to-noise ratio sense. Regions in blue indicate where the statistical significance of trends
will be overestimated, since internal variability is underrepresented there. Regions in red indicate where statistical significance
is underestimated; for instance, between 0 — 2.5°N in layer 16.4 — 10 hPa, the variability about trends is inflated because the

averaging kernels assign variability from adjacent layers (see Figure 5a) to this layer.
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Figure 3. Effect of the SBUV averaging kernels on decadal to multidecadal ozone variability visualized a) locally, for the topmost SBUV
layer, 1.6 — 1 hPa, between 27.5°S-27.5°N (see the black box in panel b), and b) globally, as the percent relative error in integrated power
density between the pre-industrial run and the synthetic SBUV time series for periods 10-60 years. Results for only October or March are

shown in the high-latitude regions where SBUV data are not available year-round.

3.1.3 Removal of known modes of variability

As in other studies (e.g., Steinbrecht et al., 2017; Petropavlovskikh et al., 2019), an attempt is made to remove the contributions
of known modes of variability to the time series of ozone in order to better isolate the internal variability. Several known modes
of variability are frequently considered: the seasonal cycle, ENSO and the QBO on interannual time scales, and the solar cycle
of irradiance on decadal time scales. Solar irradiance is constant in the pre-industrial run, so no removal of that variability is
needed. The seasonal component of variability is modeled as the long-term average ozone abundance for each month of the
year and subsequently removed. The Arctic, Antarctic, and North Atlantic Oscillations were found to have negligible impacts
on trends (Petropavlovskikh et al., 2019) and are therefore ignored. Remaining ozone variations are then modeled using the

following regression model similar to that used by Stolarski et al. (1991):
AO3(t) = aQBO, (t) + SQBO,(t) + YENSO(t) + €(t)

where a, 3, and vy are parameters determined using regression analysis. Unexplained ozone variability is represented by €(t).

QBO, (t) and QBO,(t) are the two leading empirical orthogonal functions (EOFs) of the de-seasonalized zonal mean monthly

10
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zonal wind between 10 hPa and 70 hPa from the model simulations (see Figure Al), as in Wallace et al. (1993). Following
Oman et al. (2013), ENSO(%) is based on the NOAA Oceanic Nifio Index (ONI) and captures variations of (modeled) sea
surface temperature in the Nifio 3.4 region (5°S-5°N, 170°W-120°W in the Central Pacific Ocean lagged by two months as
in Randel et al. (2009). In the pre-industrial model run, QBO, (¢) and QBO,(¢) account for 68 % of the normalized variance
of the zonal wind time series. By construction, the correlation between the two EOFs is exactly zero. Thanks in part to the
substantial length of the pre-industrial run, the correlation between the QBO EOFs and ENSO(¢) is very small (less than 0.05),
yielding virtually independent regression terms.

The zonal wind data in Figure A1 clearly show that the model’s internally generated QBO is far from realistic: the weak
QBO-like signal is confined to lower pressures, is much more prone to disruption, propagates vertically at more variable
rates, and exhibits higher frequencies than the observed QBO. Given these differences, the appropriateness of the traditional
EOF-based QBO removal could be called into question, but the model does produce a semi-periodic, downward-propagating
signal reminiscent of the QBO. Such signals produce large retrieval errors (1 —6 % in observations) when convolved with
the averaging kernels (Kramarova et al., 2013a). Since errors of this nature are the focus of this study, we use the traditional
EOF-based approach to removing QBO variability. The QBO removal is performed after the simulated ozone is convolved
with the SBUV averaging kernels, to mimic the residual errors produced by the removal of the QBO in SBUV observations.

While the use of EOFs allows us to account for variability due to changes in the amplitude and phase of zonal wind os-
cillations, it does not account for variability due to changes in the frequency of the oscillations. This is slightly problematic
for the removal of the QBO signal in ozone since its frequencies differ between the equator (where the EOFs are extracted
from) and higher latitudes (Tung and Yang, 1994). Nevertheless, the average contribution of the QBO to near-equatorial ozone
variability is estimated to be about 0.5 % in the model (much smaller than the estimated 10-20 % in observations, see Brunner
et al. (2006)) and is expected to be even smaller at extratropical latitudes, where the atmospheric jets produce large variability.
The EOF-based removal of QBO variability is therefore considered sufficient for the purposes of this study.

The methods discussed in this section provide a set of synthetic SBUV data in the absence of anthropogenic forcings and
without known climate oscillations. We use this synthetic record to quantify the internal variability of the climate system
relevant to stratospheric ozone, so as to estimate the lead time required for long-term trends in ozone to emerge in observations
against the backdrop of internal variability. For simplicity, we assume that the modern climate system produces the same
internal variability as that during the pre-industrial era. However, while this assumption has been widely used in the analysis
of climate model output (e.g., Houghton et al., 2001; Hegerl et al., 2007; Deser et al., 2012), evidence exists that it may not
hold for some variables in climate models (e.g., Schir et al., 2004; Scherrer et al., 2005; Rodgers et al., 2021), though different
models exhibit different responses in their internal variability under forced change (Maher et al., 2021). Therefore, we suggest

caution in interpreting statistical confidence.
3.2 Time of emergence of linear trends

Generally speaking, the smaller the trend, the longer it takes to become distinguishable from background noise. Several meth-

ods have been employed in the past to calculate the time of emergence of linear trends. Emergence has sometimes been said

11



a) Time series of residuals
T T T

'5‘ T T
0.4F
o) +2.69 %ldec
TE 02 -0.01 %/dec
o
G
v 0
(D)
5
5 _0.2
10 15 20 25 30 35
Model year

b) Distribution of residuals

T T
——ESMA4 (s=1,k = 3)|

PDF

-0.2 -0.1 0 0.1 0.2

Ozone residuals [DU]
c) Distribution of 10-year trends

T T
|— ESM4 (s=0,k = —0.1)

T T
synthetic SBUV (s=0,k = 70.1)‘

PDF

10-year trends [%/dec]

Figure 4. a) Sample time series of pre-industrial ozone residuals at 2.5 — 1.6 hPa, 42.5°S, with 10-year trend examples calculated in percent
of the mean ozone value at that location, ~4.5DU. b) Distribution of ozone residuals for the 500 years of pre-industrial simulation, and c)
corresponding reference distribution of 10-year unforced trends. Dashed lines show Gaussian distributions with moments identical to those

from the model distributions, for reference. The skewness and excess kurtosis of the distributions are provided in the legend.
to occur when the ratio of the signal (trend) to the noise (internal variability) is large or exceeds a pre-determined threshold

(Madden and Ramanathan, 1980; Wigley and Jones, 1981; Giorgi and Bi, 2009; Hawkins and Sutton, 2012). Such methods do

280 not provide the formalism needed for a measure of statistical confidence that links the robustness of the results to the choice
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of threshold to exceed. Another method (Mahlstein et al., 2011) defines the time of emergence as that when a statistical test
deems an observation unlikely to belong to a distribution that represents an unperturbed climate state. A problem with this
method, however, is that it does not account for autocorrelation in the time series, which means that the time of emergence for
time series with nonzero autocorrelation is underestimated. Other approaches do take autocorrelation into account; examples
include the methods of Tiao et al. (1990), Weatherhead et al. (1998), and Li et al. (2017). In the latter, emergence occurs when
a predicted confidence interval about a cumulative trend excludes zero. The confidence interval is described analytically based
on the work of Thompson et al. (2015) and accounts for lag-one autocorrelation. However, the method requires the residuals
representing internal variability to be normally distributed. This is generally not the case for stratospheric ozone: after remov-
ing the seasonal cycle and the contributions from ENSO and the QBO, distributions of residuals often have heavier tails and a
narrower peak than a normal distribution (positive excess kurtosis) and are not symmetric (skewness is nonzero, see an example

in Figure 4 panel b).
3.2.1 Definition of the time of emergence

For these reasons, the time of emergence is calculated using the method of Rivoire et al. (2024) (R24 hereafter), which provides
nearly identical results to Li et al. (2017) but can handle non-normally distributed residuals. R24 found empirical evidence that
the method of Li et al. (2017) may still be used when residuals exhibit nonzero skewness or excess kurtosis, but without any
formalism to prove this generally, we consider the method of R24 to be a safer choice. The general principle behind the method
is to compare a linear trend of interest, denoted b, to a distribution of linear trends that arise purely as a result of internal
variability. If b is located near the central quantiles of the reference distribution, then b aligns with typical fluctuations seen in
the absence of external forcings. Conversely, if b is located near outer quantiles, then it is unusually large compared to natural
fluctuations and can reasonably be hypothesized to be the result of external forcings.

The reference distribution is calculated by sampling linear trends in the control simulation using a sampling window of fixed
length (see Figure 4, panels a and c). The time of emergence, denoted y, is the length of the sampling window that yields a
reference distribution such that |b| exceeds ¢ = w % of unforced trends, with ¢, the statistical confidence threshold for
a two-sided test. In the rest of the paper we use c4=95 % as the threshold for statistical significance. Though the use of this
particular threshold is commonplace, we emphasize its arbitrary nature and caution against over-interpreting its significance.

In practice, the time of emergence is determined by iteration, starting with the shortest possible sampling window of two
model time steps. The reference distribution of unforced trends over all possible 2-step intervals (with overlap) is calculated,
and its c-th percentile is compared to |b|. The length of the sampling window is then progressively increased until the statistical
criterion described above is met. For more detail on this technique and its efficient implementation, the reader is referred to
Section 2 of R24.

Since the time of emergence y is calculated using a trend distribution sampled directly from a model run, it neglects the
effects of observational uncertainties. Figure 5 shows this ‘ideal’ time of emergence, which is valid only if one possesses
omniscient knowledge of the atmosphere, for both a homogeneous trend and the actual trends from CCMI1 simulations. R24

show that observational uncertainties can introduce large errors in y, and they provide the formalism to correct y accordingly. In
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our case, the correction for y accounts for the effects of the vertical redistribution of ozone variability by the averaging kernels
(see Figures 2 and 3). The corrected time of emergence is denoted y* and is calculated using reference trend distributions
sampled from the synthetic SBUV retrievals introduced earlier (e.g., the red curve in Figure 4c), rather than the model run itself
(the black curve in Figure 4c). As a result, y* quantifies the time of emergence of ozone trends as seen by SBUV platforms (see

Section 4.2 and Figure 6).
3.2.2 Notes on the realism of the pre-industrial control simulation

Since emergence is defined based on the representation of internal variability from a model, the realism of the model comes
into question. On the one hand, the time of emergence y is subject to the realism—or lack thereof—of the model: misrepre-
sentations in the magnitude or frequency spectrum of internal variability yield errors in the time of emergence. Though we
provide an analysis of said realism to the extent possible (section 2.1), quantifying these errors is inherently difficult given the
absence of pre-industrial reference for observed variability. On the other hand, R24 showed that the adjustment for the effect
of observational uncertainties on the time of emergence, when expressed as a relative error (y*T_y), is accurate even if the
model dramatically misrepresents internal variability. For this reason, we quantify the effect of the SBUV kernels on the time

of emergence as a relative error (see section 4.2).

4 Results
4.1 Time of emergence

Figure 5 provides estimates for the time of emergence (y, in years since 2000) with 95 % confidence for both a spatially
homogeneous 1 %/decade trend (panel b) and for the 2000-2020 trends from CCMI1 (panel c). To put this into context, panel
a) shows the average ozone abundances and their standard deviation in the pre-industrial run. The spatially homogeneous trend
serves to illustrate the effects of internal ozone variability on the time of emergence. Except for the lowermost stratosphere,
a general correlation is seen between the time of emergence and ozone variability as quantified by its standard deviation: the
largest values are found in the tropical middle stratosphere and polar regions. Departures from this correlation arise where the
spectrum of variability includes non-Gaussian behavior and is not well described by the standard deviation alone.

According to our method, and based on ESM4.1 as a reference for internal variability, trends associated with the CCMI
modeled evolution of ozone under the Montreal Protocol may not emerge until the second half of the century in the heart
of the midlatitude ozone layer (panel c). In the upper stratosphere (above 10 hPa), chemistry-climate model trends for 2000-
2020 are largely distinguishable from ESM4.1°s natural variability with ~20 years of model record, in agreement with previous
literature showing significantly increased ozone abundances (Gillett et al., 2011; Arblaster et al., 2014). Lower down, especially
in the middle stratosphere (10 — 30 hPa), our method finds that trends have generally not emerged yet. In the midlatitudes
(35 — 60°N/S), trends may require decades of additional record to emerge, owing in part to large variability and in part to

small trends. This finding is generally consistent with existing literature, which finds little to no significance to trends in the
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region (WMO, 2022, and references therein). Over the Arctic, we find that the emergence of positive trends could occur by
2030, compared with literature expecting visible signs of recovery there in the mid-2040s. However, since our results are based
on the analysis of a single model, we urge caution: previous analyses have concluded that large dynamical variability in this
region precludes the detection of recovery until the late 21st century (WMO, 2022). It is possible that the ozone interannual
variability in ESM4.1 still lacks realism despite recent improvements (Horowitz et al., 2020, their Figure 11).

For vertically integrated ozone (panel d), despite the relatively small variability in the tropical region, emergence occurs
later there because trends are small. Trends associated with chemical loss over the polar caps in spring are isolated using
October- and March-only time series in the Southern and Northern Hemispheres, respectively. Though ozone loss is largest
over Antarctica and is therefore expected to exhibit the clearest signs of recovery (Newchurch et al., 2003; Yang et al., 2008;
Charlton-Perez et al., 2010), the analysis predicts that trends for October and March only emerge after ~40 years near the
strongest trends (65°N/S, not shown), owing to large variability. Closer to the poles, October and March trends become very
small and therefore take much longer to emerge.

Some caveats should be kept in mind: the time of emergence is based on a representation of unforced ozone variability that
excludes the effects of ozone-depleting substances or volcanic aerosols (see Figure 1). As a result, time of emergence estimates
provide lower bounds for the timing of the detection of recovery (as long as the linear trend approximation holds). Further,
in previous literature, statistically significant trends associated with the recovery of the ozone layer are based on more than
just ozone abundances; they include trends in other metrics, such as the minimum in 15-day average total ozone, maximum in
15-day average 220 DU ozone hole area, minimum in 15-day average ozone mass deficit, and the duration of the ozone hole
(e.g., Tully et al., 2020). It is possible that these metrics provide more detectable trends than ozone abundances alone. Lastly,

we highlight that quantifying the emergence of a trend vs. that of an epoch difference may yield different results.
4.2 Effect of the SBUV kernels on the time of emergence

Results established so far apply to the "model world" only and do not factor in the limitations of observing platforms that
make up the historical record. The synthetic SBUV record from section 3 provides an example of the effect of observational
limitations on the time of emergence. Figure 6 shows those limitations as the relative difference between the kernel-adjusted
time of emergence y* and the ideal time of emergence y. Large errors throughout the middle and upper tropical stratosphere
are reminiscent of the patterns of variability associated with the QBO, despite the prior removal of QBO variability (Section
3.1.3). This result arises because the convolution of the SBUV kernels with the ozone data affects the representation of the
QBO (Kramarova et al., 2013a), but does not affect the wind field that is used to perform the QBO removal. The 16 — 10.1
hPa layer exhibits a large bias at all latitudes, arising in part from the relatively large ozone variability in that layer (refer to
Figure 5a). Errors are also large over the polar caps, in connection with the unavailability of SBUV retrievals during polar
night. Interestingly, errors are opposite in sign between the two polar caps at some levels, indicating opposite effects due to the
combined SBUV averaging kernels and lack of measurements there. Errors are slightly larger over the Southern polar cap than
the Northern, which is attributable to slightly larger internal variability in ESM4.1 in the Antarctic (as shown in Figure 5a).

This result is more specifically attributable to the shape of the power spectrum of internal variability in ESM4.1 around periods
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Figure 5. a) Average ozone abundance in the ESM4.1 pre-industrial run (in DU per km, colors) and relative standard deviation of the
de-seasonalized time series (black contours, in percent). b) Ideal time of emergence (y) for a spatially homogeneous 1 %/decade trend, in
years with contours every 10 years. c) Ideal time of emergence for 2000-2020 trends in CCMI1 ref-C2 (shown by overlaid red contours,
%,/ decade). d) Ideal time of emergence (y) for 2000-2020 trends in CCMI1 ref-C2 total column ozone. Results for October-only (March-

only) are shown in the Southern (Northern) Hemisphere.

corresponding to the time of emergence. The largest negative errors (i.e., relative differences) found near the equator just below

10 hPa are explained by the unusual overestimation of internal variability attributable to the SBUV kernels shown in Figure 3b.

16



385

; a) Error on the emergence of a 1%/decade trend

T T T . T T T *i T T | T
— |
& l ﬂ | +60
< | \l |
® 5l ! I ] +45
S Vf I I
I | |
010 | | 1 1+30
- | ) '
25 L L L L 1 1 1 1 1 W Il B +15
-90 -60 -30 0 30 60 90
40
] b) Error on the emergence of CCMI1 trends
T T T | T T T T [ T T | i -15
o | |
N i i
® gl I I i
= t | | -45
B[ Py
g 10 i | [ooi | ]
g y Il 1w
25 [ L L ll L
-90 -60 -30 0 30 60 90

0 c) Error on the emergence of CCMI1 trends (total column)

I ——— 1y, all months
150 F ——y*, all months J

y, October/March
——y*, October/March 3

years
~
(&)}
T

Latitude [deg]

Figure 6. Relative error on the time of emergence due to the SBUV kernels (y*T_y) for a) a spatially homogeneous 1 %/decade trend and b)
the CCMI1 trends from panel c¢) in Figure 5. Dashed gray lines denote the latitudes poleward of which the SBUV retrieval is not available

year-round. ¢) Ideal time of emergence (y) and kernel-adjusted time of emergence (y*) for 2000-2020 CCMI| trends in total column ozone.

At all latitudes, the error pattern is qualitatively unchanged whether trend magnitudes are homogeneous (panel a) or not (panel
b), indicating that our method provides generally applicable understanding of the deficiencies of the SBUV ozone retrieval for
detecting trends.

For total column ozone, the kernel-adjusted time of emergence estimates are very close to the ideal estimates (Figure 6c¢).
This is consistent with the result in Kramarova et al. (2013a) (their Figure 6) that combining SBUV layers improves the

accuracy of ozone retrievals.
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4.3 Effect of the SBUV kernels on vertically resolved trend estimates

Retrieval methods based on averaging kernels have previously been said not to affect trend estimates (Petropavlovskikh et al.,
2019). The rationale behind this statement is straightforward: since the retrieval process remains unchanged over time, errors
attributable to it are also constant over time (at least in a long-term sense), and trend estimates are therefore unbiased. However,
this rationale fails to account for the vertical redistribution of information by the kernels. As trends affect the true profile (z
in section 3.1.1), the difference between the true profile and the a priori (z — x,,) also contains a trend signal. Once the kernel
matrix is convolved with (z — z,), the trend signal is redistributed vertically. As a result, trend estimates at each vertical level
are affected by the trend signal from adjacent levels in a manner defined by the shape of the averaging kernels. This is true
of any profile, including the hypothetical case of a vertically uniform profile in the context of trends expressed in percent
per unit time, but errors can be especially large when trends are vertically heterogeneous. Figure 7 shows such errors for a
few idealized trend profiles representing possible ozone increases in the mid-to-upper stratosphere in the northern midlatitudes
(Godin-Beekmann et al. (2022), see also Fig. 3-10 in WMO (2022)): one broad maximum and one narrower maximum centered
near 2.5hPa, and one maximum centered near 6hPa. The SBUV kernels attenuate peaks in the idealized trend profiles and shift
the maxima to other altitudes above and below the ‘true’ peaks. Errors as large as 100 % and displacements as large as 6
km are found, highlighting the importance of accounting for the retrieval process in estimating trend uncertainties. Negative
correlation coefficients between layers in the averaging kernel matrix can yield negative trends even when the true trends are
only positive.

The results suggest that trends in the middle and lower stratosphere may be affected by the presence of trends in the upper
stratosphere. This is particularly relevant in the context of analyses that show negative trends in the lower stratosphere (e.g., Ball
et al., 2018). While the errors near 25 hPa may seem small, they may induce large errors in the time of emergence. Altogether,

this analysis highlights the importance of accounting for satellite averaging kernels when analyzing vertically resolved trends.
4.4 Smallest detectable trends

When trend estimates are in disagreement across model simulations or observational records, the method from R24 can be
used to determine the range of trend magnitudes that should be distinguishable from internal variability in the first place.
Using the time of emergence y as the length of the sampling window used to calculate trends from the control run (or its
synthetic counterpart), b is the smallest detectable trend at confidence level ¢4. Trends with magnitude smaller than |b| are
not distinguishable from internal variability at the chosen degree of confidence. The magnitude of b provides an "envelope
of undetectability", shown in Figure 8 for a few key latitude bands, assuming omniscient/model knowledge. Simulated and
observed 2000-2020 trends in the upper stratosphere (above 10 hPa) largely lie outside the range of undetectable trends,
indicating that the trend estimates have emerged from internal variability there. Interestingly, the inter-model spread lies outside
the envelope only above 3 — 5 hPa. Below 10 hPa, mean trends are located within the range of undetectability, which means that

internal variability is so large that 21 years of data are not sufficient to ascertain whether ozone is increasing or decreasing with
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Figure 7. Idealized trend profiles representing three hypothetical scenarios for ozone recovery in the mid-to-upper stratosphere (black) and
corresponding profiles as would be observed by SBUV at 42.5°N (red). The red shading shows the interquartile range for trends estimated
using 24 years of data (roughly the length of the record since 2000).

95 % certainty there. Further, simulated and observed trends within the heart of the ozone layer (see Figure 5a) are currently
not detectable with 95 % statistical confidence, according to the data sets used, and again, assuming omniscient knowledge.
The same analysis is performed on the synthetic SBUV control simulation to obtain the envelope of undetectability account-
ing for observational uncertainties. Figure 9 overlays this SBUV envelope and that given by the unaltered model run, that is,
the ideal envelope of undetectability (from Figure 8). Overall, SBUV envelopes are slightly optimistic (i.e., narrower, by a
few tenths of a percent per decade), because the SBUV kernels tend to reduce the true internal variability (in this latitude-
band-average sense; compare to Figure 3) or affect its spectrum in a way that artificially decreases the time of emergence. The
differences between the true and SBUV envelopes (Figure 9) are most noticeable in the tropical region, where the SBUV ker-

nels yield errors up to 25 %. Note that averaging the smallest trends over latitude bands reduces the SBUV kernel errors—those
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Figure 8. Simulated 2000-2020 ozone trends from CCMI1 and the corresponding range of undetectable trends at the 95 % confidence level.

Results for total column ozone are shown at the bottom outside each panel. Observed 2000-2020 trends from LOTUS are shown in blue for

reference.

can be as large as 50 % locally (not shown). As was concluded from Figure 6, the detectability of total column ozone trends is
virtually unaffected by the SBUV kernels.

The SBUV envelope is most relevant to trends estimated using the SBUV record and it provides useful context for com-
parative studies that include SBUV trends (e.g., Frith et al., 2014; Harris et al., 2015; Tummon et al., 2015; Solomon et al.,
2016; Chipperfield et al., 2017; Steinbrecht et al., 2017; Weber et al., 2018; Ball et al., 2018; Bronnimann, 2022). We draw
a comparison with the LOTUS trends, since LOTUS is subject to the limitations of SBUV, among other datasets. The results
are qualitatively similar to those in Figure 8: trend estimates above 10 hPa should generally be distinguishable from internal
variability, with the caveat that errors from the SBUV kernels can yield moderate overconfidence where trend estimates are
close to the smallest detectable trends. Note that the large differences between SBUV-only and LOTUS trends are likely due to

the heavy reliance of the LOTUS product on limb sounder retrievals, which have narrower averaging kernel peaks than those
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Figure 9. SBUV 2000-2020 ozone trends and the corresponding envelope of undetectability at the 95 % confidence level including the
adjustment for SBUV kernels, which tend to yield slightly narrower envelopes. Results for total column ozone are shown at the bottom
outside each panel. Observed 2000-2020 trends from LOTUS are shown in blue for reference. The confidence interval about SBUV trends

comes from linear regression coefficient estimates.

shown in Figure 2, resulting in ~2.5 km intrinsic vertical resolution in the lower stratosphere (compared to 6 to 10 km for
SBUYV). Below 10 hPa, most trends are predicted to be indistinguishable from internal variability.

Similar detectability envelopes could be quantified for other nadir sounders, for instance the Global Ozone Monitoring
Experiment (GOME, Burrows et al., 1999), Ozone Monitoring Instrument (OMI, Levelt et al., 2006), or Tropospheric Emission
Spectrometer (TES, Worden et al., 2004). Limb sounders are subject to similar errors to the extent that they also rely on
averaging kernels, for instance OMPS-LP (Arosio et al., 2018), the Optical Spectrograph and Infrared Imager (OSIRIS, von
Savigny et al., 2003), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS, Walker et al., 2005),
Michelson Interferometer for Passive Atmospheric Sounding (MIPAS, Ridolfi et al., 2000), Microwave Limb Sounder (MLS,
Livesey et al., 2006), and Stratospheric Aerosol and Gas Experiment III (SAGE III, Cisewski et al., 2014). However, since limb
sounders typically achieve much better vertical resolution than nadir sounders, kernel errors are likely to affect the detectability
of trends to a lesser extent.

The results discussed here raise the question: if not now, when will trend estimates eventually become distinguishable from
internal variability? To answer this question, Figure 10 shows the magnitude of the smallest detectable trends as a function of

the length of the record. In the upper stratosphere (~1 hPa, Figure 10a), where CCMI1 trend estimates are 1 — 2 %/decade,
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Figure 10. Smallest detectable ESM4.1 pre-industrial trends at the 95 % confidence level (shaded) and their SBUV kernel-adjusted counter-
parts (black contours) given as a function of the length of the available record, for a) 1.6 — 1 hPa, b) 25 — 16 hPa, and c) the total column.
Filled and unfilled red stars indicate the emergence of CCMI1 2000-2020 trends at a few latitudes based on the ESM4.1 smallest detectable

trends and their SBUV kernel-adjusted counterparts, respectively.

the current length of record since 2000 is sufficient to rule out the possibility that the observed increase in ozone is an artifact

of internal variability, even when accounting for SBUV kernel errors. This result is in agreement with Figure Sc and despite
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the relatively large underestimation of internal variability shown between 60°S-60°N in Figure 3b. Lower down (25 — 16 hPa,
Figure 10b), CCMI1 trends are about a factor of two smaller and ozone variability is larger; therefore, much longer records
are needed. In the Northern midlatitudes, 35 to 60 years of record are needed. Over the Southern polar cap, almost 40 years
of data are needed, increasing to 50-60 years when accounting for SBUV kernel errors. In contrast, the SBUV kernels yield
overestimated internal variability near the equator (Figure 3b), and accounting for such errors therefore decreases the length
of record needed to detect the CCMI1 trend estimate (the unfilled red star is shifted leftward to earlier years than the filled
one). For total column ozone (Figure 10c), the results suggest that CCMII trends have emerged, or will soon, except in the
Northern midlatitudes and over Antarctica. SBUV kernel errors have little effect on these estimates, consistent with previous
findings (Kramarova et al., 2013a). We emphasize that these results are based on the analysis of a single model (ESM4.1), and
that the definition of emergence used here differs from typical measures of statistical significance based on the standard error
of regression coefficients. These caveats are important to keep in mind given that observational studies have found signs of

recovery in some column ozone metrics above Antarctica (WMO, 2022, Chapter 4).

5 Conclusions

We examined the statistical significance of long-term trends in stratospheric ozone. Statistical significance was tested against
the null hypothesis of no forced change, rather than the null hypothesis of no change, in order to include information about
the magnitude of trends that arise purely as a result of internal variability in the climate system. Using the concept of time of
emergence, we showed the potential for large errors in the statistical significance of trends estimated from satellite records:
trends may appear to emerge from internal variability when in fact they are not robust and will require several more years to
decades of observations to emerge. Two factors explain these results: 1) the averaging kernels inherent to the optimal estimation
retrieval technique consistently misrepresent decadal to multidecadal variability in nadir-viewing satellite observations, and 2)
known modes of variability (ENSO, QBO) interact with averaging kernels, and their removal from the observed record is
therefore prone to residual errors.

Further, our analysis showed that by vertically redistributing information, averaging kernels can alter trend magnitudes, in
addition to their uncertainties. This result contrasts with the assumption of Petropavlovskikh et al. (2019), who stated that
kernels do not affect trends since kernel errors are constant in time. We find instead that the shape of the vertical trend profile
is subject to large errors: hypothetical scenarios of ozone recovery at a rate of 2 %/dec in the mid-to-upper stratosphere yield
errors up to 1 %/dec, with possible vertical displacements in the altitude of local maxima of up to 6 km, consistent with Fig.
3-10 in WMO (2022). We also find errors in the sign of trends, with location and magnitude depending on the hypothetical
profile used. Our analysis uses SBUV as an example, but other nadir sounders (e.g., GOME, OMI, TES) are in principle subject
to similar effects, with magnitude dependent on their vertical resolution and location of their vertical levels relative to vertical
gradients in ozone concentrations and variability. Limb sounders (e.g., MLS, OMPS-LP, OSIRIS, ACE-FTS, MIPAS, SAGE

IIT) may also be affected, albeit to a lesser extent.
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We note a few caveats to our study. Time of emergence estimates are subject to the realism of the model we used (ESM4.1),
though the relative adjustment to the time of emergence remains accurate. The reference simulation we used excludes the
influence of volcanoes, which can be large. Additionally, the effects of non-uniform sampling and record-merging procedures
are also excluded. The time of emergence estimates presented here should therefore be construed as lower bounds (as far as
linear trends are concerned). Our time of emergence values may be further underestimated if the internal variability of the
climate system is increasing under forced change (as discussed by Rodgers et al., 2021). In addition, we used an arbitrary 95 %
threshold for statistical significance, and quantitative results are of course sensitive to this choice. Lastly, in this study we did
not explore derived metrics related to ozone recovery (e.g., size and timing of the ozone hole, WMO, 2022, Chapter 4, Section
4.4.2.1), which may confer different detection power with respect to long-term trends.

Our results should be interpreted with these caveats in mind, but nonetheless they provide useful context in light of the
varying degrees of confidence placed in trends in recent literature; notably, adding just a few years to the historical record
can change the magnitude and even sign of trends in some locations. Based on our results, we recommend systematically
accounting for the effects of averaging kernels when calculating long-term trends using vertically resolved ozone records,
particularly those from nadir-viewing instruments. We further recommend testing the statistical significance of trends against
the null hypothesis of no forced change, rather than no change at all. Future work in this direction would benefit from long
reference simulations of chemistry-climate models with perpetual year 2000 conditions, to better characterize the variability

relevant to the recovery of the ozone layer since then.

Data availability. The SBUV merged ozone record is available at https://acd-ext.gsfc.nasa.gov/Data_services/merged/

The climate simulations from GFDL’s ESM4.1 model are available from the CMIP6 archive at https://esgf-node.llnl.gov/search/cmip6/

Appendix A: Representation of the QBO in the pre-industrial simulation

Figure A1 highlights differences between the QBO generated internally by the ESM4.1 pre-industrial model run and the

observed QBO (see discussion in Section 3.1.3).
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