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Abstract. Differentiating between snow and rainfall is crucial for hydrological modeling and understanding. Commercial

Microwave Links (CMLs) can provide accurate rainfall estimates for liquid precipitation, but show minimal signal attenuation

during dry snow events, causing the CML time series during these periods to resemble non-precipitation periods. Weather

radars can detect precipitation also for dry snow, yet, they struggle to accurately differentiate between precipitation types. This

study introduces a new approach to improve rainfall and dry snow classification by combining weather radar precipitation5

detection with CML signal attenuation. Specifically, events where the radar detects precipitation, but the CML does not, are

classified as dry snow. As a reference method we use weather radar, with the precipitation type identified by the dew point

temperature at the CML location. Both methods were evaluated using ground measurements from disdrometers within 8 km of

a CML, analysing data from 550 CMLs in December 2021 and 435 CMLs in June 2022. Our results show that using CMLs can

enhance the classification of dry snow and rainfall, presenting an advantage over the reference method. Further, our research10

provides valuable insights into how precipitation at temperatures around zero degrees, such as sleet or wet snow, can affect

CMLs, contributing to a better understanding of CML applications in colder climates.

1 Introduction

The precipitation phase is crucial for hydrological processes in cold regions (Loth et al., 1993). Understanding the type of

precipitation aids in applications such as adjusting rain gauges for wind undercatch (Kochendorfer et al., 2022) and modeling15

hydrological responses like flooding. Moreover, specific precipitation conditions, like freezing rain, can disrupt power lines

and impede traffic, while snow can cause transportation blockages. It’s also noteworthy that rain-on-snow events have been

associated with significant flooding (McCabe et al., 2007).

The formation of precipitation is a complex process. In the high and mid-latitudes, most precipitation originates from mixed-

phase or cold clouds, i.e. clouds containing ice (Stewart et al., 2015). The ice crystals grow in size and mass through different20

micro-physical mechanisms such as vapor deposition and riming, until they reach a sufficient mass to sediment out of the cloud
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base (Stewart, 1992). A necessary condition for a cloud to generate solid phase-precipitation is that its temperature is negative.

Unless the temperature of the layer of atmosphere underneath the cloud remains below zero degrees, the precipitating ice will

start melting before reaching the ground (Lamb and Verlinde, 2011). The melting process is not instantaneous and an ice particle

can fall hundreds of meters before melting completely. Therefore, originally solid precipitation can reach the ground in any25

intermediate state between solid and liquid, depending on the height of the zero-degree isotherm (Paulson and Al-Mreri, 2011;

Harpold et al., 2017). The melting process is also influenced by other elements of the atmospheric conditions. Specifically, the

stability of the atmosphere and the atmospheric humidity profile have a significant influence because the liquid water formed

from melting of ice will tend to evaporate in dry conditions, cooling the atmosphere in turn and hampering further melting

(Harder and Pomeroy, 2013). Atmospheric conditions that determine the precipitation phase can change relatively quickly.30

For instance, a study by Marks et al. (2013) observed a significant increase of the height of the melting layer within the same

precipitation event. Determining the precipitation phase at the ground level is therefore difficult and models predicting the

precipitation phase typically need to be calibrated and validated against measurements (Harpold et al., 2017).

There are several ways of determining the precipitation phase using ground based observations. For example, Marks et al.

(2013) used a combination of a tipping bucket rain gauge and a heated weighing gauge. During rain, the devices record35

similar amounts, but when it snows, the snow clogs the funnel of the tipping bucket, leaving only the weighing gauge to

record precipitation. Other studies, such as Matsuo et al. (1981), used human observers to directly observe precipitation phase.

More advanced methods include using weather radars, especially with dual polarization, to estimate and classify precipitation

phase (Grazioli et al., 2015; Chandrasekar et al., 2013). Disdrometers also estimate precipitation phase based on the physical

properties of hydrometeors (size and fall velocity), with semi-empirical knowledge of how these properties vary with type40

(Löffler-Mang and Joss, 2000; Yuter et al., 2006). However, each method has its own limitations. Rain gauges, providing point

measurements, have limited spatial representation and can be affected by wind induced errors (Førland et al., 1996; Nešpor

and Sevruk, 1999; Kochendorfer et al., 2022; Wolff et al., 2015). Human observations can be subjective and aren’t suitable for

continuous high frequency monitoring. Dual polarized weather radar can suffer from beam blockage and has difficulty linking

the estimated precipitation type to ground measurements (Harpold et al., 2017; Elmore, 2011). Like rain gauges, disdrometers45

are limited in spatial representation and can experience errors such as splashing of drops against nearby structures, drops falling

on the edge of the measuring area, and wind altering drop trajectories (Friedrich et al., 2013).

Precipitation phase estimation often employs a temperature model. This involves modeling the rain-snow transition based

on temperature using for instance a single temperature threshold to separate rain and snow, or two thresholds that define mixed

precipitation in between the two thresholds (Kienzle, 2008). Jennings et al. (2018) found that, when using a single temperature50

threshold, the threshold separating rain from snow varies geographically, ranging from -0.4 to 2.4 for most stations and with

colder thresholds near the coast and warmer thresholds in mountains. They also found that models incorporating humidity

performed better than models considering air temperature alone, which is also confirmed by other studies (Matsuo et al.,

1981). Other studies again have not observed any benefit of including humidity (Leroux et al., 2023). One common measure

combining humidity and temperature is the dew point temperature, which is the temperature at which air becomes saturated with55

water vapor at the current water content (Lawrence, 2005). This measure can provide important insights into the atmospheric
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conditions and aids in classifying precipitation types (Feiccabrino, 2020; Harder and Pomeroy, 2013, 2014). However, even if

temperature and humidity are combined to classify precipitation types, there is still a large degree of uncertainty. Harpold et al.

(2017) suggest that current phase transition models are too simple to capture the process, especially in complex terrain. They

suggest, for instance, to improve this by better use of other atmospheric information and enhancing the validation network with60

ground measurements such as disdrometers.

CMLs are radio links between radio communication towers. In the mid-2000s, it was demonstrated by Messer et al. (2006)

and Leijnse et al. (2007) that CMLs can be used to estimate rainfall. This is due to the relationship between signal attenuation

and rainfall intensity. At around 30 GHz, the relation is close to linear, making it easier to estimate the average rainfall intensity

along the CML path. Among other applications, CMLs have been used to estimate countrywide rainfall (Graf et al., 2020;65

Overeem et al., 2016), transboundary rainfall fields (Blettner et al., 2023) and CMLs have proven useful for estimating runoff

in urban hydrology (Pastorek et al., 2023). A crucial step in CML rainfall estimation is the detection of rainfall, often called

wet periods, in the CML time series. There are several ways of doing this, for instance by classifying a period as wet when

the standard deviation of a moving window is larger than a predefined threshold (Schleiss et al., 2013; Graf et al., 2020), by

using pre-trained classification methods (Polz et al., 2020; Øydvin et al., 2024) or by including information from nearby CMLs70

(Overeem et al., 2013). It is also possible to use weather radar to estimate the CML wet period as done in Overeem et al.

(2016).

Classification of precipitation types other than rain using CMLs has previously been investigated by Cherkassky et al. (2014).

The authors used the fact that snow, sleet, and rainfall are affected differently by different CML frequencies. Thus, by using

three CMLs operating at different frequencies in the same area, they were able to distinguish periods of wet snow and rainfall,75

albeit only for two precipitation events where each lasted for three days. Ostrometzky et al. (2015) expanded on this study

by using four CMLs operating at different frequencies and clustered at a single path to estimate the precipitation amounts

generated by rainfall and wet snow. The study investigated four precipitation events lasting a total of 16 days. A limitation of

both of these studies is that they focus on a low number of CMLs over a few days. It is not known how well these methods

generalize to longer time series and larger CML networks.80

Not many studies have focused on how CMLs are affected by colder climates. Graf et al. (2020) and Overeem et al. (2016)

reported that CMLs tend to overestimate the precipitation amount during winter months. Both attributed this overestimation to

wet snow. Paulson and Al-Mreri (2011) reports that wet snow can induce up to four times the attenuation compared to rainfall,

leading to potential overestimation of CML rainfall due to the larger size of the wet snow particles. Dry snow, on the other

hand, is known to cause signal attenuation so low that it cannot be detected by CMLs (Pu et al., 2020).85

In this study, we explore the viability of classifying dry snow by exploiting the fact that dry snow causes unnoticeable

attenuation in the CML data. This is done by first using weather radar to detect precipitation and then the precipitation type is

classified based on whether the CML detects rainfall or not.
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2 Methods

2.1 CML data90

The CML dataset was provided by Ericsson and consists of 2777 CMLs spread out across Norway. Each CML records the

transmitted and received signal strength every minute for data from two months: December 2021 and June 2022. The total loss

(TL) was computed by subtracting the received signal strength from the transmitted signal strength. In our dataset, there were

some outliers where the transmitted signal strength was less than -50 dBm. These signals produced negative TL values, which

is probably due to recording errors. We opted to completely remove CMLs with transmitted signal strength less than -50 dBm95

such that the remaining CMLs did not have any negative TL values. We also removed CMLs with more than 15% missing

values. This resulted in 2179 CMLs for the summer dataset and 2345 CMLs from the winter dataset. Next, as suggested by

Graf et al. (2020), we removed erratic CMLs where the 5 hours moving window standard deviation exceeded the threshold

of 2 dBm more than 10 % of the month and noisy CMLs where the 1-hour moving window standard deviation exceeded the

threshold of 0.8 dBm more than 33 % of the month. Then CML derived rain rates were estimated using the pycomlink software100

(Chwala et al., 2023) and a similar workflow as described in Graf et al. (2020), Blettner et al. (2023) and Polz et al. (2020). For

the classification of wet periods, we used a simple feed-forward neural network (MLP) available from pycomlink and described

in Øydvin et al. (2024). To account for spatial and temporal differences between the CML and disdrometers, wet periods were

extended by 5 minutes forward and 5 minutes backwards in time. Then, a constant baseline for each wet period was estimated

by using the average value of the 5 dry time steps before the wet periods and the attenuation due to rain and wet antenna was105

estimated by subtracting the baseline attenuation from the TL. The attenuation caused by wet antennas was estimated using

the method proposed by Leijnse et al. (2008) using the parameters obtained by Graf et al. (2020). Finally, the rainfall rate was

computed using the k-R relation, with parameters defined by ITU (2005).

2.2 Radar data

Weather radar data for Norway was downloaded from THREDDS (2024), a data hosting platform for gridded meteorological110

data run by the Norwegian Meteorological Institute. The radar product is developed from 12 weather radars in Norway. These

radars are combined using a Constant Altitude Plan Position Indicator (CAPPI). The final result is a grid with a spatial reso-

lution of 1 km by 1 km and a temporal resolution of 5 minutes. Seaclutter and other large peaks in the data are removed, and

groundclutter is identified and corrected using surrounding data. The radar reflectivity (Z [dBz]) is converted to rainfall rates (R

[mm/h ]) using the Marshall-Palmer relation (Marshall and Palmer, 1948). To make the comparison of the CML-and weather115

radar data consistent, we used the CML geometry to extract the average radar rainfall rate along the CML using a weighted

grid approach provided by pycomlink. Then, in line with Polz et al. (2020), time steps with weather radar rainfall rates above

0.1 mm/h were considered wet. To account for spatial and temporal differences between the radar beam and the disdrometer,

periods with precipitation as detected by the weather radar were extended by 5 minutes forward and 5 minutes backward in

time, similar to what was done with the CML wet periods.120
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2.3 Disdrometer data and co-located CMLs

As reference data for the true precipitation type, we used disdrometer data from the Norwegian road authorities. They use two

types of disdrometers, namely the OTT Parsivel and OTT Parsivel2. The disdrometer data was downloaded from Frost (2024), a

data hosting platform for meteorological observations run by the Norwegian Meteorological Institute. This dataset also contains

precipitation type observations from sensors other than disdrometers, such as the Vaisala PWD12/31 and DRD11A. To ensure125

a more controlled comparison between sensors, we removed data from non-disdrometer sensors, using a registry provided by

the road authorities. The disdrometers are placed at least 4 meters above the road at automated meteorological stations located

along the roads in Norway and provide an estimate of the precipitation type every 10 minutes. The disdrometer precipitation is

classified as light rain, rain, snow, and hail. No precipitation or dry weather is denoted dry in the following. We simplified this

classification by merging the classes light rain and rain since they should appear similar in the CML and radar. Further, as there130

were few hail events in the dataset (less than 0.01%), we set time steps where the disdrometer recorded hail to dry. Thus from

the simplifications the disdrometer only records 3 classes: dry, rain and snow. Pairs of CMLs and disdrometers within 8 km of

each other were identified using methods from poligrain (2024) and CMLs longer than 8 km were removed. This resulted in

550 CMLs and 113 co-located disdrometers for December 2021 and 435 CMLs and 74 co-located disdrometers for June 2020.

We refer to these as the winter and summer datasets respectively. The CMLs used in the study had lengths ranging from 0.4 to135

8 km and operated at frequencies between 10 to 40 GHz, with the majority (90 percent) operating above 18 GHz.

2.3.1 Temperature, humidity and dew point temperature

Temperature and humidity data was downloaded from THREDDS (2024). The data is a downscaled version of ERA5 data on

a 1 km grid with a temporal resolution of 1 hour (MET, 2024; Lussana et al., 2021, 2019). For each CML, we extracted the

temperature and humidity at the midpoint of the CML. To account for air humidity we calculated the dew point temperature140

using the approximated relation with air temperature provided by Lawrence (2005), given as

Td = Ta− ((100−RH)/5), (1)

where Td is the dew point temperature, Ta is the air temperature and RH is the relative humidity.

2.4 Classification of rain and snow using the radar-temperature (RT) and CML-radar (CR) methods

The first method "radar-temperature" (RT), uses surface temperature and weather radar to determine precipitation occurrence145

and precipitation type. As recommended by Harder and Pomeroy (2014), humidity is accounted for by using the dew point

temperature. The RT method then works by classifying radar precipitation above a dew point temperature threshold as rain and

below the threshold as snow. In line with Marks et al. (2013) the dew point temperature threshold is set to 0 ◦C. Combining

humidity-corrected temperature models with weather radar is a common method and is often used as a reference method

(Casellas et al., 2021; Saltikoff et al., 2015; Gjertsen and Ødegaard, 2005). The second method, "CML-radar" (CR), uses the150

CML wet periods as an indicator for whether it is raining or not. Since the CML is not noticeably attenuated by dry snow we
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Table 1. Radar and CML conditions and the CR method predictions

Radar rain Radar dry

CML rain Rain Rain

CML dry Snow Dry

can set radar precipitation that is not accompanied by CML precipitation as snow. The CR method predictions is summarized

in Table 1.

2.5 Performance metrics

We use the Matthews correlation coefficient (MCC) to quantify the performance of the classification methods. The MCC is a155

statistical measure that provides a balanced evaluation metric, yielding 1 for a perfect estimate, 0 if the estimate are no better

than random guesses, and -1 for complete disagreement between estimate and observation (Chicco and Jurman, 2020). In this

study, we evaluated 3 classes, dry, rain and snow, making this a multiclass problem. For evaluating the classification of rainfall

alone (MCC_rain), we considered two classes, rain or no rain. Thus for MCC_rain, dry and snow are in the same category.

Likewise for snow (MCC_snow), dry and rain are in the same category. For the combined classes (MCC_all) we compute the160

multiclass MCC for all three categories, dry, rain and snow. The MCC_all, MCC_rain and MCC_snow were computed using

scikit-learn (Pedregosa et al., 2011) which in the multiclass case implements MCC based on Gorodkin (2004).

2.6 Practical application investigating road friction

As a practical application, we studied how road friction, as measured at a meteorological station operated by the Norwegian

road authorities, was related to the predictions from CR and RT methods. The meteorological station is located at Håloga-165

landsbrua bridge close to Narvik and the CML is located within 5 km distance to the meteorological station. We studied 11

days of data where the meteorological station recorded a broad range of weather events. The data from the road authorities in-

cluded road condition as measured by a Vaisala remote surface state sensor DSC211, precipitation type as measured by a OTT

Parsivel2, the road temperature as measured by a Vaisala remote road surface temperature sensor DST111 and road friction as

measured by a Vaisala remote surface state sensor DSC211. Road friction is rated from 0 to 1, typically at 0.82 for dry roads,170

0.7 for wet roads, and between 0.4 to 0.6 for snowy or icy roads. No pre-processing of these data was performed.

3 Results

3.1 Overview of the data as a function of dew point temperature

Our dataset consists of CML-disdrometer pairs from the summer dataset and the winter dataset. Every minute each pair provides

several different observations such as disdrometer observed precipitation type, dew point temperature and CML signal loss. In175

Fig. 1 we have plotted histograms of the number of minutes (first row), the observed disdrometer precipitation type (second row)
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Figure 1. Frequency (counts of minutes) as a function of dew point temperature (Td) for number of recordings (first row), disdrometer

recorded rain and snow (second row) and CML recorded rain and radar recorded precipitation (third row).

and CML and radar precipitation (third row) for dew point temperature intervals of 1 degree between -20 and 20 degrees. From

the disdrometer observations we can observe that all of our data is between -20 and 20 degrees with most of the observations

concentrated between -10 and 10 degrees. The disdrometers record snow mainly below zero degrees with some recorded snow

events slightly above zero degrees. For disdrometer rainfall, most rainfall is above zero degrees, but there is also a substantial180

amount of rainfall recorded below. The CML also detects wet precipitation below zero degrees, but not as frequently as the

disdrometers. The weather radar detects more wet minutes around 10 degrees compared to the CML but it records fewer snowy

minutes around -10 degrees compared to the disdrometer. We can also observe that the weather radar detects fewer events

below -10 degrees as compared to the disdrometer.

3.2 The performance of the CR method vs. the RT method185

The performance of the RT and CR method is visualized in scatter density plots using monthly time series for each CML-

disdrometer pairs (Fig. 2). We can observe that for MCC_snow both methods perform quite similarly, while for MCC_rain CR

seems to perform on average better than RT. For the combined classification the MCC_all is similar for both high RT and high

CR scores, while for lower RT scores CR performs better. Looking at the mean dew point temperature we can observe that for
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Figure 2. First row: Scatter density plots comparing the MCC_all, MCC_rain and MCC_snow of the CML based classification method CR

and the reference method RT using the disdrometers as reference. The MCCs are computed for each CML-disdrometer pairs using 1 month

of data. Second row: Same scatter density plots, but the cells show the mean dew point temperature (Td) of each cell.

MCC_all and MCC_rain there is a gray cluster above the black line, indicating that the CR method in general improves the190

estimates for CMLs with a monthly mean temperature around zero degrees. Moreover, rainfall classification has a poorer score

at lower average temperatures and snow classification has a poorer score at higher temperatures.

The MCC for all classes (MCC_all), for the rainfall class only (MCC_rain) and for the snow class only (MCC_snow) is

plotted as a function of dew point temperature between -10 and 10 degrees (Fig. 3). We can observe that for the multiclass

MCC_all both the CR and RT methods perform similar for low dew point temperature and high dew point temperature, while195

the CR method is superior in the dew point temperature range -1 to 7 degrees.
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Figure 3. Matthews correlation coefficient for snow and rain (MCC_all), for rain (MCC_rain) and snow (MCC_snow) as a function of dew

point temperature (Td).

3.3 Precipitation bias as a function of temperature

The difference between the estimated CML rainfall amounts and the ground truth radar rainfall amounts is plotted as a function

of dew point temperature (Fig. 4). The CML rainfall amounts were computed by using the weather radar wet period (left

column) and by using the CML wet period (right column). For dew point temperature below -2 degrees, we observe that there200

is a positive bias where the radar in general overestimates the precipitation amounts compared to the CML. For dew point

temperature around zero degrees, there seem to be many more events where there is a negative bias, meaning that the CML

overestimates the rainfall amounts compared to the radar. For dew point temperature above 4 degrees, the CML and radar

estimate has a similar spread. When using the CML to identify wet and dry periods, we more often observe a large negative

bias compared to when the radar is used to identify wet and dry periods. In the second, third and fourth row, we have plotted205
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the fraction of hours within the bins where the disdrometer recorded at least 10 minutes of rain, snow and both snow and rain

(mix) respectively. We observe that there is a lot of rain in observations above zero degrees, while there is a lot of snow in

observations below zero degrees. Around zero degrees, we have observations of both rain and snow, and some hours where both

rain and snow have been observed. We can also observe that for rainfall there is a larger proportion of the cells that experience

more than 10 minutes of rainfall for negatively biased events, where the CML estimates more rainfall compared to the radar.210

3.4 Map of CR and RT precipitation estimates

Fig. 5 displays a map showing the precipitation type estimated at the CML locations using the RT method (left column), the CR

method (middle column) and the disdrometer observations (right column) for 1 hour accumulation periods. The RT method

estimates rain (CML rain) if the weather radar observed rainfall for more than 5 minutes while the dew point temperature

was positive, snow if the weather radar observes precipitation for more than 5 minutes while the dew point temperature was215

negative (CML snow), mix if both rain and snow was recorded for more than 5 minutes (CML mix) and no precipitation

otherwise (CML dry). The CR method estimates rain when the CML recorded more than 5 minutes of rainfall (CML wet),

snow when the radar recorded rainfall while the CML did not for more than 5 minutes (CML snow), mix if both rain and snow

was recorded for more than 5 minutes (CML mix) and dry otherwise (CML dry). The disdrometers estimate rain when more

than 10 minutes of rain is recorded (Dsd. rain), snow when more than 10 minutes of snow is recorded (Dsd. snow), mix when220

both rain and snow are recorded (Dsd. mix), and dry conditions otherwise (Dsd. dry).

Overall we can observe that in the south part of the map both the CR and RT method gives similar estimates, while in the

middle and north the CR and RT method estimate a mixture of rain and snow. Looking at the CMLs located around point A

(black cross) we can observe that in the first three time steps the RT method estimates more rainfall while the CR method

estimates more mixed precipitation and the disdrometers observe mixed precipitation. In the forth time step both RT and CR225

estimates rain, snow and mix, while the disdrometers observe snow and mix. In the last time step the RT method estimates

rainfall, the CR method estimates more snow and the disdrometers observes mostly snow.

3.5 Precipitation type and road friction

In a practical application of our study, we analyzed CML data and weather radar data at the CML location. This data was then

compared with observations from a meteorological station in Narvik (Fig. 6). Looking at the CML time series (TL), we observe230

that around the 12th, the CML does not indicate any rainfall, while the radar observes precipitation and the disdrometer observes

snow. Simultaneously, the road condition indicates snow and road friction drops rapidly. This suggests that the observed

precipitation consists of dry snow, which is likely responsible for the reduction in road friction. Moving to the next event, we

can observe that the road friction drops again between the 13th and 14th, but there is no recorded precipitation from either the

radar or the disdrometers. From the road condition, we can observe that the road has transitioned from damp to ice, indicating235

that the road friction is low due to water that has frozen. Next, between the 15th and 16th, there is a drop in the road friction

where the disdrometers and road condition indicate snow. However, the CML indicates a wet period. Comparing the difference

between the CML and weather radar we see that the CML overestimates rainfall by more than 5 mm for those hours. Looking
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Figure 4. First row: Difference between hourly precipitation amounts as measured by radar and CML as a function of dew point temperature

(Td). CML rain amounts were estimated using wet periods identified by the weather radar (left column) and the CML (right column). Second,

third, and fourth row: The fraction of the hours within the bins where the disdrometer recorded at least 10 minutes of rainfall, snow, and both

snow and rain (mixed precipitation), respectively. Cells with less than 4 events are not shown.
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Figure 5. A 50 x 100km area in Norway observed in 1-hour intervals from 00:00 to 04:00 on 19th December 2021. The left column show

the CML condition using the RT method, the middle column show the CML condition using the CR method and the right column show

the disdrometer observations. The colors reflect the estimated weather conditions dry (black), rainy (blue), snowy (cyan) and dry (red). The

black x indicates point A for orientation. Coordinates are not shown due to data security reasons.
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at the TL of the CML we observe that the TL has a more gradual increase, not like the more variable pattern seen at the next

time steps where the disdrometer and road condition indicate that it is raining. Given that the disdrometers indicate snow and240

the CML indicates a wet period, this could suggest that the decreased road friction is caused by wet snow. Interestingly, this

event caused a larger drop in road friction than the two previous events on the 12th and 14th. After this event, the disdrometer

and road condition indicate a long rainy period between the 16th and 19th. This is supported by the CML and radar estimating

approximately the same amounts of rainfall. Just before the 19th, there is a short period where the CML overestimates rainfall

amounts and the disdrometer records snow. However, the period is so short that the road friction is not dropping. Finally,245

between the 19th and 20th, there is a large drop in road friction where the CML also overestimates rainfall amounts compared

to the radar, and the disdrometer records snow. This could again indicate that the decreased road friction is caused by wet snow.

Fig. 6 also shows that during the rainy period between the 16th and 19th, the CR method estimates switches more between

rain and snow compared to the RT method. This could be due to that there is a mixture of snow and rain at temperatures close

to zero degrees. It could also be that the CML and weather radar are not perfectly synchronized, causing the CR method to250

predict snow for instance when the weather radar detects rainfall shortly before the CML.

4 Discussion

4.1 The distribution of rain and snow around zero degrees

The disdrometer data suggest that there is more frequent rainfall below zero degrees than there is snow above zero degrees

(Fig. 1). Although there is no reason to expect that the distribution of rain and snow around zero degrees should be symmetric,255

observing significant rainfall amounts far below zero degrees is not expected. Comparing the CML wet distribution with the

disdrometer rain distribution, we can see that the CML observes fewer wet events below zero degrees. We have also observed

that snow events around zero degrees can show up as wet in the CML (Fig. 4). Thus, contrary to what we observe, below zero

degrees we should expect that the CML estimates more wet events than the disdrometer observes rainfall. This could indicate

that the disdrometers overestimate the number of rainy events below zero degrees. One reason for this overestimation could260

be due to the spatial distance between the disdrometer and the CML midpoint where the temperature is recorded. Since the

temperature can be different at those locations due to for instance differences in elevation, we should expect that some rain

events are assigned to colder temperatures while others are assigned to warmer temperatures. On the other hand, if this effect

played a large role we should also see the same effect for snow, with more snow being recorded up to 10 ◦C. Another explana-

tion could be that wet snow makes the disdrometer alternate between snow and rain, with a stronger emphasis in rain, creating265

the impression that there is more rain below zero degrees. Other explanations could be errors in the disdrometer classification

algorithm or it could come from cars spraying water droplets from salted roads. Consequently, while the disdrometer provides

valuable estimates, it may not perfectly represent the ground truth.
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Figure 6. Time series for the meteorological station in Narvik operated by the Norwegian road authorities. The first row shows the road

condition dry (white), damp (light blue), wet (green), slush (orange), snow (purple) and ice (brown). The next row shows whether the

disdrometer records no (white), liquid (blue) or solid (orange) precipitation. The third row shows the dew point temperature (orange) and

the temperature measured by a sensor mounted next to the road (blue). The fourth row shows the road friction as measured by a sensor in

the road. The fifth row shows the total loss of a nearby CML (TL) as well as the estimated wet (blue) and snowy (red) periods using the CR

method. The sixth row shows the radar precipitation amounts (blue line) measured as a weighted sum along the CML as well as snowy (red

shade) and rainy (blue shade) periods as estimated by the RT method. The seventh row shows the difference between the radar and CML

rainfall amounts (blue line) as well as the time steps where the difference is less than -5 (blue shade).
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4.2 CML dry periods can be used in combination with weather radar to classify dry snow

Below -1 degrees the CR method is able to classify snow with a similar accuracy as the RT method. For temperatures above270

-1 degrees both the CR and RT method performance decreases, but the CR performance decreases slower than the RT method,

indicating an advantage of using the CR method for classifying snow (Fig. 3). Part of the performance decrease of the CR

method could be due to that at higher temperatures the spatial differences between the CML and disdrometer plays a larger

role. For instance, the chance for rain at the disdrometer is (naturally) higher for higher temperatures (ca.5◦C) than for lower

temperatures (-10◦C), even if it may be snowing at the CML location in both cases. Other explanations for the CR method275

performance decrease could be that the disdrometers classify wet snow as snow, while the CMLs classify wet snow as rainfall,

leading to a misclassification by the CMLs. This phenomenon is clearly observable in Fig. 6 where all events featuring CML

overestimation of rainfall amounts coincide with the disdrometer recording snow. A similar pattern is evident in Figure 4, where

instances of large CML bias around zero degrees often correspond with the disdrometer measuring snow or a combination

of rain and snow. This suggests that events characterized by wet snow are likely to be classified as wet by the CML wet280

classification method. We also experimented with other CML wet classification methods and found the same results. This

indicates that even if we are able to classify dry snow better using the CMLs and weather radar, we might fail at classifying

wet snow. Future work could investigate methods for wet snow detection, for instance, by looking at the difference between the

radar estimate and the CML estimate or by refining and testing the method proposed by Cherkassky et al. (2014) on a larger

dataset.285

4.3 CMLs improve rainfall detection

In terms of rainfall classification, the CR method performs just as well or outperforms the RT method for all temperature

ranges (Fig. 2 and Fig. 3). This could be due to the fact that the CMLs are located on the ground, which situates them closer

to the disdrometers compared to the radar beam. Alternatively, the improved accuracy could be due to radar beam blockage by

mountains causing insufficient coverage at some locations. We note that the RT method uses the CML geometry to estimate290

the radar rainfall and that it could be improved by using the pixel value at the position of the disdrometer. This was done to

make the CR and RT methods have the same spatial differences as the disdrometer, making them more comparable. Finally, we

can also observe that the performance of the CR method is lower at -1 degrees than at 3 degrees (Fig. 3). This could be due to

the fact that at temperatures below -1 degrees, there are more mixed events where the disdrometer records snow and the CML

estimates rainfall.295

4.4 Wet snow causes significant discrepancies between CML and radar estimates around zero degrees

Around zero degrees the CML estimates larger rainfall amounts compared to the radar (Fig. 4). This effect has been observed

before in previous studies, for instance in Graf et al. (2020), where the authors noted a marked discrepancy between CML and

radar readings during the winter months, potentially induced by wet snow. Many of the significant discrepancies between the

radar and CML estimate coincide with hours during which a mix of rain and snow events were recorded (Fig. 4). This suggests300

15

https://doi.org/10.5194/egusphere-2024-2625
Preprint. Discussion started: 18 September 2024
c© Author(s) 2024. CC BY 4.0 License.



that significant discrepancies between the CML and radar estimates around zero degrees may be attributed to wet snow. From

4◦C upwards, both the radar and CMLs provide similar spread in rainfall amount estimates, indicating a balanced comparison

at these temperatures. This suggests that there is less discrepancy or bias between CML and radar rainfall rate measurements

when the dew point temperature is above 4◦C.

4.5 Nearby CMLs can be used to interpret road friction305

In Fig. 6 we can observe that strong snow events causes the road friction to drop. This occurs, for instance, around the 12th,

when the disdrometer observes snow. The strongest drop in road friction appears to coincide with instances where both the

CML indicates rainfall and the disdrometer registers snow. During these events there is also a significant discrepancy between

the weather radar and the CML estimates. This discrepancy can, as previously discussed, be caused by wet snow, suggesting

that the pronounced decrease in road friction might be attributed to conditions of wet snow. However, for practical applications,310

it must be noted that road friction can also drop due to other factors, such as icy roads. Moreover, we can also observe that not

all wet snow periods cause the road friction to drop. Reasons for this could be, for instance, that water on the road is causing

wet snow to melt, a too short duration of the snow event, or that the snow was removed by the road authorities.

5 Conclusions

In this work, we have compared two methods for classifying rain and snow, one established reference method where we315

combine surface dew point temperature and weather radar (RT) and one novel method where we combine CMLs and weather

radar (CR). The CR method exploits the fact that dry snow causes low signal attenuation of the CML signal level, making

dry snow events appear similar to dry events in the CML time series. It works by classifying time steps where the weather

radar detects precipitation and the CMLs do not detect precipitation. Time steps where the CML detects rainfall are set to wet.

The RT method classifies weather radar precipitation below zero degrees as snow and above as rain. Our results show that320

the CR method outperforms the RT method for dry snow detection above zero degrees and, in general, for rainfall detection,

suggesting that CMLs can be used to better classify rain and snow. Further, our results indicate that wet snow is classified as

rainfall by the CML and that during these events the disdrometer tends to estimate a mix of rainfall and snow. These events are

also characterized by large CML overestimations compared to radar, which could be attributed to the larger signal attenuation

caused by wet snow. Overall, our findings suggest a new application for using CMLs to identify dry snow and contribute to325

better understanding on how CMLs behave during events of mixed precipitation.

Code and data availability. The software used for CML processing software is available under https://github.com/pycomlink/pycomlink/

tree/master. Disdrometer data is available from (Frost, 2024). Radar data is available from (THREDDS, 2024). CML data is not available.
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