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Supplementary Text 22 

S1. Data pre-processing 23 

Outlier Handling 24 

We conducted outlier handling for each GeoNet input datasets using z-scores, wherein data 25 

normalization was performed based on the mean and standard deviation. Data points exceeding 26 

a certain threshold of z-scores were discarded. The calculation formula is as follows: 27 

𝑧(𝑥) =
𝑥 − µ!
σ"

 28 

Where 𝑥	is the data value, 𝜇! and 𝜎! are the mean average and standard deviation. 29 

Missing Value Handling 30 

Due to meteorological factors, the GEMS dataset used in this study contains many missing 31 

values. Fig. S1 presents the overall missing ratio of GEMS satellite NO2 retrieval for each 32 

ground pixel in 2021.  33 

To enhance data availability, the GEMS dataset underwent imputation procedures. Various 34 

data imputation methods were employed to assess their impact on the dataset, including zero 35 

imputation, WRF data imputation, and CAMS data imputation. Specifically, missing data 36 

points were replaced with either zero or corresponding data from the WRF and CAMS datasets 37 

at the respective spatiotemporal positions. For other datasets, missing values were addressed 38 

through spatiotemporal interpolation using multidimensional linear interpolation.  39 

Resampling 40 

Due to variations in spatiotemporal resolutions among different datasets, it was necessary to 41 

ensure data consistency and facilitate model computation by resampling all datasets in both 42 

time and space domains. Resampling operations involved both upsampling and downsampling. 43 

Upsampling was achieved through interpolation, while downsampling was performed using 44 

local mean aggregation. Following resampling, the temporal resolution of all datasets was 45 

standardized to 1 hour, and the spatial resolution to 0.1 degrees. 46 

Normalization 47 

The normalization process applied here is beneficial for overcoming overfitting issues during 48 

model training and dealing with heterogeneous data of different scales, thereby potentially 49 

accelerating training speed. This process is essential for bringing each variable to a comparable 50 

scale, ensuring that each feature carries similar importance. In this study, min-max 51 

normalization was applied to all datasets. In this method, the maximum value of the data is 52 
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transformed to 1, the minimum value to 0, and other values are scaled to decimals between 0 53 

and 1. The calculation method is as follows: 54 

𝑥# =
𝑥 − 𝑥$%#

𝑥$&! − 𝑥$%#
 55 

Where 𝑥, 	𝑥$&!, 𝑥$%# is the data value, maximum, and minimum, respectively. 56 

 57 

S2. The configuration and optimization of GeoNet 58 

For the GeoNet model, the model configurations and hyperparameters such as the optimizer, 59 

loss function, L1 or L2 regularization, dropout, training steps, and epochs can make a 60 

difference to the model performance including the prediction accuracy and generalizability. 61 

Thus, several scenarios of model hyper-parameters have been tested during the model training 62 

phase. The model accuracy on validation datasets and the learning rate curve were used to 63 

diagnose the model hyperparameters. We used the following metrics of model performance in 64 

this study: 65 

The coefficient of determination (R2): 66 

𝑅' =
∑ (𝑓(𝑥%) − 𝑦0)'$
%()
∑ (𝑦% − 𝑦0)'$
%()

 67 

The root mean square error (RMSE): 68 

1
1
𝑛4

(𝑦*5 − 𝑦%)'
#

%()

 69 

The mean absolute error (MAE): 70 

1
𝑛4

|𝑦*5 − 𝑦%|
#

%()

 71 

The mean absolute percentage error (MAPE): 72 

1
𝑛47

𝑦*5 − 𝑦%
𝑦%

7
#

%()

 73 

The model parameters mainly include the number of layers and the dimensions of the hidden 74 

layers, both control the model’s capacity. If the model capacity is relatively small, underfitting 75 

may occur; overfitting may exist if it is too large. Therefore, selecting an appropriate model 76 

capacity is crucial for improving model performance. During the pre-training process, the 77 

model is trained by combining different numbers of layers and dimensions of the hidden layers. 78 

The Mean Squared Error (MSE) Loss is recorded for each training iteration, and a heatmap is 79 
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generated as shown in Fig. S2. From the heatmap, it can be observed that when the number of 80 

layers is 2 and the dimension of the hidden layer is 256, the model achieves the minimum MSE 81 

Loss. Fig. S3 shows the sensitivity test results of model loss varying with different batch size 82 

settings, indicating that a batch size of 64 is optimal. Based on the model's MSE loss under 83 

different hyperparameter configurations, the best fitting model can be selected. 84 

The Adam optimization algorithm controls the learning rate, which can design independent 85 

adaptive learning rates for different parameters. The three initialization parameters 𝜖, 𝜌1, and 86 

𝜌2 of the Adam algorithm are set to be 0.0001, 0.9, and 0.99, respectively. For the epoch, its 87 

size is controlled by the early stop method. The early stop method monitors the change of the 88 

model’s loss function on the validation set during the training process and stops the model 89 

training immediately when the validation loss of the model starts to become larger. Due to the 90 

fluctuation of the loss function, a threshold 𝑝 is set for the early stopping method in practice, 91 

and when the validation loss of the model becomes large for 𝑝 consecutive epochs, the model 92 

is rolled back to the lowest validation loss and the training is stopped, and the threshold 𝑝 is set 93 

to 10 in this paper. Fig. S4 shows a typical learning curve of the MSE loss in training and 94 

validation data sets for different learning steps in training an optimal model. Such diagnostics 95 

can be used to avoid the model overfitting.  96 

 97 

  98 
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Supplementary Figures 99 

 100 
Figure S1. The ratio of missing data for hourly GEMS NO2 retrievals over East China in 2021. 101 
  102 
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 104 

Figure S2. The influence of model hyperparameters including both ConvLSTM layers and dimensions of 105 
hide layer on the MSE loss of GeoNet prediction.  106 
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 108 
Figure S3. The impact of batch size on the MSE loss of GeoNet prediction. 109 
  110 
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 112 
Figure S4. The learning curve of model loss in validation and training datasets for different steps. 113 
  114 
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 116 
Figure S5. The RMSE of GeoNet predicted-NO2 varys with different prediction step from t+4h to t+24h, 117 
for different months. 118 
  119 
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 121 
Figure S6. Similar to Fig. S5, but for R2. 122 
  123 
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 125 
Figure S7. Similar to Fig. S5, but for MAE. 126 
  127 
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 129 
Figure S8. Similar to Fig. S5, but for MAPE. 130 
 131 
  132 
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 134 

Figure S9. Time series comparison of daily t+4h prediction of surface NO2 concentration among GeoNet 135 
and CAMS prediction, as well as the CNEMC measurements. These results are shown for one typical site in 136 
(a) Beijing, (b) Shanghai, and (c) Guangzhou, respectively.  137 
  138 
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 140 
Figure S10. The site-specific Pearson’s R2 between the CNEMC measurements and NO2 prediction by (a) 141 
GeoNet, and (b) CAMS over East China. 142 
 143 
 144 
 145 
 146 
 147 
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 150 
Figure S11. Similar to Fig. S10, but for RMSE. 151 
 152 
  153 
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 155 
Figure S12. The comparisons of annual NO2 distribution among GeoNet, CAMS, and CNEMC (top panel), 156 
as well as the tropospheric NO2 column from GEMS and TROPOMI over East China in 2021 (bottom panel). 157 
 158 
 159 


