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Abstract. 20 

Air quality forecasting plays a critical role in mitigating air pollution. However, current 21 

physics-based air pollution predictions encounter challenges in accuracy and spatiotemporal 22 

resolution due to limitations in the understanding of atmospheric physical mechanisms, 23 

observational constraints, and computational capacity. The world’s first geostationary satellite 24 

UV-Vis spectrometer, i.e., the Geostationary Environment Monitoring Spectrometer (GEMS), 25 

offers hourly measurements of atmospheric trace gas pollutants at high spatial resolution over 26 

East Asia. In this study, we successfully incorporate Geostationary satellite observations into 27 

a neural network model (GeoNet) to forecast full-coverage surface nitrogen dioxide (NO2) 28 

concentrations over eastern China at 4-hour intervals for the next 24 hours. GeoNet leverages 29 

spatiotemporal series of satellite NO2 observations to capture the intricate relationships among 30 

air quality, meteorology, and emissions in both temporal and spatial domains. Evaluation 31 

against ground-based measurements demonstrates that GeoNet accurately predicts diurnal 32 

variations and spatial distribution details of next-day NO2 pollution, yielding the coefficient of 33 

determination of 0.68 and root mean square of error of 12.31 μg/m3, significantly surpassing 34 

traditional air quality model forecasts. The model’s interpretability reveals that geostationary 35 

satellite observations notably improve NO2 forecast capability more than other input features, 36 

especially over polluted regions. Our findings demonstrate the significant potential of 37 

geostationary satellite observations in artificial intelligence-based air quality forecasting, with 38 

implications for early warning of air pollution events and human health exposure. 39 

Keywords: air quality forecast; deep learning; health impact; satellite remote sensing; 40 
nitrogen dioxide;  41 
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1 Introduction 42 

Since the industrial revolution, numerous countries worldwide have encountered severe 43 

air pollution issues such as photochemical ozone smog and haze pollution (Hong et al., 2019), 44 

which significantly affect human health, crop yields, and the global environment (Manisalidis 45 

et al., 2020; Sathe et al., 2021; Guarin et al., 2024). Recent studies have shown that both long-46 

term and short-term exposure to air pollutants such as nitrogen dioxide (NO2) can significantly 47 

affect human health, especially the respiratory system (Meng et al., 2021). Accurate and high 48 

spatial resolution predictions of air pollutant concentrations can provide critical information 49 

for sensitive persons to mitigate health risks. Meanwhile, air quality health risk (AQHI) 50 

forecasts and corresponding public response recommendations need to be communicated to the 51 

public promptly through public facilities (Tang et al., 2024; Fino et al., 2021). In recent decades, 52 

the advancement of atmospheric monitoring and modeling has enabled significant progress in 53 

air quality forecasting based on our understanding of atmospheric physics and chemistry 54 

(Peuch et al., 2022). Air pollution forecasting not only facilitates responses to environmental 55 

health risks but also improves the accuracy of climate and weather simulations (Makar et al., 56 

2015). However, due to our still limited understanding of atmospheric mechanisms and 57 

observational and emission constraints, existing air quality forecasts based on physical or 58 

statistical models still face challenges in terms of temporal, spatial, and accuracy aspects 59 

(Campbell et al., 2022; Zhong et al., 2021). 60 

Artificial Intelligence (AI) technology has made breakthroughs in the field of Earth 61 

science (Zhong et al., 2021; Boukabara et al., 2020), particularly excelling in addressing 62 

complex problems that are challenging for traditional physical paradigms to simulate (Irrgang 63 

et al., 2021), such as weather and climate forecasting (Andersson et al., 2021). Concerning 64 

meteorological data, some large-scale deep learning models have surpassed the predictive 65 

capabilities of existing numerical weather models to some extent, examples include Climax 66 
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(Nguyen et al., 2023), Pangu-Weather (Bi et al., 2023), and GraphCast (Lam et al., 2023). 67 

Despite significant progress and impressive performance achieved in meteorological variables 68 

forecasting with AI methods, there are still limitations in predicting atmospheric pollutant 69 

compositions. Compared to meteorological parameters, the prediction of air pollutant 70 

concentrations is affected by synoptic meteorology, chemistry, and anthropogenic emission 71 

activities, usually with more complex driven mechanisms and associated uncertainties. Current 72 

AI-based air quality forecasts often involve time series predictions at a limited number of 73 

observation stations, rather than full-coverage predictions over the entire spatial domain (Du 74 

et al., 2021). This is primarily due to the lack of effective air quality observations with high 75 

temporal and spatial resolution simultaneously. 76 

While past polar-orbiting satellite observations such as the Ozone Monitoring Instrument 77 

(OMI) and the TROPospheric Monitoring Instrument (TROPOMI), have provided extensive 78 

coverage of atmospheric pollutant distributions such as nitrogen dioxide (NO2), sulfate dioxide 79 

(SO2), ozone (O3), and aerosols, they are limited to once-daily overpasses and usually affected 80 

by clouds (Van Geffen et al., 2022; Chan et al., 2023). This frequency usually exceeds the 81 

chemical lifetimes of many reactive gas pollutants like NO2, making it challenging to offer 82 

effective observational constraints for machine learning short-term air quality forecasting 83 

(Shah et al., 2020). However, these observations at a fixed daily overpass time could hardly 84 

support the prediction of atmospheric trace gas concentrations at other times of the day under 85 

different meteorological conditions. In February 2020, the world’s first geostationary satellite 86 

payload for air pollution monitoring, the Geostationary Environment Monitoring Spectrometer 87 

(GEMS), began to provide high-coverage and high-precision air quality observations at an 88 

hourly rate for the East Asian region (Kim et al., 2020). The dynamic processes of air pollutants 89 

including emission, transformation, and transport can be observed by the geostationary satellite 90 

during the daytime. This monitoring capability may advance data-driven air quality forecasting 91 
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such as machine learning techniques by offering unprecedented observational constraints with 92 

high spatial and temporal coverage. Recent observing system simulation experiments (OSSE) 93 

indicate that assimilating trace gas observations by geostationary satellites into chemical 94 

models can effectively improve surface ozone simulations (Shu et al., 2023), nitrogen oxides 95 

(NOx), and emission estimates (Hsu et al., 2024). 96 

Here, based on the unprecedented temporal and spatial resolution and coverage of the 97 

GEMS satellite (Kim et al., 2020), we incorporated Geostationary satellite remote sensing of 98 

tropospheric NO2 column densities (refer to section 4 for details) into a neural Network model 99 

(GeoNet), to forecast full-coverage surface NO2 concentration over the next day from the 100 

current time t (i.e., t+24h). Compared with previous air quality forecasting based on the 101 

simulation of atmospheric physics and chemistry possibly combined with data assimilation 102 

approaches, GeoNet relies solely on geostationary satellite measurements and ancillary 103 

meteorology data. GeoNet effectively addresses the complex nonlinear relationships between 104 

future short-term air quality and current satellite observations, as well as temporally adjacent 105 

meteorological variables (Zhang et al., 2022). The method employs satellite and meteorological 106 

variables within the spatial vicinity of individual air quality monitoring sites as input features, 107 

with site observations serving as labels for model training. The resulting model achieves 108 

accurate and comprehensive air quality predictions across the entire domain over East China, 109 

which is a significant achievement given that past machine learning technologies have relied 110 

on only a few stations or polar-orbiting satellite observations. 111 

2 Materials and Methods 112 

2.1 Geostationary satellite observations of atmospheric NO2 113 

GEMS is the first UV-Vis spectrometer at a geostationary satellite orbit, measuring 114 

atmospheric pollutants such as NO2, SO2, O3, and HCHO over East Asia, at a spatial resolution 115 

of 3.5 km × 7.5 km at nadir and a temporal resolution of 1 hour during the daytime (Kim et al., 116 
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2020). Based on the unique spectral absorption of trace gases, the atmospheric NO2 column 117 

can be retrieved in visible wavelengths from the spectra of back-scattered sunlight. The details 118 

of the GEMS NO2 retrieval can be found in the Algorithm Theoretical Basis Document 119 

(available at https://nesc.nier.go.kr/ko/html/satellite/doc/doc.do, last access: June 1, 2023). In 120 

this study, we used the tropospheric NO2 column from the GEMS NO2 version 2.0 product, as 121 

well as the cloud fraction for each satellite ground pixel. Overall, GEMS NO2 measurements 122 

have a good correlation with ground-based remote sensing instruments, with correlation 123 

coefficients (R) between 0.69-0.81, and root mean square of errors (RMSE) between 3.2-124 

4.9×1015 molecules/cm2 (Kim et al., 2023). Our previous validation results indicated that 125 

GEMS NO2 retrievals generally agreed well with ground-based MAX-DOAS measurements 126 

from 6 sites in China, with correlation coefficients ranging between 0.69-0.92 (Li et al., 2023). 127 

2.2 Ancillary datasets 128 

Other input information including meteorological datasets is necessary to better constrain 129 

the prediction of future NO2 pollution. Here, both the ERA5 meteorology reanalysis (Hersbach 130 

et al., 2020) and the CAMS forecast (Peuch et al., 2022) were used to provide meteorological 131 

parameters such as zonal and meridional wind (U-wind and V-wind), temperature (Temp), 132 

relative humidity (RH), and precipitation (Precip). In addition, the fraction of cloud cover 133 

available from the satellite NO2 datasets was also considered. To fill the missing gaps in the 134 

satellite NO2 measurements, we use both the NO2 concentrations from the WRF-Chem model 135 

(Zhang et al., 2022) and the CAMS forecast of atmospheric composition. Note that the 136 

reanalysis datasets were typically updated with a week delay from real-time, while the forecast 137 

datasets can provide future 7-day meteorology from the current time. Therefore, the latency of 138 

input datasets would affect the operational prediction of the GeoNet model. Surface NO2 139 

measurements were used as the ground-truth label in the model training phase, available from 140 

https://nesc.nier.go.kr/ko/html/satellite/doc/doc.do
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over 1000 national air quality sites by the China National Environmental Monitoring Centre 141 

(CNEMC) (Kong et al., 2021).  142 

The preprocessing steps of model input datasets, including outlier detection, missing value 143 

handling, resampling, and normalization, are described in Supplementary Text S1. 144 

2.3 The GeoNet model 145 

 146 

Figure 1. The framework of predicting surface NO2 map based on Geostationary satellite measurements and 147 
a ConvLSTM neural network model (GeoNet). (a) the structure of the ConvLSTM block; (b) a diagram of 148 
GeoNet model structure with inputs and output; (c) an illustration of the model input parameters including 149 
meteorological variables and hourly NO2 measurements by the Geostationary satellite; (d) the input data 150 
cube of different features for single training batch, which is centered at an air quality site. 151 

Fig. 1 illustrates the structure and methodology of the artificial intelligence air quality 152 

forecasting model established in this study. Given the distinctive nature of spatiotemporal 153 
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sequence data for air quality, predictions must consider not only temporal relationships but also 154 

spatial correlations. The deep learning model employed in this research utilizes convolutional 155 

long short-term memory (ConvLSTM) as its kernel, a variant of the LSTM model designed for 156 

the time series forecasting (Lin et al., 2020). It incorporates a convolutional network structure 157 

to capture spatial features of three-dimensional inputs. Both input-to-state and state-to-state 158 

transitions involve convolutional structures. ConvLSTM determines the future state of a unit 159 

within a grid based on inputs from its local neighbors and past states, allowing it to effectively 160 

model the spatiotemporal dynamics of air quality. The ConvLSTM kernel structure employed 161 

in training is illustrated in Fig. 5a. Here, 𝑋! represents the input at time t, 𝐻! and 𝐻!"# denote 162 

the outputs at times t and t-1, and 𝐶!  and 𝐶!"#  represent the states at times t and t-1. The 163 

computational process is as follows: 164 

𝑖! = σ(𝑋! ∗ 𝑤$% + 𝐻!"# ∗ 𝑤&% + 𝑏%)      (1) 165 

𝑓! = σ.𝑋! ∗ 𝑤$' + 𝐻!"# ∗ 𝑤&' + 𝑏'/    (2) 166 

𝑜! = σ(𝑋! ∗ 𝑤$( + 𝐻!"# ∗ 𝑤&( + 𝑏()      (3) 167 

𝑔! = 𝑡𝑎𝑛ℎ.𝑋! ∗ 𝑤$) + 𝐻!"# ∗ 𝑤&) + 𝑏)/     (4) 168 

𝐶! = 𝑓! × 𝐶!"# + 𝑖! × 𝑔!     (5) 169 

𝐻! = 𝑜! × 𝑡𝑎𝑛ℎ(𝐶!)      (6) 170 

Where the asterisk (∗) represents the convolution operator, 𝑤 is the convolution kernel, 𝑏 is the 171 

offset, 𝑡𝑎𝑛ℎ is the hyperbolic tangent function, and σ is the activation function of Sigmoid. 172 

The model primarily consists of three components: an encoder, a decoder, and fully 173 

connected layers. Tropospheric NO2 observations from the GEMS satellite for different 174 

consecutive hours within a day, along with corresponding meteorological forecast field data, 175 

serve as input features for model training. The encoder processes the spatiotemporal sequences 176 

of input features for the preceding 8 hours (t-7h, t-6h, …, t), which are then decoded by the 177 

decoder. The final output, representing NO2 concentrations at 4-hour intervals for the next 24 178 
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hours (t+4h, t+8h, t+12h,…, t+24h), is produced through fully connected layers. The loss 179 

function of mean squared error (MSE) is calculated by comparing the model output with the 180 

actual values from station observations, and the model undergoes iterative training. In the 181 

training task for a single station sample, the model utilizes continuous and distinct hourly 182 

dynamic images of all variables within the spatiotemporal vicinity of the station as input (see 183 

Fig. 1c-d). This effectively considers the intricate correlations in time and space between air 184 

quality, satellite observations, and meteorological input features. We train the GeoNet model 185 

with input features during the whole year of 2021. The training datasets were randomly selected 186 

from 75% of the whole samples, while the remaining 25% were used as validation sets. 187 

2.4 The model configuration and optimization 188 

The model configurations and hyperparameters such as the optimizer, loss function, L1 or 189 

L2 regularization, dropout, training steps, and epochs can make a difference to the model 190 

performance including the prediction accuracy and generalizability. The performance metrics 191 

such as the coefficient of determination (R2), root mean square of error (RMSE), mean absolute 192 

error (MAE), and mean absolute percentage error (MAPE), were used to diagnose the model 193 

(see definition in Supplementary Text S2). Thus, several scenarios of model hyperparameters 194 

have been tested during the model training phase. The model accuracy on validation datasets 195 

and the learning rate curve were used to diagnose the model hyperparameters. The model 196 

parameters mainly include the number of layers and the dimensions of the hidden layers, both 197 

control the model’s capacity. If the model capacity is relatively small, underfitting may occur; 198 

overfitting may exist if it is too large. Therefore, selecting an appropriate model capacity is 199 

crucial for improving model performance. During the pre-training process, the model is trained 200 

by combining different numbers of layers and dimensions of the hidden layers. The Mean 201 

Squared Error (MSE) Loss is recorded for each training iteration, and a heatmap is generated 202 

as shown in Fig. S2. From the heatmap, it can be observed that when the number of layers is 2 203 
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and the dimension of the hidden layer is 256, the model achieves the minimum MSE Loss. Fig. 204 

S3 shows the sensitivity test results of model loss varying with different batch size settings, 205 

indicating that a batch size of 64 is optimal. Based on the model's MSE loss under different 206 

hyperparameter configurations, the best-fitting model can be selected. 207 

The Adam optimization algorithm controls the learning rate, which can design 208 

independent adaptive learning rates for different parameters. The three initialization parameters 209 

𝜖, 𝜌1, and 𝜌2 of the Adam algorithm are set to be 0.0001, 0.9, and 0.99, respectively. For the 210 

epoch, its size is controlled by the early stop method. The early stop method monitors the 211 

change of the model’s loss function on the validation set during the training process and stops 212 

the model training immediately when the validation loss of the model starts to become larger. 213 

Due to the fluctuation of the loss function, a threshold 𝑝 is set for the early stopping method in 214 

practice, and when the validation loss of the model becomes large for 𝑝 consecutive epochs, 215 

the model is rolled back to the lowest validation loss and the training is stopped, and the 216 

threshold 𝑝 is set to 10 in this paper. Fig. S4 shows a typical learning curve of the MSE loss in 217 

training and validation data sets for different learning steps in training an optimal model. Such 218 

diagnostics can be used to avoid the model overfitting. 219 

2.5 The importance of the model input feature 220 

Permutation feature importance is a technique used to assess the significance of each input 221 

feature in a machine-learning model (Altmann et al., 2010). The core idea is to evaluate the 222 

impact of each feature on model performance by randomly shuffling its values and observing 223 

the resulting change in the model’s accuracy. In this study, for each input feature of the GeoNet, 224 

we iteratively shuffle its value independently while keeping other features unchanged, and then 225 

observe the model prediction on the modified input. The difference in the model prediction 226 

performance between using the original and shuffling input quantifies the feature’s importance. 227 

Here, we measure the relative importance of each input feature using the metric of 1-R2, due 228 
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to its good standardized and indicative ability (Zhang et al., 2022). Generally, a larger 229 

performance drop indicates greater importance, as the model heavily relies on that feature for 230 

predictions. Conversely, smaller drops or increases suggest the feature may be less crucial or 231 

redundant. By permuting the input feature array based on the different spatial and temporal 232 

domains, we can gain a deeper understanding of how feature importance varies spatially and 233 

temporally. For example, the relative importance of one meteorology variable may vary with 234 

different diurnal, weekly, and monthly cycles, revealing the variability of its impact on the 235 

predicted NO2 levels. 236 

3 Results and Discussion 237 

3.1 Model performance  238 

Based on the GeoNet model and necessary input data (refer to section 2), we have 239 

achieved preliminary predictions of near-surface NO2 concentration with full spatial coverage 240 

and a spatial resolution of 0.1 degrees over eastern China, at four-hour intervals over the next 241 

24 hours. In this study, we first tested the impact of using reanalysis and forecast meteorology 242 

datasets and filling in missing values in satellite observation data on the model predictions. The 243 

reanalysis datasets usually have higher precision than the forecast. Previous studies revealed 244 

that the accuracy of the information on meteorology and chemical composition significantly 245 

affects the performance of machine learning models in estimating air pollutant concentrations 246 

(Zuo et al., 2023; Wang et al., 2024). Due to the shielding effect of clouds, a considerable 247 

proportion of missing values may even exist in satellite NO2 observations. Recent air quality 248 

big-data research usually requires the gap-filling of missing satellite data before inputting it 249 

into the machine learning model, either by spatial interpolation or regression techniques (Kim 250 

et al., 2021). We tested three methods for handling missing data, such as setting them to a fill 251 

value of zero, or replacing them by real-time CAMS simulated NO2, or WRF-Chem simulated 252 

NO2 results (not real-time, but with higher precision).  253 



 
 

12 

The comparison results to the validation datasets indicate that the scenario using CAMS 254 

meteorology datasets and replacing missing satellite NO2 data with fill-values (Fig. 2c), 255 

corresponds to a modest NO2 prediction performance with R2=0.68 and RMSE=12.26 μg/m3. 256 

In contrast, the configuration scenario using ERA-5 reanalysis meteorology and imputing with 257 

WRF-Chem simulations (Fig. 2a), corresponds to the best prediction performance of R2=0.69 258 

and RMSE=11.88 μg/m3. This may indicate that the importance of satellite missing data 259 

imputation may be diminished by cloud mask inputs, especially since the model can extract 260 

informative features from spatial and temporal neighboring inputs. To compromise between 261 

the performance of real-time and accuracy, we selected the configuration scenario of using 262 

CAMS meteorology and imputing with CAMS NO2 (Fig. 2d) for subsequent discussion and 263 

operational forecasting, with an R2=0.68 and RMSE=12.31 μg/m3. In summary, the use of 264 

higher-precision meteorology and filling missing NO2 data enhances the model’s prediction 265 

accuracy on the validation dataset, but to a rather limited extent. This suggests that, unlike 266 

previous machine learning techniques, GeoNet can effectively adapt to three-dimensional 267 

inputs of varying accuracy and type, fully explore the spatiotemporal correlation of data 268 

features, and demonstrate strong model generalization capabilities. 269 

 270 
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Figure 2. The GeoNet prediction performance of the surface NO2 concentration compared to the validation 271 
samples, based on different input datasets of meteorology and atmospheric composition: (a) use ERA5 272 
meteorology and fill satellite measurement gaps with WRF-Chem simulated NO2; (b) use ERA5 273 
meteorology and NO2 fill-value of zero for over gaps; (c) use CAMS meteorology and NO2 fill-value of zero 274 
for gaps; (d) use CAMS meteorology and CAMS NO2. The left plot shows the scatter comparisons between 275 
GeoNet predictions and site observations, while the right plot shows the bias distribution between the two. 276 

Figs. S5-S8 provide an overview of the major metrics (e.g., R2, RMSE, MAE, and MPE) 277 

of GeoNet prediction performance varying with prediction hours from t+4h to t+24h in 278 

different months. The results indicate that the model exhibits a higher correlation in NO2 279 

forecast during the spring and winter seasons compared to the summer, while the RMSE errors 280 

show the opposite trend. This could be attributed to much higher NO2 pollution levels in winter 281 

months. Additionally, GeoNet’s NO2 prediction errors gradually increase during the next 24 282 

hours, particularly after t+20h. This is primarily due to the short lifetime of atmospheric NO2, 283 

leading to a diminishing constraint from historical observational data on future NO2 predictions. 284 

Similar phenomena are also observed in machine learning or model-assisted weather forecasts 285 

(Andersson et al., 2021). 286 

To assess the GeoNet model’s performance for short-term pollution events, we compared 287 

it with near-surface NO2 from CAMS forecasts, and in situ observations from CNEMC ground 288 

stations. Fig. S9 illustrates the daily time series of t+4h NO2 from GeoNet, CAMS, and 289 

CNEMC for three typical sites in Beijing, Shanghai, and Guangzhou in 2021. As shown from 290 

the plot, NO2 predictions by both GeoNet and CAMS generally agreed with the variation trends 291 

of CNEMC measurement. However, CAMS forecasts systematically overestimate the surface 292 

NO2 concentration by 100%, possibly resulting from the biases in the NOx emission inventory 293 

(Douros et al., 2023). Compared to CAMS, the GeoNet prediction closely aligns with the 294 

ground-truth observations at CNEMC sites over eastern China, with an overall R2 > 0.5 and 295 

mean bias < 5 μg/m3 for polluted regions (see Fig. S10 and S11, respectively). 296 

3.2 Main factors in NO2 forecast and their implications 297 
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Previous physics-based numeric models of air quality prediction, e.g., the CAMS global 298 

forecast model and the regional WRF-CMAQ model (Liu et al., 2023; Kumar et al., 2021; 299 

Kuhn et al., 2024), can simulate the atmospheric physical and chemical processes (such as 300 

advection, diffusion, deposition, and chemical reactions) by solving the atmospheric equations. 301 

Recent data assimilation techniques further take real-time monitoring data from satellite and 302 

ground-based platforms as model constraints to better predict air quality variables (Inness et 303 

al., 2022). Compared with physics-based models, “black-box” models such as the deep learning 304 

technique usually lack interpretability and explainability (Zhang and Zhu, 2018). This hinders 305 

the understanding and implications for predicting air quality variables such as NO2. Here, we 306 

measure the relative importance of each input feature on the NO2 forecast accuracy, by 307 

iteratively permuting the input array and observing its influences on the model prediction.  308 

 309 
Figure 3. (a) The overall relative importance of different input features such as wind, surface pressure, 310 
satellite NO2, and cloud mask, in GeoNet NO2 forecast, varying with different hour steps from t+4h to t+24h. 311 
(b) The spatial distribution of the relative importance of satellite NO2 measurements in the GeoNet NO2 312 
forecast in 2021. 313 

Fig. 3a presents the relative importance (1-R2) of different input features varying with 314 

prediction hour steps from t+4h to t+24h. The geostationary satellite NO2 measurements play 315 
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the highest role in predicting surface NO2 levels of the next day, although it degrades after t+8h. 316 

Other meteorological input features also show a major impact on NO2 prediction performance. 317 

The significance of the different input variables remained generally consistent across seasons, 318 

with minor variations (as shown in Fig. S12). By permutating the input array for each ground 319 

pixel, Fig. 3b derived the spatial distribution of the relative importance of geostationary satellite 320 

NO2 in the predicting performance. Overall, satellite NO2 has a higher impact in densely 321 

populated areas experiencing severe air pollution, such as the Pearl River Delta, Yangtze River 322 

Delta, and Jianghuai Plain, than in western China. Such results highlight the underappreciated 323 

role of satellite NO2 measurements with high spatial and temporal coverage in air pollution 324 

forecasts. 325 

3.3 NO2 pollution episodes and health exposure forecast 326 

 327 
Figure 4. The comparisons of annual surface NO2 concentrations from GeoNet, CAMS, and CNEMC, 328 
respectively, (in the top panel), as well as the tropospheric NO2 column observations from GEMS and 329 
TROPOMI over East China in 2021 (in the bottom panel). 330 

Beyond its prediction accuracy, GeoNet exhibits a pronounced advantage in spatial 331 

coverage and resolution, allowing for capturing finer-scale details in the pollutant distribution. 332 
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Illustrated in Fig. 4, GeoNet demonstrates remarkable performance in predicting spatial 333 

nuances of NO2 pollution, particularly when contrasted with ground-based and satellite 334 

observations. During a typical winter NO2 pollution event (as shown in Fig. 5), GeoNet 335 

accurately simulates a significant decrease in concentrations at 11:00 and 15:00, probably led 336 

by intense photochemical activity in the daytime, coincident with ground-based observations. 337 

It also outperforms CAMS in predicting NO2 variations throughout the day. The GeoNet model 338 

also retains the distributional differences in NO2 concentrations between urban and rural areas, 339 

consistent with emission source characteristics and satellite observations. The suboptimal 340 

performance of CAMS predictions can be attributed to insufficient observational constraints 341 

and the use of outdated emission inventories (Douros et al., 2023). In the European region, the 342 

assimilation of TROPOMI observations into CAMS forecasts significantly improves the 343 

simulation accuracy of near-surface NO2 concentrations and tropospheric column densities 344 

(Inness et al., 2019). Neural network methods, similar to GeoNet, could be used to correct and 345 

downscale forecast results by existing models (Baghanam et al., 2024). This approach holds 346 

promise for achieving operational air quality forecasts that balance efficiency and accuracy. 347 

 348 
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Figure 5. The spatial distribution comparisons of surface NO2 concentration between (a) GeoNet prediction 349 
at the original resolution of 0.1°, (b) GeoNet prediction resampled to the CAMS resolution of 0.4°, (c) CAMS 350 
prediction, and (d) ground-based CNEMC site measurements. Note that the results are presented for different 351 
continuing local hours (labeled text in the subplot) on 23 November 2021. 352 

In this study, we used a simplified linearized risk model for the short-term NO2 exposure 353 

(Meng et al., 2021; Zhang et al., 2022) to calculate the distribution of all-cause mortality risks 354 

based on GeoNet NO2 predictions (see Fig. 6). Short-term NO2 exposure leads to remarkable 355 

regional differences in all-cause mortality, which are mainly concentrated in highly polluted 356 

and densely populated urban areas. For both urban and suburban locations in Beijing (see Fig. 357 

6c-d), GeoNet-based NO2 pollution exposure predictions are more consistent with actual in situ 358 

observations than the CAMS forecasts. Current air quality health indices forecasting based on 359 

limited station data has significant gaps, making it difficult to meet the refined needs for 360 

different populations in urban, suburban, and rural areas. Integrating GeoNet forecasts based 361 

on hourly geostationary satellite observations can support spatially comprehensive and fine-362 

scale air quality health risk prediction. This, in turn, guides managing the risks of air pollution 363 

exposure-related diseases in sensitive populations and communities. 364 

 365 
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Figure 6. Mortality risk of short-term NO2 exposure based on the GeoNet prediction on November 23, 2021. 366 
(a) mean mortality due to the predicted NO2 exposure in East China; (b) a zoom-in map over Beijing and its 367 
neighboring area; (c) and (d) are comparisons of mortality estimation over the Beijing urban and rural 368 
regions (the rectangle areas presented in b), respectively, based on different NO2 exposure prediction among 369 
GeoNet, CAMS, and CNEMC. 370 
4 Conclusion 371 

The GeoNet model utilizes the unprecedented hourly air quality observations from 372 

geostationary satellites and resolves nonlinear associations in spatiotemporal proximity across 373 

multiple data sources. It achieves seamless short-term regional air quality predictions, 374 

exhibiting significant performance advantages over existing machine-learning air quality 375 

prediction models. To strike a balance between real-time and accuracy requirements, we 376 

evaluated the impact of using reanalysis- and forecast-based meteorology datasets, as well as 377 

imputing the missing values of satellite NO2. The findings reveal that the GeoNet model 378 

demonstrates robust generalization across diverse datasets, with minimal fluctuations in 379 

prediction performance. Overall, the model achieves an RMSE of 12.31 μg/m3 and an R2 of 380 

0.68 in predicting NO2 concentrations every 4 hours for the next 24 hours. However, validation 381 

accuracy notably diminishes after t+16h within the next 24 hours, with stronger predictive 382 

correlations observed in seasons characterized by severe pollution, such as spring and winter, 383 

compared to summer. The variation of the model forecasting performance also shows that 384 

accurate prediction for longer time windows and heavy pollution events is still a major 385 

difficulty. This may be due to the high level of uncertainty in emissions and meteorology. In 386 

the future, a combination of higher resolution and more accurate multi-source data constraints, 387 

as well as machine learning models coupled with atmospheric physical mechanisms, may be 388 

needed to improve the existing forecasts. 389 

Compared to traditional chemical model forecasts and data assimilation predictions, the 390 

GeoNet model handles various data sources, including meteorological simulations and air 391 

quality observations, and more accurately captures spatial intricacies of air pollution evolution. 392 
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The GeoNet framework elucidated in this study forecasts short-term near-surface NO2 393 

concentrations and demonstrates transferable learning potentials for predicting other pollutants. 394 

This work also has important implications for the prediction of near-surface O3 and particulate 395 

matter. For example, the integration of using vertical O3 profiles from the GEMS satellite, in 396 

particular near-surface layer concentrations, and their joint observations of important O3 397 

precursors including NO2 and HCHO, is expected to significantly improve the uncertainty of 398 

existing estimates of near-surface air pollution. This study underscores the pivotal role of next-399 

generation stationary satellite observations of air pollution constituents in air quality 400 

forecasting, with the potential to advance operational air quality forecasting and mitigate 401 

associated health risks by integrating machine learning technologies. 402 

  403 
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