
 
 

1 

Unleashing the Potential of Geostationary Satellite Observations in Air 1 

Quality Forecasting Through Artificial Intelligence Techniques 2 

Chengxin Zhang1, Xinhan Niu1, Hongyu Wu2, Zhipeng Ding2, Ka Lok Chan3, Jhoon Kim4, 3 

Thomas Wagner5, Cheng Liu1,6,7* 4 
1Department of Precision Machinery and Precision Instrumentation, University of Science and 5 
Technology of China, Hefei, 230026, China 6 
2School of Environmental Science and Optoelectronic Technology, University of Science and 7 
Technology of China, Hefei, 230026, China 8 
3Rutherford Appleton Laboratory Space, Harwell Oxford, United Kingdom 9 
4Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea 10 
5Satellite Remote Sensing Group, Max Planck Institute for Chemistry, Mainz, Germany 11 
6Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine 12 
Mechanics, Chinese Academy of Sciences, Hefei, 230031, China 13 
7Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, 14 
University of Science and Technology of China, Hefei, 230026, China 15 
 16 
*Correspondence: Cheng Liu (chliu81@ustc.edu.cn) 17 

 18 

  19 

mailto:chliu81@ustc.edu.cn


 
 

2 

Abstract. 20 

Air quality forecasting plays a critical role in mitigating air pollution. However, current 21 

physics-based air pollution predictions encounter challenges in accuracy and spatiotemporal 22 

resolution due to limitations in the understanding of atmospheric physical mechanisms, 23 

observational constraints, and computational capacity. The world’s first geostationary satellite 24 

UV-Vis spectrometer, i.e., the Geostationary Environment Monitoring Spectrometer (GEMS), 25 

offers hourly measurements of atmospheric trace gas pollutants at high spatial resolution over 26 

East Asia. In this study, we successfully incorporate Geostationary satellite observations into 27 

a neural network model (GeoNet) to forecast full-coverage surface nitrogen dioxide (NO2) 28 

concentrations over eastern China at 4-hour intervals for the next 24 hours. GeoNet leverages 29 

spatiotemporal series of satellite NO2 observations to capture the intricate relationships among 30 

air quality, meteorology, and emissions in both temporal and spatial domains. Evaluation 31 

against ground-based measurements demonstrates that GeoNet accurately predicts diurnal 32 

variations and spatial distribution details of next-day NO2 pollution, yielding the coefficient of 33 

determination of 0.68 and root mean square of error of 12.31 μg/m3, significantly surpassing 34 

traditional air quality model forecasts. The model’s interpretability reveals that geostationary 35 

satellite observations notably improve NO2 forecast capability more than other input features, 36 

especially over polluted regions. Our findings demonstrate the significant potential of 37 

geostationary satellite observations in artificial intelligence-based air quality forecasting, with 38 

implications for early warning of air pollution events and human health exposure. 39 

Keywords: air quality forecast; deep learning; health impact; satellite remote sensing; 40 
nitrogen dioxide;  41 
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1 Introduction 42 

Since the industrial revolution, numerous countries worldwide have encountered severe 43 

air pollution issues such as photochemical ozone smog and haze pollution (Hong et al., 2019), 44 

which significantly affect human health, crop yields, and the global environment (Guarin et al., 45 

2024; Manisalidis et al., 2020; Sathe et al., 2021). Recent studies have shown that both long-46 

term and short-term exposure to air pollutants such as nitrogen dioxide (NO2) can significantly 47 

affect human health, especially the respiratory system (Meng et al., 2021). Accurate and high 48 

spatial resolution predictions of air pollutant concentrations can provide critical information 49 

for sensitive persons to mitigate health risks. Meanwhile, air quality health risk (AQHI) 50 

forecasts and corresponding public response recommendations need to be communicated to the 51 

public promptly through public facilities (Fino et al., 2021; Tang et al., 2024). In recent decades, 52 

the advancement of atmospheric monitoring and modeling has enabled significant progress in 53 

air quality forecasting based on our understanding of atmospheric physics and chemistry 54 

(Peuch et al., 2022). Air pollution forecasting not only facilitates responses to environmental 55 

health risks but also improves the accuracy of climate and weather simulations (Makar et al., 56 

2015). However, due to our still limited understanding of atmospheric mechanisms and 57 

observational and emission constraints, existing air quality forecasts based on physical or 58 

statistical models still face challenges in terms of temporal, spatial, and accuracy aspects 59 

(Campbell et al., 2022; Zhong et al., 2021). 60 

Artificial Intelligence (AI) technology has made breakthroughs in the field of Earth 61 

science (Boukabara et al., 2020; Zhong et al., 2021), particularly excelling in addressing 62 

complex problems that are challenging for traditional physical paradigms to simulate (Irrgang 63 

et al., 2021), such as weather and climate forecasting (Andersson et al., 2021). Concerning 64 

meteorological data, some large-scale deep learning models have surpassed the predictive 65 

capabilities of existing numerical weather models to some extent, examples include Climax 66 

Deleted:  limited67 



 
 

4 

(Nguyen et al., 2023), Pangu-Weather (Bi et al., 2023), and GraphCast (Lam et al., 2023). 68 

Despite significant progress and impressive performance achieved in meteorological variables 69 

forecasting with AI methods, there are still limitations in predicting atmospheric pollutant 70 

compositions. Compared to meteorological parameters, the prediction of air pollutant 71 

concentrations is affected by synoptic meteorology, chemistry, and anthropogenic emission 72 

activities, usually with more complex driven mechanisms and associated uncertainties. Current 73 

AI-based air quality forecasts often involve time series predictions at a limited number of 74 

observation stations, rather than full-coverage predictions over the entire spatial domain (Du 75 

et al., 2021). This is primarily due to the lack of effective air quality observations with high 76 

temporal and spatial resolution simultaneously. 77 

While past polar-orbiting satellite observations such as the Ozone Monitoring Instrument 78 

(OMI) and the TROPospheric Monitoring Instrument (TROPOMI), have provided extensive 79 

coverage of atmospheric pollutant distributions such as nitrogen dioxide (NO2), sulfate dioxide 80 

(SO2), ozone (O3), and aerosols, they are limited to once-daily overpasses and usually affected 81 

by clouds (Chan et al., 2023; Van Geffen et al., 2022). This frequency usually exceeds the 82 

chemical lifetimes of many reactive gas pollutants like NO2, making it challenging to offer 83 

effective observational constraints for machine learning short-term air quality forecasting 84 

(Shah et al., 2020). However, these observations at a fixed daily overpass time could hardly 85 

support the prediction of atmospheric trace gas concentrations at other times of the day under 86 

different meteorological conditions. In February 2020, the world’s first geostationary satellite 87 

payload for air pollution monitoring, the Geostationary Environment Monitoring Spectrometer 88 

(GEMS), began to provide high-coverage and high-precision air quality observations at an 89 

hourly rate for the East Asian region (J. Kim et al., 2020). The dynamic processes of air 90 

pollutants including emission, transformation, and transport can be observed by the 91 

geostationary satellite during the daytime. This monitoring capability may advance data-driven 92 



 
 

5 

air quality forecasting such as machine learning techniques by offering unprecedented 93 

observational constraints with high spatial and temporal coverage. Recent observing system 94 

simulation experiments (OSSE) indicate that assimilating trace gas observations by 95 

geostationary satellites into chemical models can effectively improve surface ozone 96 

simulations (Shu et al., 2023), nitrogen oxides (NOx), and emission estimates (Hsu et al., 2024). 97 

Here, based on the unprecedented temporal and spatial resolution and coverage of the 98 

GEMS satellite (J. Kim et al., 2020), we incorporated Geostationary satellite remote sensing of 99 

tropospheric NO2 column densities (refer to section 4 for details) into a neural Network model 100 

(GeoNet), to forecast full-coverage surface NO2 concentration over the next day from the 101 

current time t (i.e., t+24h). Compared with previous air quality forecasting based on the 102 

simulation of atmospheric physics and chemistry possibly combined with data assimilation 103 

approaches, GeoNet relies solely on geostationary satellite measurements and ancillary 104 

meteorology data. GeoNet effectively addresses the complex nonlinear relationships between 105 

future short-term air quality and current satellite observations, as well as temporally adjacent 106 

meteorological variables (C. Zhang et al., 2022). The method employs satellite and 107 

meteorological variables within the spatial vicinity of individual air quality monitoring sites as 108 

input features, with site observations serving as labels for model training. The resulting model 109 

achieves accurate and comprehensive air quality predictions across the entire domain over East 110 

China, which is a significant achievement given that past machine learning technologies have 111 

relied on only a few stations or polar-orbiting satellite observations. 112 

2 Materials and Methods 113 

2.1 Geostationary satellite observations of atmospheric NO2 114 

GEMS is the first UV-Vis spectrometer at a geostationary satellite orbit, measuring 115 

atmospheric pollutants such as NO2, SO2, O3, and HCHO over East Asia, at a spatial resolution 116 

of 3.5 km × 7.5 km at nadir and a temporal resolution of 1 hour during the daytime (J. Kim et 117 
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al., 2020). Based on the unique spectral absorption of trace gases, the atmospheric NO2 column 118 

can be retrieved in visible wavelengths from the spectra of back-scattered sunlight. The details 119 

of the GEMS NO2 retrieval can be found in the Algorithm Theoretical Basis Document 120 

(available at https://nesc.nier.go.kr/ko/html/satellite/doc/doc.do, last access: June 1, 2023). In 121 

this study, we used the tropospheric NO2 column from the GEMS NO2 version 2.0 product, as 122 

well as the cloud fraction for each satellite ground pixel. Overall, GEMS NO2 measurements 123 

have a good correlation with ground-based remote sensing instruments, with correlation 124 

coefficients (R) between 0.69-0.81, and root mean square of errors (RMSE) between 3.2-125 

4.9×1015 molecules/cm2 (S. Kim et al., 2023). Our previous validation results indicated that 126 

GEMS NO2 retrievals generally agreed well with ground-based MAX-DOAS measurements 127 

from 6 sites in China, with correlation coefficients ranging between 0.69-0.92 (Li et al., 2023). 128 

2.2 Ancillary datasets 129 

Other input information including meteorological datasets is necessary to better constrain 130 

the prediction of future NO2 pollution. Here, both the ERA5 meteorology reanalysis (Hersbach 131 

et al., 2020) and the CAMS forecast (Peuch et al., 2022) were used to provide meteorological 132 

parameters such as zonal and meridional wind (U-wind and V-wind), temperature (Temp), 133 

relative humidity (RH), and precipitation (Precip). In addition, the fraction of cloud cover 134 

available from the satellite NO2 datasets was also considered. To fill the missing gaps in the 135 

satellite NO2 measurements, we use both the NO2 concentrations from the WRF-Chem model 136 

(C. Zhang et al., 2022) and the CAMS forecast of atmospheric composition. Note that the 137 

reanalysis datasets were typically updated with a week delay from real-time, while the forecast 138 

datasets can provide future 7-day meteorology from the current time. Therefore, the latency of 139 

input datasets would affect the operational prediction of the GeoNet model. Surface NO2 140 

measurements were used as the ground-truth label in the model training phase, available from 141 

https://nesc.nier.go.kr/ko/html/satellite/doc/doc.do
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over 1000 national air quality sites by the China National Environmental Monitoring Centre 142 

(CNEMC) (Kong et al., 2021).  143 

The preprocessing steps of model input datasets, including outlier detection, missing value 144 

handling, resampling, and normalization, are described in Supplementary Text S1. 145 

2.3 The GeoNet model 146 

 147 

Figure 1. The framework of predicting surface NO2 map based on Geostationary satellite measurements and 148 
a ConvLSTM neural network model (GeoNet). (a) the structure of the ConvLSTM block; (b) a diagram of 149 
GeoNet model structure with inputs and output; (c) an illustration of the model input parameters including 150 
meteorological variables and hourly NO2 measurements by the Geostationary satellite; (d) the input data 151 
cube of different features for single training batch, which is centered at an air quality site. 152 

Fig. 1 illustrates the structure and methodology of the artificial intelligence air quality 153 

forecasting model established in this study. Given the distinctive nature of spatiotemporal 154 
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sequence data for air quality, predictions must consider not only temporal relationships but also 156 

spatial correlations. The deep learning model employed in this research utilizes convolutional 157 

long short-term memory (ConvLSTM) as its kernel, a variant of the LSTM model designed for 158 

the time series forecasting (Lin et al., 2020). It incorporates a convolutional network structure 159 

to capture spatial features of three-dimensional inputs. Both input-to-state and state-to-state 160 

transitions involve convolutional structures. ConvLSTM determines the future state of a unit 161 

within a grid based on inputs from its local neighbors and past states, allowing it to effectively 162 

model the spatiotemporal dynamics of air quality. The ConvLSTM kernel structure employed 163 

in training is illustrated in Fig. 5a. Here, 𝑋! represents the input at time t, 𝐻! and 𝐻!"# denote 164 

the outputs at times t and t-1, and 𝐶!  and 𝐶!"#  represent the states at times t and t-1. The 165 

computational process is as follows: 166 

𝑖! = σ(𝑋! ∗ 𝑤$% + 𝐻!"# ∗ 𝑤&% + 𝑏%)      (1) 167 

𝑓! = σ.𝑋! ∗ 𝑤$' + 𝐻!"# ∗ 𝑤&' + 𝑏'/    (2) 168 

𝑜! = σ(𝑋! ∗ 𝑤$( + 𝐻!"# ∗ 𝑤&( + 𝑏()      (3) 169 

𝑔! = 𝑡𝑎𝑛ℎ.𝑋! ∗ 𝑤$) + 𝐻!"# ∗ 𝑤&) + 𝑏)/     (4) 170 

𝐶! = 𝑓! × 𝐶!"# + 𝑖! × 𝑔!     (5) 171 

𝐻! = 𝑜! × 𝑡𝑎𝑛ℎ(𝐶!)      (6) 172 

Where the asterisk (∗) represents the convolution operator, 𝑤 is the convolution kernel, 𝑏 is the 173 

offset, 𝑡𝑎𝑛ℎ is the hyperbolic tangent function, and σ is the activation function of Sigmoid. 174 

The model primarily consists of three components: an encoder, a decoder, and fully 175 

connected layers. Tropospheric NO2 observations from the GEMS satellite for different 176 

consecutive hours within a day, along with corresponding meteorological forecast field data, 177 

serve as input features for model training. The encoder processes the spatiotemporal sequences 178 

of input features for the preceding 8 hours (t-7h, t-6h, …, t), which are then decoded by the 179 

decoder. The final output, representing NO2 concentrations at 4-hour intervals for the next 24 180 
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hours (t+4h, t+8h, t+12h,…, t+24h), is produced through fully connected layers. The loss 181 

function of mean squared error (MSE) is calculated by comparing the model output with the 182 

actual values from station observations, and the model undergoes iterative training. In the 183 

training task for a single station sample, the model utilizes continuous and distinct hourly 184 

dynamic images of all variables within the spatiotemporal vicinity of the station as input (see 185 

Fig. 1c-d). This effectively considers the intricate correlations in time and space between air 186 

quality, satellite observations, and meteorological input features. We train the GeoNet model 187 

with input features during the whole year of 2021. The training datasets were randomly selected 188 

from 75% of the whole samples, while the remaining 25% were used as validation sets. 189 

2.4 The model configuration and optimization 190 

The model configurations and hyperparameters such as the optimizer, loss function, L1 or 191 

L2 regularization, dropout, training steps, and epochs can make a difference to the model 192 

performance including the prediction accuracy and generalizability. The performance metrics 193 

such as the coefficient of determination (R2), root mean square of error (RMSE), mean absolute 194 

error (MAE), and mean absolute percentage error (MAPE), were used to diagnose the model 195 

(see definition in Supplementary Text S2). Thus, several scenarios of model hyperparameters 196 

have been tested during the model training phase. The model accuracy on validation datasets 197 

and the learning rate curve were used to diagnose the model hyperparameters. The model 198 

parameters mainly include the number of layers and the dimensions of the hidden layers, both 199 

control the model’s capacity. If the model capacity is relatively small, underfitting may occur; 200 

overfitting may exist if it is too large. Therefore, selecting an appropriate model capacity is 201 

crucial for improving model performance. During the pre-training process, the model is trained 202 

by combining different numbers of layers and dimensions of the hidden layers. The Mean 203 

Squared Error (MSE) Loss is recorded for each training iteration, and a heatmap is generated 204 

as shown in Fig. S2. From the heatmap, it can be observed that when the number of layers is 2 205 

Moved down [1]: The performance metrics such as the coefficient 206 
of determination (R2), root mean square of error (RMSE), mean 207 
absolute error (MAE), and mean absolute percentage error (MAPE), 208 
were used to diagnose the model (see definition in Supplementary 209 
Text S2). T210 
Deleted: The model configuration and optimization are also 211 
described in detail in Supplementary Text S2212 
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and the dimension of the hidden layer is 256, the model achieves the minimum MSE Loss. Fig. 214 

S3 shows the sensitivity test results of model loss varying with different batch size settings, 215 

indicating that a batch size of 64 is optimal. Based on the model's MSE loss under different 216 

hyperparameter configurations, the best-fitting model can be selected. 217 

The Adam optimization algorithm controls the learning rate, which can design 218 

independent adaptive learning rates for different parameters. The three initialization parameters 219 

𝜖, 𝜌1, and 𝜌2 of the Adam algorithm are set to be 0.0001, 0.9, and 0.99, respectively. For the 220 

epoch, its size is controlled by the early stop method. The early stop method monitors the 221 

change of the model’s loss function on the validation set during the training process and stops 222 

the model training immediately when the validation loss of the model starts to become larger. 223 

Due to the fluctuation of the loss function, a threshold 𝑝 is set for the early stopping method in 224 

practice, and when the validation loss of the model becomes large for 𝑝 consecutive epochs, 225 

the model is rolled back to the lowest validation loss and the training is stopped, and the 226 

threshold 𝑝 is set to 10 in this paper. Fig. S4 shows a typical learning curve of the MSE loss in 227 

training and validation data sets for different learning steps in training an optimal model. Such 228 

diagnostics can be used to avoid the model overfitting. 229 

2.5 The importance of the model input feature 230 

Permutation feature importance is a technique used to assess the significance of each input 231 

feature in a machine-learning model (Altmann et al., 2010). The core idea is to evaluate the 232 

impact of each feature on model performance by randomly shuffling its values and observing 233 

the resulting change in the model’s accuracy. In this study, for each input feature of the GeoNet, 234 

we iteratively shuffle its value independently while keeping other features unchanged, and then 235 

observe the model prediction on the modified input. The difference in the model prediction 236 

performance between using the original and shuffling input quantifies the feature’s importance. 237 

Here, we measure the relative importance of each input feature using the metric of 1-R2, due 238 
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to its good standardized and indicative ability (C. Zhang et al., 2022). Generally, a larger 239 

performance drop indicates greater importance, as the model heavily relies on that feature for 240 

predictions. Conversely, smaller drops or increases suggest the feature may be less crucial or 241 

redundant. By permuting the input feature array based on the different spatial and temporal 242 

domains, we can gain a deeper understanding of how feature importance varies spatially and 243 

temporally. For example, the relative importance of one meteorology variable may vary with 244 

different diurnal, weekly, and monthly cycles, revealing the variability of its impact on the 245 

predicted NO2 levels. 246 

3 Results and Discussion 247 

3.1 Model performance  248 

Based on the GeoNet model and necessary input data (refer to section 2), we have 249 

achieved preliminary predictions of near-surface NO2 concentration with full spatial coverage 250 

and a spatial resolution of 0.1 degrees over eastern China, at four-hour intervals over the next 251 

24 hours. In this study, we first tested the impact of using reanalysis and forecast meteorology 252 

datasets and filling in missing values in satellite observation data on the model predictions. The 253 

reanalysis datasets usually have higher precision than the forecast. Previous studies revealed 254 

that the accuracy of the information on meteorology and chemical composition significantly 255 

affects the performance of machine learning models in estimating air pollutant concentrations 256 

(Wang et al., 2024; Zuo et al., 2023). Due to the shielding effect of clouds, a considerable 257 

proportion of missing values may even exist in satellite NO2 observations. Recent air quality 258 

big-data research usually requires the gap-filling of missing satellite data before inputting it 259 

into the machine learning model, either by spatial interpolation or regression techniques (M. 260 

Kim et al., 2021). We tested three methods for handling missing data, such as setting them to 261 

a fill value of zero, or replacing them by real-time CAMS simulated NO2, or WRF-Chem 262 

simulated NO2 results (not real-time, but with higher precision).  263 

Deleted: 01264 
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The comparison results to the validation datasets indicate that the scenario using CAMS 268 

meteorology datasets and replacing missing satellite NO2 data with fill-values (Fig. 2c), 269 

corresponds to a modest NO2 prediction performance with R2=0.68 and RMSE=12.26 μg/m3. 270 

In contrast, the configuration scenario using ERA-5 reanalysis meteorology and imputing with 271 

WRF-Chem simulations (Fig. 2a), corresponds to the best prediction performance of R2=0.69 272 

and RMSE=11.88 μg/m3. This may indicate that the importance of satellite missing data 273 

imputation may be diminished by cloud mask inputs, especially since the model can extract 274 

informative features from spatial and temporal neighboring inputs. To compromise between 275 

the performance of real-time and accuracy, we selected the configuration scenario of using 276 

CAMS meteorology and imputing with CAMS NO2 (Fig. 2d) for subsequent discussion and 277 

operational forecasting, with an R2=0.68 and RMSE=12.31 μg/m3. In summary, the use of 278 

higher-precision meteorology and filling missing NO2 data enhances the model’s prediction 279 

accuracy on the validation dataset, but to a rather limited extent. This suggests that, unlike 280 

previous machine learning techniques, GeoNet can effectively adapt to three-dimensional 281 

inputs of varying accuracy and type, fully explore the spatiotemporal correlation of data 282 

features, and demonstrate strong model generalization capabilities. 283 
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 290 

Figure 2. The GeoNet prediction performance of the surface NO2 concentration compared to the validation 291 
samples, based on different input datasets of meteorology and atmospheric composition: (a) use ERA5 292 
meteorology and fill satellite measurement gaps with WRF-Chem simulated NO2; (b) use ERA5 293 
meteorology and NO2 fill-value of zero for over gaps; (c) use CAMS meteorology and NO2 fill-value of zero 294 
for gaps; (d) use CAMS meteorology and CAMS NO2. The left plot shows the scatter comparisons between 295 
GeoNet predictions and site observations, while the right plot shows the bias distribution between the two. 296 

Figs. S5-S8 provide an overview of the major metrics (e.g., R2, RMSE, MAE, and MPE) 297 

of GeoNet prediction performance varying with prediction hours from t+4h to t+24h in 298 

different months. The results indicate that the model exhibits a higher correlation in NO2 299 

forecast during the spring and winter seasons compared to the summer, while the RMSE errors 300 

show the opposite trend. This could be attributed to much higher NO2 pollution levels in winter 301 

months. Additionally, GeoNet’s NO2 prediction errors gradually increase during the next 24 302 

hours, particularly after t+20h. This is primarily due to the short lifetime of atmospheric NO2, 303 

leading to a diminishing constraint from historical observational data on future NO2 predictions. 304 

Similar phenomena are also observed in machine learning or model-assisted weather forecasts 305 

(Andersson et al., 2021). 306 
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To assess the GeoNet model’s performance for short-term pollution events, we compared 308 

it with near-surface NO2 from CAMS forecasts, and in situ observations from CNEMC ground 309 

stations. Fig. S9 illustrates the daily time series of t+4h NO2 from GeoNet, CAMS, and 310 

CNEMC for three typical sites in Beijing, Shanghai, and Guangzhou in 2021. As shown from 311 

the plot, NO2 predictions by both GeoNet and CAMS generally agreed with the variation trends 312 

of CNEMC measurement. However, CAMS forecasts systematically overestimate the surface 313 

NO2 concentration by 100%, possibly resulting from the biases in the NOx emission inventory 314 

(Douros et al., 2023). Compared to CAMS, the GeoNet prediction closely aligns with the 315 

ground-truth observations at CNEMC sites over eastern China, with an overall R2 > 0.5 and 316 

mean bias < 5 μg/m3 for polluted regions (see Fig. S10 and S11, respectively). 317 

3.2 Main factors in NO2 forecast and their implications 318 

Previous physics-based numeric models of air quality prediction, e.g., the CAMS global 319 

forecast model and the regional WRF-CMAQ model (Kuhn et al., 2024; Kumar et al., 2021; 320 

Liu et al., 2023), can simulate the atmospheric physical and chemical processes (such as 321 

advection, diffusion, deposition, and chemical reactions) by solving the atmospheric equations. 322 

Recent data assimilation techniques further take real-time monitoring data from satellite and 323 

ground-based platforms as model constraints to better predict air quality variables (Antje Inness 324 

et al., 2022). Compared with physics-based models, “black-box” models such as the deep 325 

learning technique usually lack interpretability and explainability (Q.-s. Zhang & Zhu, 2018). 326 

This hinders the understanding and implications for predicting air quality variables such as 327 

NO2. Here, we measure the relative importance of each input feature on the NO2 forecast 328 

accuracy, by iteratively permuting the input array and observing its influences on the model 329 

prediction.  330 



 
 

15 

 331 
Figure 3. (a) The overall relative importance of different input features such as wind, surface pressure, 332 
satellite NO2, and cloud mask, in GeoNet NO2 forecast, varying with different hour steps from t+4h to t+24h. 333 
(b) The spatial distribution of the relative importance of satellite NO2 measurements in the GeoNet NO2 334 
forecast in 2021. 335 

Fig. 3a presents the relative importance (1-R2) of different input features varying with 336 

prediction hour steps from t+4h to t+24h. The geostationary satellite NO2 measurements play 337 

the highest role in predicting surface NO2 levels of the next day, although it degrades after t+8h. 338 

Other meteorological input features also show a major impact on NO2 prediction performance. 339 

The significance of the different input variables remained generally consistent across seasons, 340 

with minor variations (as shown in Fig. S12). By permutating the input array for each ground 341 

pixel, Fig. 3b derived the spatial distribution of the relative importance of geostationary satellite 342 

NO2 in the predicting performance. Overall, satellite NO2 has a higher impact in densely 343 

populated areas experiencing severe air pollution, such as the Pearl River Delta, Yangtze River 344 

Delta, and Jianghuai Plain, than in western China. Such results highlight the underappreciated 345 

role of satellite NO2 measurements with high spatial and temporal coverage in air pollution 346 

forecasts. 347 

3.3 NO2 pollution episodes and health exposure forecast 348 
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 350 
Figure 4. The comparisons of annual surface NO2 concentrations from GeoNet, CAMS, and CNEMC, 351 
respectively, (in the top panel), as well as the tropospheric NO2 column observations from GEMS and 352 
TROPOMI over East China in 2021 (in the bottom panel). 353 

Beyond its prediction accuracy, GeoNet exhibits a pronounced advantage in spatial 354 

coverage and resolution, allowing for capturing finer-scale details in the pollutant distribution. 355 

Illustrated in Fig. 4, GeoNet demonstrates remarkable performance in predicting spatial 356 

nuances of NO2 pollution, particularly when contrasted with ground-based and satellite 357 

observations. During a typical winter NO2 pollution event (as shown in Fig. 5), GeoNet 358 

accurately simulates a significant decrease in concentrations at 11:00 and 15:00, probably led 359 

by intense photochemical activity in the daytime, coincident with ground-based observations. 360 

It also outperforms CAMS in predicting NO2 variations throughout the day. The GeoNet model 361 

also retains the distributional differences in NO2 concentrations between urban and rural areas, 362 

consistent with emission source characteristics and satellite observations. The suboptimal 363 

performance of CAMS predictions can be attributed to insufficient observational constraints 364 

and the use of outdated emission inventories (Douros et al., 2023). In the European region, the 365 

assimilation of TROPOMI observations into CAMS forecasts significantly improves the 366 
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simulation accuracy of near-surface NO2 concentrations and tropospheric column densities (A. 369 

Inness et al., 2019). Neural network methods, similar to GeoNet, could be used to correct and 370 

downscale forecast results by existing models (Baghanam et al., 2024). This approach holds 371 

promise for achieving operational air quality forecasts that balance efficiency and accuracy. 372 

 373 

Figure 5. The spatial distribution comparisons of surface NO2 concentration between (a) GeoNet prediction 374 
at the original resolution of 0.1°, (b) GeoNet prediction resampled to the CAMS resolution of 0.4°, (c) CAMS 375 
prediction, and (d) ground-based CNEMC site measurements. Note that the results are presented for different 376 
continuing local hours (labeled text in the subplot) on 23 November 2021. 377 

In this study, we used a simplified linearized risk model for the short-term NO2 exposure 378 

(Meng et al., 2021; C. Zhang et al., 2022) to calculate the distribution of all-cause mortality 379 

risks based on GeoNet NO2 predictions (see Fig. 6). Short-term NO2 exposure leads to 380 

remarkable regional differences in all-cause mortality, which are mainly concentrated in highly 381 

polluted and densely populated urban areas. For both urban and suburban locations in Beijing 382 

(see Fig. 6c-d), GeoNet-based NO2 pollution exposure predictions are more consistent with 383 

actual in situ observations than the CAMS forecasts. Current air quality health indices 384 

forecasting based on limited station data has significant gaps, making it difficult to meet the 385 

refined needs for different populations in urban, suburban, and rural areas. Integrating GeoNet 386 
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forecasts based on hourly geostationary satellite observations can support spatially 392 

comprehensive and fine-scale air quality health risk prediction. This, in turn, guides managing 393 

the risks of air pollution exposure-related diseases in sensitive populations and communities. 394 

 395 

Figure 6. Mortality risk of short-term NO2 exposure based on the GeoNet prediction on November 23, 2021. 396 
(a) mean mortality due to the predicted NO2 exposure in East China; (b) a zoom-in map over Beijing and its 397 
neighboring area; (c) and (d) are comparisons of mortality estimation over the Beijing urban and rural 398 
regions (the rectangle areas presented in b), respectively, based on different NO2 exposure prediction among 399 
GeoNet, CAMS, and CNEMC. 400 
4 Conclusion 401 

The GeoNet model utilizes the unprecedented hourly air quality observations from 402 

geostationary satellites and resolves nonlinear associations in spatiotemporal proximity across 403 

multiple data sources. It achieves seamless short-term regional air quality predictions, 404 

exhibiting significant performance advantages over existing machine-learning air quality 405 

prediction models. To strike a balance between real-time and accuracy requirements, we 406 

evaluated the impact of using reanalysis- and forecast-based meteorology datasets, as well as 407 

imputing the missing values of satellite NO2. The findings reveal that the GeoNet model 408 

demonstrates robust generalization across diverse datasets, with minimal fluctuations in 409 
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prediction performance. Overall, the model achieves an RMSE of 12.31 μg/m3 and an R2 of 413 

0.68 in predicting NO2 concentrations every 4 hours for the next 24 hours. However, validation 414 

accuracy notably diminishes after t+16h within the next 24 hours, with stronger predictive 415 

correlations observed in seasons characterized by severe pollution, such as spring and winter, 416 

compared to summer. The variation of the model forecasting performance also shows that 417 

accurate prediction for longer time windows and heavy pollution events is still a major 418 

difficulty. This may be due to the high level of uncertainty in emissions and meteorology. In 419 

the future, a combination of higher resolution and more accurate multi-source data constraints, 420 

as well as machine learning models coupled with atmospheric physical mechanisms, may be 421 

needed to improve the existing forecasts. 422 

Compared to traditional chemical model forecasts and data assimilation predictions, the 423 

GeoNet model handles various data sources, including meteorological simulations and air 424 

quality observations, and more accurately captures spatial intricacies of air pollution evolution. 425 

The GeoNet framework elucidated in this study forecasts short-term near-surface NO2 426 

concentrations and demonstrates transferable learning potentials for predicting other pollutants. 427 

This work also has important implications for the prediction of near-surface O3 and particulate 428 

matter. For example, the integration of using vertical O3 profiles from the GEMS satellite, in 429 

particular near-surface layer concentrations, and their joint observations of important O3 430 

precursors including NO2 and HCHO, is expected to significantly improve the uncertainty of 431 

existing estimates of near-surface air pollution. This study underscores the pivotal role of next-432 

generation stationary satellite observations of air pollution constituents in air quality 433 

forecasting, with the potential to advance operational air quality forecasting and mitigate 434 

associated health risks by integrating machine learning technologies. 435 
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Data and code availability. The GEMS NO2 v2.0 data is available from the National Institute 443 
of Environmental Research (NIER) of South Korea (https://nesc.nier.go.kr/en/html/index.do, 444 
last access: December 10, 2023). We downloaded the NO2 measurements from the CNEMC 445 
real-time air quality platform (https://air.cnemc.cn:18007/, last access: Jun 8, 2023). ERA-5 446 
reanalysis meteorological data is obtained from the European Center for Medium-Range 447 
Weather Forecasts (https://climate.copernicus.eu/climate-reanalysis,last access: December 8, 448 
2023). CAMS forecast of meteorological and atmospheric NO2 datasets are retrieved from the 449 
CAMS Atmosphere Data Store (https://ads.atmosphere.copernicus.eu/, last access: December 450 
8, 2023). The source codes of the GeoNet model, surface NO2 prediction, and necessary input 451 
data can be obtained from Chengxin Zhang (zcx2011@ustc.edu.cn) upon reasonable request.  452 
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