

Boosting Aerosol Surface Effects: Strongly Enhanced Cooperative Surface Propensity of Atmospherically Relevant Organic Molecular Ions in Aqueous Solution

Harmanjot Kaur,¹ Stephan Thürmer,² Shirin Gholami,¹ Bruno Credidio,¹ Florian Trinter,^{1,3} Debora Vasconcelos,⁴ Ricardo Marinho,^{5,6} Joel Pinheiro,⁷ Hendrik Bluhm,¹ Arnaldo Naves de Brito,⁷ Gunnar Öhrwall,⁸ Bernd Winter,¹ and Olle Björneholm^{4*}

¹*Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany*

²Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, 606-8502 Kyoto, Japan

³*Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany*

⁴*Chemical and Biomolecular Physics, Department of Physics and Astronomy, Uppsala University,
75120 Uppsala, Sweden*

⁵*Institute of Physics, Brasília University (UnB), 70.919-970, Brasília, Brazil*

⁶*Institute of Physics, Federal University of Bahia, 40.170-115, Salvador, BA, Brazil*

⁷*Department of Applied Physics, Gleb Wataghin Institute of Physics, Campinas University, CEP, 13083859, Campinas SP, Brazil*

⁸MAX IV Laboratory, Lund University, SE 22100 Lund, Sweden

ORCID

ST: 0000-0002-8146-4573

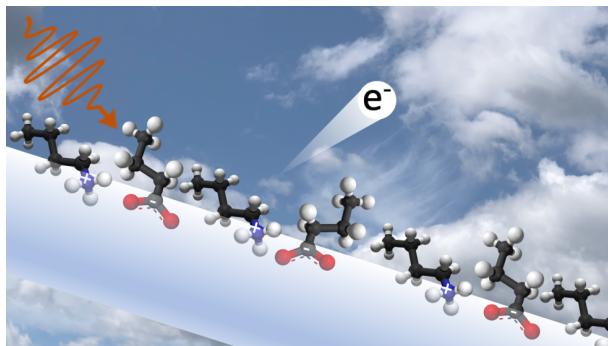
SG: 0000-0002-0647-1490

BC: 0000-0003-0348-0778

FT: 0000-0002-0891-9180

RM: 0000-0001-3834-3389
HB: 0000 0001 0381 3155

ANdR: 0000-0002-9098-444


GÖ-0000-0002-5795-8047

BW: 0000-0002-5597-8888

OB: 0000-0002-7307-5404

*Corresponding author: Olle Björneholm: olle.bjorneholm@physics.uu.se

34

35 **Abstract**

36 The effects of atmospheric aerosols are key uncertainties in climate models. One reason is the
37 complex aerosol composition which includes a relatively large fraction of organics. Another reason is
38 the small size of aerosols, which makes surface effects and processes important. These two factors make
39 surface-active organics relevant for atmospheric aerosols, as they can affect crucial processes, such as
40 chemical aging and water accommodation, as well as properties such as the surface tension, which
41 drives droplet formation. Two exemplary types of atmospherically relevant organics are carboxylic
42 acids and alkyl amines, and often both are found together within aerosols. In the most atmospherically
43 significant pH range, these exist as alkyl carboxylate ions and alkyl ammonium ions. Using liquid-jet
44 photoelectron spectroscopy, tuned to high surface sensitivity, we measured the alkyl carboxylate anions
45 and the alkyl ammonium cations of alkyl chain lengths of 1 to 6 carbon atoms, both as single-component
46 and mixed-component aqueous solutions. This enabled us to systematically study how their surface
47 propensity is affected by the length of the alkyl chains, and how cooperative ion–ion interactions result
48 in strongly increased surface propensity. An exponential increase in surface propensity is found for the
49 single-species solutions, with cooperative solute-solute effects in mixed solutions of 1:1 molar ratio
50 drastically increasing the number of molecules present at the solutions’ surfaces up to a factor of several
51 hundred. This cooperative surface propensity is shown to strongly affect the amounts of organics at the
52 surface. These changes can significantly influence radiative forcing via aerosol growth, cloud
53 condensation nuclei activity, and aerosol chemical aging. Our results demonstrate the principal
54 feasibility of a more advanced input of molecular details for creating parameterized descriptions of
55 aerosol surface composition needed to properly account for their impacts in climate models.

56 **Introduction**

57 Water's liquid-vapor interface is of crucial environmental significance, considering the abundance
58 of liquid water covering Earth's surface, and of aqueous particles in Earth's atmosphere. The latter,
59 varying from microscopic aerosols to raindrops, impacts the global radiation balance by scattering
60 sunlight (the direct effect),(McCormick and Ludwig, 1967) and by serving as important cloud
61 condensation nuclei (CCN) and ice-nucleating particles (the indirect effects).(Twomey, 1974) The
62 effects of aerosols have been identified by the United Nations Intergovernmental Panel on Climate
63 Change (IPCC) as a key uncertainty in climate models,(The Intergovernmental Panel on Climate
64 Change (IPCC), 2022) and thus a better understanding of these effects is important for improving
65 climate modeling. Atmospheric aerosols comprise many species, including atomic ions, organic
66 compounds from various sources like emissions and decomposition, soot from combustion, and mineral
67 particles. The organic fraction, ranging from 20-90% of submicron aerosol mass, mainly forms
68 secondary organic aerosols (SOA) with complex compositions.(Jimenez et al., 2009) The complex mix
69 of organic compounds within atmospheric aerosols makes it challenging to quantify the effect of
70 aerosols on the climate and associated climate changes.(Kanakidou et al., 2005; Tsigaridis et al., 2014)

71 The importance of aerosols stems from their large surface-to-volume ratio. One notable consequence
72 is that the surface concentration of atmospherically relevant amino acids is up to ten times higher than
73 inside the aerosols.(Mocellin et al., 2017) Furthermore, the surface concentration of amino acids tends
74 to increase upon addition of salt to the aqueous solution.(Gopakumar et al., 2022; Björneholm et al.,
75 2022) Yet, existing climate models often pay less attention to aerosol surface effects because
76 understanding of atmospheric surface phenomena on the molecular level is lacking.(Noziere, 2016;
77 Lowe et al., 2019) Specifically, aforementioned organics affect surface tension, altering condensation
78 and evaporation rates, which in turn alters water accommodation, *i.e.*, the aggregation of water mass
79 onto the aerosol.(Sareen et al., 2013; Davies et al., 2013; Ergin and Takahama, 2016; Miles et al., 2016;
80 Ruehl et al., 2016; Ovadnevaite et al., 2017) As surface species are more accessible for reactions with
81 atmospheric radicals, the surface propensity of constituent species also affects the aerosol chemical
82 aging, *i.e.*, the time evolution of the chemical composition via chemical and photochemical
83 processes.(Shiraiwa et al., 2011) Microscopic surface effects are thus crucial for aerosol growth and
84 cloud condensation nuclei activity, thereby affecting the macroscopic radiative forcing, *i.e.*, Earth's
85 energy balance in terms of reflection and absorption of solar radiation.

86 A promising experimental approach towards a deeper understanding of the molecular-scale
87 interfacial structure and associated processes is the application of liquid-jet photoelectron spectroscopy
88 (LJ-PES) to selected molecular model systems in aqueous solutions in combination with X-rays tuned
89 to a surface-sensitive energy range. Many important organics are amphiphilic, *i.e.*, containing both
90 hydrophobic and hydrophilic parts; the former often consist of non-polar groups such as alkyl chains,
91 while the latter consist of polar or charged groups. The surface propensity of such amphiphiles can be

seen as a balance between the hydrophilic and hydrophobic interactions, where the hydrophilic part is solvated while the hydrophobic part tends to be only partially solvated. For example, LJ-PES studies in conjunction with molecular dynamics (MD) simulations have previously revealed how the surface propensity increases and how the molecular surface orientation evolves with the length of the hydrophobic alkyl chain for alcohols and carboxylic acids.(Walz et al., 2015; Öhrwall et al., 2015; Lee et al., 2016; Walz et al., 2016; Werner et al., 2018; Ekholm et al., 2018) This picture has been quantitatively corroborated for perfluorinated pentanoic acid in aqueous solution, for which the distance of different parts of the molecule from the solution surface was determined with Angstrom resolution from the analysis of photoelectron angular distributions.(Dupuy et al., 2023) The hydrophobic ends may undergo orientational changes, from mainly aligned parallel (to the molecular axis with respect to the surface plane) at low surface coverages towards perpendicular with increasing coverages to make room for more molecules. Such reorientation was, for example, observed for alcohols in aqueous solution.(Walz et al., 2015; Walz et al., 2016)

Two common types of hydrophilic functional groups in atmospherically relevant organics are carboxyl/carboxylate and amine/ammonium (depending on pH, $-\text{COOH}/-\text{COO}^-$, and $-\text{NH}_2/\text{NH}_3^+$, respectively), and carboxylic acids and alkyl amines are examples of amphiphiles commonly found in aerosols.(Goldstein and Galbally, 2007) Both carboxylic acid and alkyl amines are considerably surface active.(Ottosson et al., 2011; Werner et al., 2018) Most notably, in both cases larger alkyl chain lengths result in larger surface propensity. However, surface propensity is also pH dependent, with a smaller surface propensity of the charged species as compared to the neutral ones. However, as discussed above, atmospheric aerosols often contain multiple organic species. Interaction between different organic solutes can affect their respective surface propensity via cooperative or competing effects. Cooperative ion-pairing effects at the surface in mixed hexanoate/hexyl ammonium solutions were shown to amplify the surface propensity of both species.(Ekholm et al., 2018)

It can thus be expected that the surface propensity of atmospherically relevant alkyl carboxylate ions and alkyl ammonium ions scales with both the length of their hydrophobic chains and cooperative ion–ion interactions. In this work, we systematically explore how both effects jointly affect a molecule’s surface propensity, exemplified for alkyl-carboxylate and alkylammonium ions of variable alkyl chain lengths. Our results provide insight into the molecular driving forces affecting the surface composition of mixed-organic aqueous solutions, which will aid atmospheric scientists in creating a parameterized description of aerosol surface phenomena for improving climate models.

123 **Methods**

124 **1. Experiments**

125 Most measurements of this study were performed using the *EASI* (*Electronic structure from Aqueous*
126 *Solutions and Interfaces*) liquid-jet photoelectron spectroscopy apparatus(Malerz et al., 2022) in tandem

127 with the P04 soft X-ray beamline(Viehhaus et al., 2013) of the PETRA III synchrotron radiation facility
128 (Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany). Some measurements were repeated
129 at the PLÉIADES beamline of the SOLEIL synchrotron facility (Paris, France),(see website) which is
130 explained further below. The LJ-PES apparatus used at PETRA III is equipped with a state-of-the-art,
131 near-ambient-pressure hemispherical electron analyzer (HEA, Scienta Omicron HiPP-3), complete μ -
132 metal shielding, and large pumping capabilities for volatile liquids. Under operation conditions, the
133 average pressure in the interaction chamber was typically maintained at $\sim 2 \times 10^{-4}$ mbar, as accomplished
134 with two turbomolecular pumps (with a total pumping speed of ~ 2600 L s $^{-1}$ for water) and three liquid-
135 nitrogen cold traps (with a total pumping speed of ~ 35000 L s $^{-1}$ for water). A custom-made differential
136 pumping chamber, installed between the interaction chamber and the last beamline element, ensures a
137 sufficient pressure drop across three differential stages for connection to the beamline.(Malerz et al.,
138 2022) The circularly polarized light from the APPLE II undulator(Sasaki, 1994) of the P04 beamline
139 was monochromatized by a variable-line-spacing monochromator using a 1200 l/mm planar grating
140 (9 nm groove depth, non-blazed, Au coating) and a 150 μ m vertical exit-slit opening (perpendicular to
141 the LJ axis and the light propagation direction), adjusted by the exit slit unit (EXSU). Photon energies
142 of 400 eV (resolution of 70 meV) and 510 eV (resolution of 100 meV) were employed to measure C 1s
143 and N 1s photoelectron spectra, respectively. O 1s signal intensities were not considered due to the
144 strong overlap of this spectral region with the solvent. For a few solutes with very high surface
145 propensity, the C 1s PE signal could become so intense as to potentially saturate the detector. This was
146 prevented by reducing the photon flux by narrowing of the vertically oriented beam-defining aperture
147 (BDA), which is located 27.9 m downstream of the undulator and 43.1 m upstream of the
148 EXSU.(Bagschik et al., 2020) An overview of the used BDA settings, along with corresponding photon-
149 flux values measured using a SXUV photodiode, can be found in the Supporting Information. The
150 beamline's vertical spot size (relevant for the LJ target) at the 150- μ m EXSU opening was ~ 50 μ m,
151 independent of the BDA gap, which is somewhat larger than the LJ diameter (see below). The horizontal
152 (along the liquid jet axis) spot size was ~ 180 μ m. The photoelectron detection axis was at an angle of
153 $\sim 130^\circ$ with respect to the light propagation axis, in the vertical plane, *i.e.*, the spectrometer is above and
154 tilted towards the beamline in the backward direction.(Malerz et al., 2022) The LJ axis is in the
155 horizontal (floor) plane and thus orthogonal to both the light propagation and electron detection axes.

156 Surface-sensitive PES measurements were performed with a photon energy resulting in a C 1s
157 photoelectron kinetic energy (KE) of ~ 100 eV, where the effective attenuation length (EAL), *i.e.*, the
158 probing depth into solution, is ~ 15 \AA . (Thürmer et al., 2013) The samples were aqueous solutions of
159 alkyl carboxylate anions (sodium counter cation) and alkyl ammonium cations (bromine counter anion)
160 with variable chain lengths, with a total of 8 individual molecular species and 16 paired mixtures (see
161 Table 1). To keep descriptions concise, we adopt an abbreviated naming scheme, where letters A and
162 C refer to alkyl amines and alkyl carboxylates, respectively. In addition, we use numbers which
163 represent the number of carbon atoms, indicating the molecular chain length. For the former, the study

164 covers the methylammonium ($\text{H}_3\text{C}-\text{NH}_3^+$)_{aq} cation, which is thus labeled ‘A1’, A2 = ethylammonium
 165 ($\text{H}_3\text{C}-\text{CH}_2-\text{NH}_3^+$)_{aq}, A4 = butylammonium ($\text{H}_3\text{C}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{NH}_3^+$)_{aq}, A6 = hexylammonium ($\text{H}_3\text{C}-$
 166 $\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{NH}_3^+$)_{aq}, all with a Br^- anion. The latter covers C1 = formate (HCOO^-)_{aq}, C2
 167 = acetate ($\text{H}_3\text{C}-\text{COO}^-$)_{aq}, C4 = butyrate ($\text{H}_3\text{C}-\text{CH}_2-\text{CH}_2-\text{COO}^-$)_{aq}, and C6 = hexanoate ($\text{H}_3\text{C}-\text{CH}_2-\text{CH}_2-$
 168 $\text{CH}_2-\text{CH}_2-\text{COO}^-$)_{aq}, all with a Na^+ cation. Mixed solutions of equimolar concentration are denoted Cx /
 169 Ay, with x, y being the carbon count. An overview of all studied single-component solutions as well as
 170 paired mixtures with their abbreviated labels is given in Table 1; sketches of all molecules are presented
 171 in Figure 2c. The same table format is maintained throughout the manuscript when discussing
 172 quantitative peak intensities. Single-species solutions were prepared by dissolving methylammonium
 173 bromide (A1), of 98% purity, ethylammonium bromide (A2), of $\geq 98\%$ purity, n-butylammonium
 174 bromide (A4), of $\geq 98\%$ purity, n-hexylammonium bromide (A6), sodium formate (C1), of $\geq 99\%$
 175 purity, sodium acetate (C2), of $\geq 99\%$ purity, sodium butyrate (C4), of 98% purity, or sodium hexanoate
 176 (C6), of 99-100% purity, each from Sigma-Aldrich, in demineralized water (conductivity $\sim 0.2 \mu\text{S}/\text{cm}$)
 177 to yield a 0.1 M concentration. At this concentration, the surface coverage of A6 is ~ 0.37 and of C6
 178 ~ 0.15 of the maximum coverage, *i.e.*, well below surface saturation.(Ekholm, 2018) Since A6 and C6
 179 have the highest surface propensities among the single species, all other species will exhibit a lower
 180 surface coverage. Mixture solutions were prepared by mixing equal volumes of the pure solutions,
 181 yielding solutions with the same total solute concentration, 0.1 M, and 0.05 M concentration for each
 182 species.

183 **Table 1:** Labeling scheme for the studied molecular species with varying chain lengths: carboxylic
 184 acids (C1-C6, vertical) and alkyl amines (A1-A6, horizontal). The eight single-component solutions
 185 (Cx and Ay, respectively) had a solute concentration of 0.1 M. The 16 mixed solutions (Cx / Ay, italic
 186 text) were prepared with 0.05 M of each constituent, yielding the same total concentration of 0.1 M.

		alkyl amine				
		name	methylammonium	ethylammonium	butylammonium	hexylammonium
carboxylic acid	name	label	A1	A2	A4	A6
	formate	C1	<i>C1/A1</i>	<i>C1/A2</i>	<i>C1/A4</i>	<i>C1/A6</i>
	acetate	C2	<i>C2/A1</i>	<i>C2/A2</i>	<i>C2/A4</i>	<i>C2/A6</i>
	butyrate	C4	<i>C4/A1</i>	<i>C4/A2</i>	<i>C4/A4</i>	<i>C4/A6</i>
	hexanoate	C6	<i>C6/A1</i>	<i>C6/A2</i>	<i>C6/A4</i>	<i>C6/A6</i>

187

188 The aqueous solutions were injected into the vacuum chamber as a liquid jet via a silica-glass
 189 capillary nozzle with an inner diameter of 25 μm . The liquid was pumped via a Shimadzu LC-20 AD
 190 high-performance liquid chromatography (HPLC) pump combined with an inline-degasser unit
 191 (Shimadzu DGU-20A_{5R}), and then pushed through the glass capillary to yield a typical flow rate of
 192 $\sim 0.8 \text{ ml}/\text{min}$. The solution temperature was kept at $\sim 10^\circ\text{C}$ by water-cooling the LJ rod using a chiller

193 unit; the temperature is expected to be a few degrees lower at the point of ionization (approximately
194 5 mm further downstream after the liquid is expelled into vacuum) of the liquid jet, due to evaporative
195 cooling. At larger distances from the injection point, the liquid jet breaks up into droplets due to
196 Rayleigh instabilities.(Winter and Faubel, 2006) The resulting liquid spray is collected (frozen out) at
197 the surface of a liquid-nitrogen cold trap, downstream of the flow direction. The distance between locus
198 of jet – light-beam interaction and the entrance of the HEA was ~0.8 mm, and the entrance aperture of
199 the latter also 0.8 mm diameter. Accurate positioning of the jet was achieved by a high-precision x-y-z
200 manipulator to which the LJ assembly is mounted. The optimal overlap of all axes was continuously
201 monitored and adjusted during the measurement to account for signal fluctuations from small jet
202 position drifts.

203 Because of stability issues noticed during analysis of the C1/A1 mixture in the first campaign,
204 measurements of C1, A1, and their mixture (C1/A1) were repeated at PLÉIADES. Again, photon
205 energies of 400 eV and 510 eV were employed to measure C 1s and N 1s photoelectron spectra,
206 respectively. Here, the electron spectrometer was mounted such that the electron detection axis was
207 perpendicular to the plane of the electron orbit in the storage ring. The LJ axis lies in the horizontal
208 plane (plane of the electron orbit in the storage ring). The direction of propagation of the light, the
209 electron detection axis, and the liquid jet were mutually orthogonal to each other. The angle between
210 the light-polarization vector of the linearly polarized light and the spectrometer axis was set to 55° which
211 is close to the magic angle. A Shimadzu LC-40 AD high-performance liquid chromatography (HPLC)
212 pump was used to pump the liquid, and push it through a glass capillary with 40 μm orifice diameter at
213 a flow rate of 2.7 ml/min. The LJ is then collected in liquid form by a heated copper-beryllium catcher.
214 Differential pumping is achieved by housing the complete LJ assembly in an enclosure within the
215 vacuum chamber while using small orifices for the insertion of the X-rays and the extraction of the
216 photoelectrons. The distance between the LJ and the entrance of the 300- μm stainless-steel skimmer of
217 the spectrometer was 1 mm. For more experimental details of the setup at PLÉIADES see Refs. (Powis
218 et al., 2015; Malerz et al., 2021).

219 **2. Data Analysis**

220 The analysis of measured electron counts as a function of electron KE was carried out using Igor Pro
221 (WaveMetrics, Sutter Instrument). First, the C 1s bands were fitted for all single-species solutions, *i.e.*,
222 the carboxylic acids (C1 to C6) and alkyl amines (A1 to A6) to extract peak shapes and widths.
223 Exemplary fits for the C2 and A2 aqueous solutions are presented in Figs. 1a and 1b, respectively. The
224 broad, featureless signal background, originating from inelastically scattered photoelectrons, was
225 approximated with a linear function, which is a simplification but the most stable choice with only two
226 fit parameters to vary. The signal contributions from the two carbon atoms, labeled p1 and p2 in the
227 figure, respectively, can be separated for both solutions; all Cx and Ay species feature two distinct
228 carbon signal contributions as we will detail later. A noticeable asymmetry of the C 1s bands of the

carboxylic acids arises from unresolved vibrational excitations. To keep the number of fitting parameters preferably low, we chose asymmetric exponentially modified Gaussian (EMG)(Grushka, 1972) functions to account for the vibration contributions. The alkyl amine C 1s bands did not show any resolvable peak asymmetry and were best fitted with two (one in case of A1) Voigt functions instead. A Voigt function yielded a better fit than a simple Gaussian function. The added complexity of both the EMG and Voigt functions has no impact on the results for the mixed solutions: the shape of the EMG (asymmetry parameter τ) and the Voigt function (Gaussian-to-Lorentzian width ratio) were held fixed in subsequent fits to the spectra of the mixed solutions, which removed any influence from these parameters. Indeed, for most of the solutions studied here, our procedure resulted in good overall fits of the measured photoelectron spectra. There are few exceptions, where small additional signals occur, which we attribute to contaminations of unknown origin. These features were fitted with additional Gaussian functions (see the Supporting Information for details), but were not included in the determination of intensities (measured as peak areas) of the respective C 1s bands.

The mixed-solution spectra are fitted with a sum of the same number and type of functions as the individual species, where the shape (asymmetry τ for the EMG and width ratio for the Voigt functions, respectively) and peak width were kept fixed. Additional features from possible contaminants could not be discerned (see below), and thus additional (Gaussian) functions were not included in the mixed-solution fits. Since the contaminant features are small and not expected to be associated with a surface-active species, their contributions to the PE spectra, if present at all, becomes diminishingly small as peak intensities scale up rapidly for larger species. Figure 1c shows the C 1s fits for the C2/A2 mixed aqueous solution; the respective fits for the single-species solutions have been already introduced in Figs. 1a and 1b. The p2 bands are at similar positions for both the Cx and Ay species and are thus strongly overlapping. In cases where both the Cx and Ay chains were present, *i.e.*, $x, y > 1$ for both species, the p1-p2 peak distance for Ay was set and held fixed to the result from the fit to the single-component Ay spectra. We note that the separation into distinct peak contributions becomes more difficult for species with increasing chain lengths. The spectral features of the chain carbons are almost completely overlapping for all species, which is an inevitable fact of the (lack of) chemical shift. In fact, for mixtures with the longest-chain alkyl amine A6, we had to additionally constrain the peak-height ratio p1/p2 for the Cx component to reach a stable fit, because the signal contributions from the chain for each constituent could not be discerned. This is a reasonable simplification since peak p1 of the Cx species is well separated in the spectrum and can serve as an anchor for the fit to determine the height of peak p2 for a fixed p1/p2 ratio.

We note that some of our PE spectra were unintentionally recorded under conditions of detector saturation (see the Experiments section) which disproportionately affects the signal intensity of the strongest bands for these spectra. Measurements of some samples (with the highest intensity) were repeated using a lower photon flux to circumvent saturation; the procedure is described in detail in the SI. Another complication was discovered when analyzing the peak intensities for the sodium

266 formate/methylammonium bromide (C1/A1) solution: We found fluctuating PE signal intensities of up
267 to a factor of two during the initial measurement campaign. In that case, we have repeated the
268 measurements from the (nominally) same C1 and A1 as well as C1/A1 concentrations in a different
269 measurement campaign, using a different setup at the SOLEIL synchrotron radiation facility. Those
270 measurements used a different sample batch and showed no sign of contamination, which reassured us
271 that the sidebands in the initial data originated from contaminants. The signal intensities from the repeat
272 measurement were scaled by the C1 signal to match the initial data and were used instead for the results
273 presented here.

274 C 1s (relative) peak intensities, $I(Cx)$ and $I(Ay)$, the main observables in this study, which reveal a
275 given species' variable and competing surface propensity, were quantified by normalization to the
276 smallest peak-intensity value, $I(C1)$, which is from aqueous-phase formate (C1). This normalization
277 factor is used throughout the work for the analysis of all peak-intensity values, and thus the results
278 represent a relative increase in surface propensity compared to formate. Peak intensities scale with the
279 number of ionization targets, the photoionization cross section, and the probing depth of the C 1s
280 photoelectrons.(Hüfner et al., 2005) Molecular photoionization cross sections are unknown, but are
281 taken to be the same for all carbon atoms. In most cases, it is useful to present the data with the
282 dependence on the carbon number removed, by normalizing to the number of relevant carbon sites. For
283 example, when discussing the total peak intensity for C4, containing four carbons, the total intensity
284 value is divided by four, and in the case of the C2/A4 mixture, with a total of six carbon atoms, the total
285 intensity will be divided by six; such normalization will be stated in the caption.

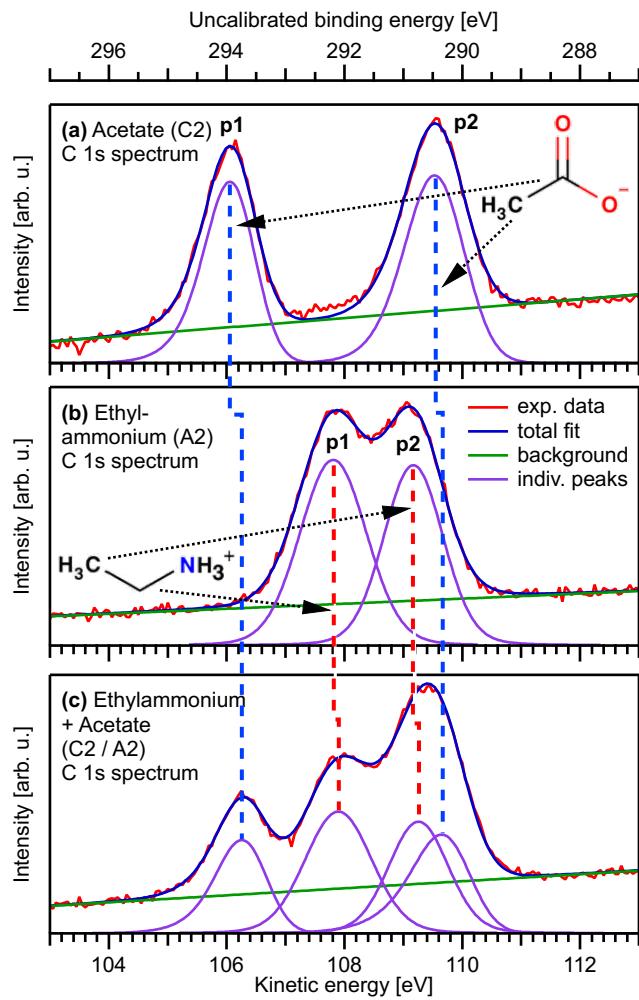
286 In the case of the nitrogen-containing Ay species, we also recorded and analyzed the N 1s spectra.
287 This procedure is much simpler, as only a single peak is present for all species, and the spectra were
288 fitted with a single EMG function and a linear background. No contaminants were observed here,
289 indicating that the contaminants are not degraded alkyl amine molecules. N 1s peak-intensity values
290 were arbitrarily normalized to yield the same normalized intensity value as for the C 1s of
291 methylammonium bromide (A1) for better comparability. Furthermore, the peak-intensity values of the
292 mixed species must be adjusted for differences in molecular number density since each species in the
293 mixed solutions had a concentration of 0.05 M instead of 0.1 M for the single-species solutions. Thus,
294 intensity values were adjusted by a factor of two whenever relevant for a direct comparison.

295 We also analyzed the valence-band PE signal intensity based on a simple height comparison of the
296 water $1b_1$ (HOMO) band for each solution's spectrum with that of a representative (average) neat water
297 spectrum; see Fig. SI-2 in the SI for details.

298 **Results and Discussion**

299 Figure 1 shows C 1s PE spectra for three samples, C2 (Fig. 1a), A2 (Fig. 1b), and C2 / A2 (Fig. 1c).
300 The bottom axis presents the as-measured kinetic energies (KE) of the photoelectrons, and the
301 respective (uncalibrated) electron binding energies (BE), calculated as photon energy minus KE, are

302 given on the top energy axis. These spectra are representative of the spectra recorded for all samples
303 listed in Table 1; all PE spectra considered in the present study including the peak fits can be found in
304 the SI as Figs. SI-4, SI-5, and SI-6. For both species, the spectra consist of two peaks: the peak p2 at
305 the highest KE, *i.e.*, lowest binding energy, corresponds to the methyl carbon. The peak p1 at lower KE,
306 *i.e.*, higher BE, is due to ionization of the carboxylate carbon for C2, and ionization of the carbon atom
307 next to the ammonium group in the case of A2. The chemical shifts agree well with previous studies
308 (Ottosson et al., 2011; Ekholm et al., 2018) and can be qualitatively understood as follows. The higher
309 BE (lower KE) of the carbon next to N and O is due to the electronegative atoms N and O reducing the
310 electron density around the C atoms relative to the methyl carbon. The slight shift of the methyl-carbon
311 peak between C2 and A2 arises from the different charges of the C2 and A2 molecular ions. The
312 spectrum of the mixed C2/A2 solution can be understood as a sum of the C2 and A2 spectra; see Fig. 1c.
313


314 We briefly comment on the definition of ‘chain’ length for the C_x *versus* A_y species. The fact that
315 carbon is not part of the functional group for the A_y offsets the chain length of this species by one with
316 respect to C_x in practice, as we see below. Thus, we can say that A2 has a chain length of two, whereas
317 C2 has only a chain length of one, as the carbon atom in the functional group is omitted. For this reason,
318 we introduce the *effective* chain length $k = x-1 = y$ for the C_x and A_y species, respectively. Yet, for A_y
319 we can still distinguish between the carbon closest to nitrogen. The intensity of peak p1 will be treated
separately as needed, since it allows us to discuss molecular orientation.

320 Single-component solutions

321 We start with the various single-component species in aqueous solution. Obtained peak intensities,
322 based on the analysis of the C 1s and N 1s PE spectra (see Methods), are summarized in Table 2 and
323 plotted in Fig. 2a. Normalized total C 1s peak intensities, I_{norm} , for the carboxylate and alkyl ammonium
324 species are plotted on a logarithmic scale against the effective chain length k , which is a measure of
325 chain length ranging from 0 (no chain) to 6 (a six-carbon chain). Open circles represent $I_{\text{norm}}(\text{C}x)$ and
326 $I_{\text{norm}}(\text{A}y)$, respectively, crosses are I_{norm} of peak p1 only (related to the functional group), and triangles
327 represent I_{norm} for N 1s (A_y only). All values are normalized to the value of formate, $I(\text{C}1)$, and as
328 mentioned, the results can be understood as an increase in surface propensity relative to formate. The
329 values shown in the figure are further normalized to x, y, and thus any increase is solely due to an
330 increased surface propensity; see the bold numbers in Table 2 which are the ones plotted in Fig. 2.

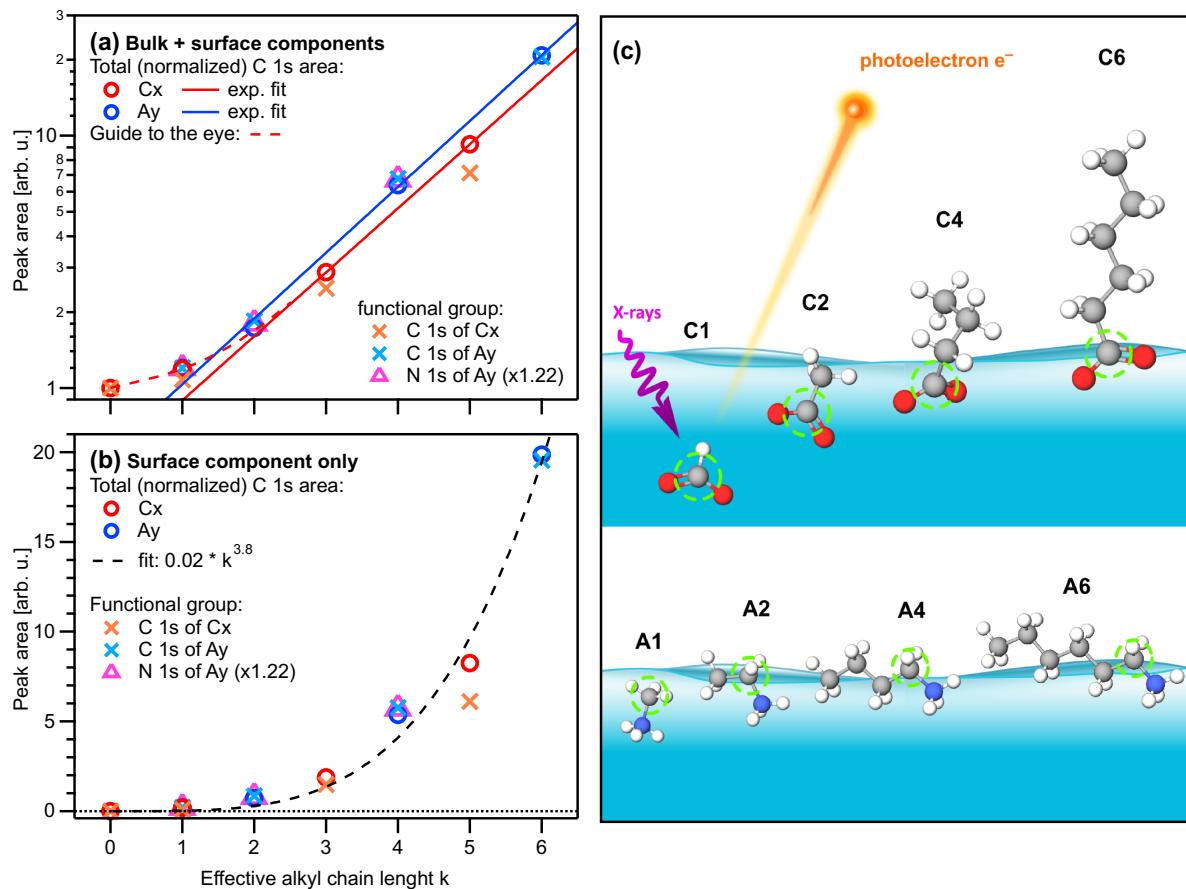
331 Formate is known to be repelled from the liquid–vapor interface,(Minofar et al., 2007) and thus can
332 serve as a baseline for quantifying surface activity for the series of molecules studied here. We isolate
333 the surface contribution from the total intensity I_{norm} for a quantitative characterization of the surface
334 composition. Since all intensities have been normalized to the number of carbon atoms (x,y), the
335 normalized bulk contribution should be the same for all species, *i.e.*, equal to $I_{\text{norm}}(\text{C}1)$. The surface
336 contribution is then obtained by subtracting $I_{\text{norm}}(\text{C}1)$ from each value of the different solutions, $I_{\text{surf,norm}}$
337 = $I_{\text{norm}} - I_{\text{norm}}(\text{C}1)$, which is equivalent to $I_{\text{surf,norm}} = I_{\text{norm}} - 1$ since all values are already normalized by

338 I(C1). This is done for both the Cx and the Ay species, and the resulting values are plotted in Fig. 2b.
 339 Clearly, the subtraction of the bulk component is just an approximation, since the probed solution–
 340 vapor interface is not a sharp transition. In fact, there is an approximately 1-nm thick gradient over
 341 which the average molecular density changes; see, for example, Refs. (Werner et al., 2018) and
 342 (Minofar et al., 2007) for the results of various organics. The $I_{\text{surf},\text{norm}}$ values discussed from here on thus
 343 reflect an average concentration within such a surface layer.

344
 345 **Figure 1:** Exemplary C 1s PE spectra from aqueous solutions of 0.1 M sodium acetate (C2, panel 1a),
 346 0.1 M ethylammonium bromide (A2, panel 1b), and a mixture of sodium acetate and ethylammonium
 347 bromide (C2/A2, both 0.05 M, panel 1c), plotted on the as-measured electron KE scale. The BE energy
 348 scale at the top was calculated by subtracting the photon energy from the KE and was not further
 349 calibrated. The two peaks p1 and p2 of the C2 spectrum, which are separated by a chemical shift,
 350 originate from the methyl carbon and the carboxylate carbon, respectively. The two slightly overlapping
 351 peaks p1 and p2 in the A2 spectrum are from the methyl carbon and the carbon closest to the ammonium
 352 group, respectively. Relative to the alkyl-like carbons (CH_2 and CH_3 , peaks p2), the signals from the
 353 carbons in the two functional groups, $-\text{CH}_2\text{NH}_3^+$ and $-\text{COO}^-$, peaks p1, are found at higher binding
 354 energies. On a qualitative level, this shift is caused by the proximity of electronegative atoms, which
 355 reduce the electron density around the carbon atoms in the initial-state, and thereby also the final-state
 356 screening. This leads to a higher binding energy as compared to carbons bound to hydrogens or other

357 carbons. In addition, the net charge associated with the two functional groups will lead to a shift.
 358 Moreover, small energy shifts associated with changes in the work function of the solution as the surface
 359 composition is changed may occur, which, however, does not affect the identification of the spectral
 360 peaks. For a further discussion, see, e.g., Ref. (Werner et al., 2018), with which the present results are
 361 consistent, as well as Ref. (Thürmer et al., 2021). The spectrum of the mixed C2/A2 solution (panel 1c)
 362 can be understood as a sum of the C2 and A2 spectra. For details of the fitting procedure; see Methods.

363 **Table 2:** Analysis results for each single carboxylic acid (Cx) and alkyl amine (Ay) solution extracted
 364 from peak fitting to the C 1s PE spectra. All peak intensities are normalized to the value of formate
 365 (C1); see Methods. Peak intensities increase approximately exponentially with increasing chain length
 366 for both the Cx and Ay species; compare Fig. 2. The peak-intensity ratio R between peaks p1 and p2
 367 (see Fig. 1) is compared to R_{ideal} , calculated from the number of carbons contributing to peak p2; only
 368 one carbon atom contributes to peak p1 for all species. The results reveal a deviation from unity for all
 369 species. $R / R_{ideal} > 1$ ($R / R_{ideal} < 1$) indicates a preferable orientation with the chain (the functional
 370 group) towards the surface. The bottom-most row reports the relative change in the valence-band signal
 371 of each solution compared to neat water; see also Fig. SI-2. Bold values are plotted in Figs. 2a and 2b,
 372 respectively. Errors were estimated to be < 2% of the value from fitting errors and PE signal variations.


Sample effective chain length k	C1	C2	C4	C6	A1	A2	A4	A6
	0	1	3	5	1	2	4	6
intensity I_1 of peak p1	1.00	1.06	2.49	7.11	1.20	1.85	6.76	20.55
intensity I_2 of peak p2	---	1.26	9.01	48.4	---	1.61	18.7	104.6
total: $I_{tot} = I_1 + I_2$	1.00	2.32	11.5	55.5	1.20	3.46	25.5	125.1
C-normalized $I_{norm} = I_{tot}/(x,y)$	1.00	1.16	2.87	9.25	1.20	1.73	6.37	20.86
total at surface: $I_{surf} = I_{tot} - I_{tot}(C1)$	0	1.32	10.5	54.5	0.20	2.46	24.5	124.1
norm. $I_{surf,norm} = I_{norm} - I_{norm}(C1)$	0	0.16	1.87	8.25	0.20	0.73	5.37	19.86
peak-intensity ratio $R = I_2 / I_1$	---	1.19	3.63	6.80	---	0.87	2.77	5.09
ideal ratio R_{ideal} ($x-1 / y-1$)	---	1	3	5	---	1	3	5
<i>ratio deviation R / R_{ideal}</i>	---	<i>1.19</i>	<i>1.21</i>	<i>1.36</i>	---	<i>0.87</i>	<i>0.92</i>	<i>1.02</i>
relative valence-band signal	0.96	0.97	0.94	0.85	0.99	0.92	0.91	0.87

373

374 Except for the smallest molecules, C1 and A1, peak areas increase exponentially with increasing k
 375 (note the logarithmic ordinate scale of Fig. 2a), demonstrating a strong increase in surface propensity
 376 as the hydrophobic chain is extended. This is qualitatively expected given the well-known
 377 hydrophobicity of carbon chains. For $x = y$, the alkyl ammonium ions (Ay) have a somewhat higher
 378 surface propensity than the alkyl carboxylate ions (Cx), in agreement with the results for C4, C5, A4,
 379 and A6 in Ref. (Werner et al., 2018). Note again that the chain length for Ay *includes* the carbon next
 380 to the functional group, while for Cx the carbon inside the functional group is excluded to calculate the
 381 k values. A good match between Cx and Ay demonstrates that indeed the effective chain length and not
 382 the absolute number of carbons determines the surface propensity of these species.

383 It should be noted that the measurement is performed at approximately $\sim 10^{-5}$ s after the liquid jet has
 384 exited the capillary (jet velocity ~ 30 m/s, distance $\sim 10^{-3}$ m). While this is a long time compared to the

385 tens of nanoseconds used in MD simulations to obtain equilibrium conditions, see, *e.g.*, Ref. (Ekholm
 386 et al., 2018) for the C6/A6 system, molecules with yet longer chain lengths may lead to further surface
 387 enrichment on a longer time scale. We cannot draw a sharp line and therefore conclude that the results
 388 presented here might be considered the lower limit for the observed surface behavior.

389 **Figure 2:** (a) Peak areas extracted from the fits to the PE spectra for each single-component solution of
 390 carboxylic acid and alkyl amine (Cx and Ay, respectively; $x,y = 1,2,4,6$), normalized by the value of
 391 formate, $I(C1)$, and the number of carbons sites (x, y) within each molecule. Panel (b) shows the data
 392 of panel (a) after subtraction of $I(C1)$ which represent the surface contributions (see text); note the
 393 different vertical axis scales. All values are plotted against the effective chain length k (bottom axis).
 394 Red and blue open circles represent the total-area values $I_{\text{tot}} = I_1 + I_2$, *i.e.*, a sum of all C 1s intensities,
 395 of the Cx and Ay species, respectively. Orange and light-blue crosses represent C 1s intensities of only
 396 peak p1 (related to the functional group) for Cx and Ay, respectively (compare Fig. 1). The N 1s peak
 397 intensities of Ay are plotted as purple triangles, which coincide with the crosses for Ay (*i.e.*, the carbon
 398 near the functional group) when scaled with an arbitrary factor of 1.22. Both Cx and Ay show an
 399 approximately exponential increase as a function of k ; note the logarithmic scale in panel (a) and the
 400 red and blue lines, which are exponential fits to the Cx and Ay data, respectively. Both species deviate
 401 somewhat from the exponential trend at low k , indicating a weaker promotion of surface propensity by
 402 short chains; see the red dashed curve as a guide to the eye. Small deviations of the crosses (functional
 403 group) above (Ay) or below (Cx) the circles (total intensity) values are due to molecular orientation
 404 (see text). (c) Sketch of the likely average depth and orientation of each species as inferred from the
 405 absolute and relative intensities. The carbon site producing peak p1 is marked with a green circle.

407 The surface contributions (Fig. 2b) for both species exhibit similar behavior and can be
408 approximately described by $I_{\text{surf,} \text{norm}} \approx 0.02 \text{ k}^{3.8}$. This is an arbitrary function obtained by fitting the data
409 without any theoretical justification. Yet, we would like to showcase the possibility of a parametrized
410 description of surface propensities, which would foster an inclusion of surface phenomena in improved
411 atmospheric models. We have also analyzed corresponding intensity changes of the solvent, *i.e.*, the
412 reduction of (water) valence-band PE signal intensity as a function of x,y compared to an average neat-
413 water valence spectrum. Results are shown in Fig. SI-2b.

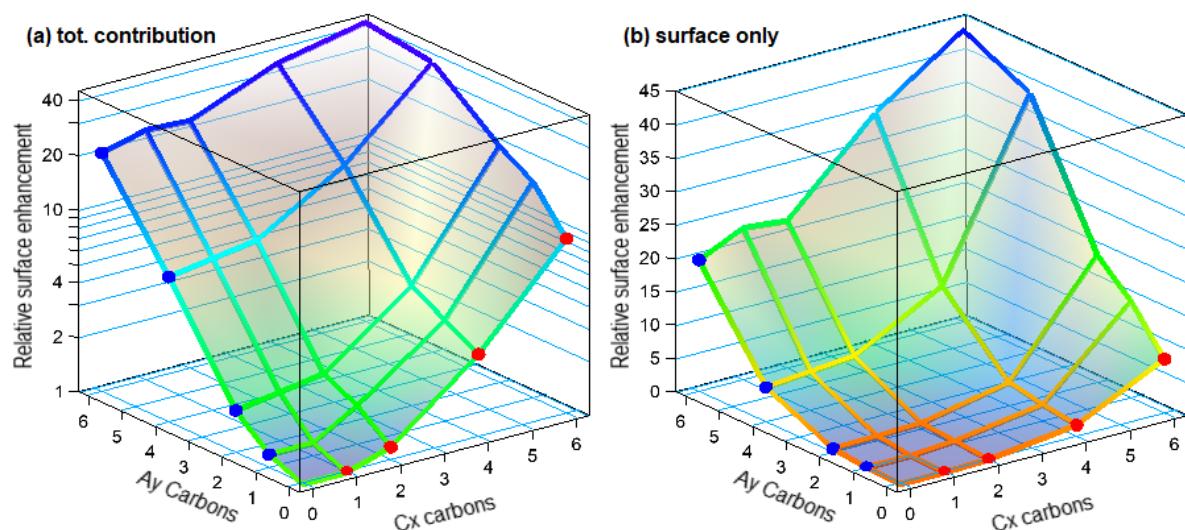
414 From the relative intensities between peaks p1 and p2, *i.e.*, the intensity originating from the carbon
415 close to or within the functional group I_1 relative to that from the chain carbons I_2 , we can also obtain
416 information about the average molecular orientation at the surface. Returning to Fig. 2a, we take a
417 closer look at the peak intensities, I_1 (crosses), in close relation to the functional group; this carbon site
418 can be easily identified in the C 1s PE spectra due to its associated large chemical shift. A similar but
419 not exactly matching trend to the normalized total peak intensity, I_{norm} , is observed. For Ay, I_1 values
420 tend to be slightly higher than I_{norm} (compare circles vs. crosses); this is mirrored in the behavior of the
421 N 1s data (triangles). For Cx, the I_1 values tend to be somewhat lower than I_{norm} . Both effects can be
422 interpreted to originate from molecular orientation: if one end of the molecule is closer to the solution–
423 vapor interface, its signal will be larger compared to other molecular sites, which are pointing further
424 into the bulk solution. We quantify this by calculating the intensity ratio R between the peaks, *i.e.*, $R =$
425 I_2 / I_1 . This ratio can then be compared to R_{ideal} , calculated from the number of carbons contributing
426 only to peak p2, *i.e.*, the chain. If $R = R_{\text{ideal}}$ then all carbon sites are exposed equally (they are at equal
427 probing depths) on average, implying that the molecules are either parallel to the surface along their
428 long axis or randomly oriented. If instead $R / R_{\text{ideal}} \neq 1$, the molecule is preferably oriented normal to
429 the interface (anchored) with one end. Table 2 (bottom part) summarizes the values of R, R_{ideal} , and $R /$
430 R_{ideal} for each species. It is apparent that the ratio R / R_{ideal} is consistently above unity for Cx, which
431 implies that the Cx molecules are oriented with the hydrophilic functional group towards the bulk
432 solution, and the hydrophobic chain towards the vacuum. For Ay, the opposite trend is observed: $R /$
433 R_{ideal} is slightly smaller than unity. This is surprising since it implies that the (carbon near the) functional
434 group is closer to the interface than the chain. That is, the molecule lies rather parallel in the interfacial
435 plane, despite the hydrophilic interaction of the amine end. The proposed orientations and relative
436 depths of both species are sketched in Fig. 2c.

437 The molecular orientation at the surface is due to a balance between the hydrophobic and the
438 hydrophilic interactions. The charged groups interact strongly with the water and tend to be submerged,
439 *i.e.*, fully surrounded by the solvent; here, carboxylate interacts stronger with water than ammonium. In
440 contrast, the alkyl chains can only interact weakly with the water and tend to be expelled from the liquid
441 interface. We speculate that for the alkyl carboxylates this could result in a somewhat more deeply
442 solvated carboxylate group with the alkyl chain pointing outwards, while for the alkyl ammonium the
443 less deeply solvated ammonium group would allow the alkyl chain to orient itself along the surface for

444 increased bonding to the outermost water molecules. One may also expect that the counter ions, Na^+ or
 445 Br^- , may have a small contribution to the emerging surface structure but that aspect has not been
 446 explored in the present study.

447 To summarize, the single-component aqueous solutions of carboxylate anions and alkyl ammonium
 448 cations show an approximately exponentially increased surface propensity as a function of length of the
 449 hydrophobic alkyl chain. For the *same number* of carbon sites (*i.e.*, $x = y$), the surface propensity is
 450 higher for alkyl ammonium cations than for carboxylate anions, consistent with the larger *effective* alkyl
 451 chain length k of the former ($k = x-1 = y$) and previous results for C4, C5, A4, and A6 in Ref. (Werner
 452 et al., 2018). Moreover, the carboxylate anions seem to have an orientation perpendicular to the surface
 453 plane, whereas the alkyl ammonium cations lie parallel to the surface plane.

454 **Mixed solutions**


455 We now turn to the mixed solutions, with results summarized in Table 3 and plotted in Fig. 3.
 456 Analogous to Fig. 2, Fig. 3 shows the total normalized intensity I_{norm} in panel (a) and the surface
 457 contribution $I_{\text{surf,norm}}$ in panel (b), with the latter also summarized in the table. To emphasize the changes
 458 in surface composition, the normalized total surface intensity, $I_{\text{surf,norm}}$, a measure of the combined
 459 amount of organic molecular ions at the surface, is derived as before for the single-component solutions
 460 as $I_{\text{surf,norm}} = I_{\text{norm}} - I_{\text{norm}}(\text{C}1)$. In the figure, results for the Cx and Ay single-species solutions are
 461 highlighted by the red and blue circles, respectively. Values vastly increase for the mixed solutions,
 462 Cx/Ay. Comparing $I_{\text{surf,norm}}$ for the two mixtures of the smallest, C1/A1, and largest molecules in this
 463 study, C6/A6, we find an increase by a factor of ~ 230 . Neglecting depth-distribution differences, one
 464 can directly relate this to the different number of molecular ions at the surface.

465 **Table 3:** Total surface intensity, $I_{\text{surf,norm}}$, of all C 1s peaks and species combined, *i.e.*, the sum of all
 466 C 1s peaks not separated into different molecular sites, which were extracted from fits to PE spectra of
 467 single- (frame) and mixed-species (*italic* text) solutions; the former values are included for comparison
 468 and are the same as in Table 2. All peak intensities were normalized to the value of formate (C1) and
 469 to the relevant number of carbons (see Methods). Furthermore, values have been adjusted for
 470 differences in molecular number density, *i.e.*, 0.05 M (mixtures) *versus* 0.1 M (single species). The
 471 error for all values is estimated to be ± 0.05 from intensity fluctuations and fit errors.

		A1	A2	A4	A6
single	----	0.20	0.73	5.37	19.86
		mix:			
C1	0.00	----	0.19	0.88	5.94
C2	0.16	----	0.69	1.05	6.53
C4	1.87	----	2.65	3.64	13.58
C6	8.25	----	14.66	19.32	38.93
					43.85

472 To quantify cooperative effects, we can make the ansatz that in absence of such effects the intensity
 473 should just be the sum of the individual species' intensity, $I_{\text{sum}} = I(\text{Cx}) + I(\text{Ay})$. We then compare this

474 with the measured intensities for each mixture by calculating the ratio $R_{\text{coop}} = I_{\text{surf,norm}} / I_{\text{sum}}$; the resulting
 475 values are summarized in Table 4. A ratio larger than unity corresponds to a larger than expected surface
 476 propensity. This becomes more pronounced towards longer chain lengths, *i.e.*, higher x,y values. The
 477 increase in the mixed solutions clearly shows that ion–ion interactions lead to a cooperative surface
 478 enrichment of the organic molecular ions. We can discern roughly two regimes analogous to the single-
 479 species results: a slow increase and small cooperative effect when the chain is short (absent) and a large
 480 effect for long chains. For mixtures with C1 and C2 only an insignificant cooperative effect is observed;
 481 C2/A1 is an exception, but we assume this is an outlier produced by a too high relative signal intensity
 482 for this mixture in the experiment. For larger x,y the increase is more pronounced, reaching up to a
 483 factor of three for C6/A4. We would expect the ratio for the C6/A6 mixture to be higher, but it is
 484 possible that the surface already becomes saturated with molecules in this mixture, leading to a
 485 relatively small increase as compared to the (already very surface-active) individual species C6 and A6.
 486 We would like to emphasize at this point that surface saturation is another crucial aspect determining
 487 the availability of molecular ions at the surface; here, saturation plays a limiting role for enrichment.
 488 We have seen above that cooperative effects can multiply the number of molecules at the surface by a
 489 factor of several hundred, quickly saturating the surface even at small bulk-solution concentrations.
 490 Thus, the relative increase in number density may be much larger at small initial concentrations very
 491 far from saturation, while only a small or even no enrichment is observed for an already relatively high
 492 initial concentration of each constituent species. Surface saturation should thus always be considered
 493 when modeling ion densities. We also note that an asymmetric mixture (deviations from the 1:1
 494 concentration ratio) may further complicate the interaction, which is, however, beyond the current study.

495

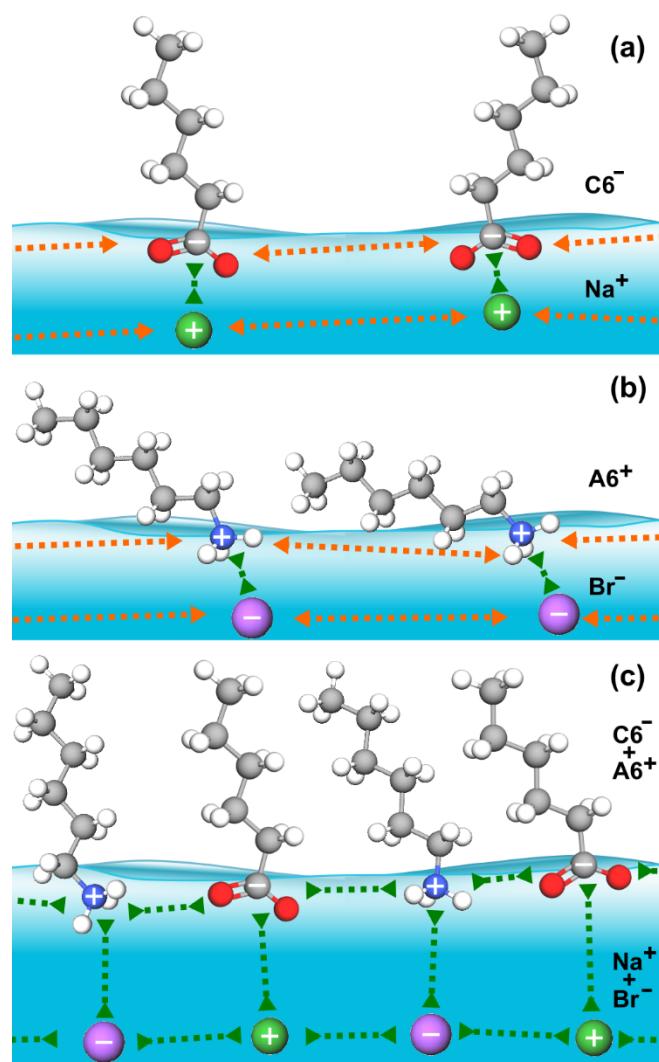
496 **Figure 3:** (a) Normalized total C 1s peak intensity, I_{norm} , *i.e.*, divided by the total number of carbon
 497 atoms and by the value of C1, for all studied species on a log scale. (b) Total surface component only,
 498 $I_{\text{surf,norm}}$, *i.e.*, after subtraction of $I(C1)$, on a linear scale. The two abscissae represent the total number
 499 of carbons (x,y) in the molecule for Cx and Ay, respectively. Red and blue circles mark the values for

500 each single-species solution Cx and Ay, respectively, and correspond to the red and blue circles in
 501 Fig. 2. The plots can be seen as analogous to Figs. 2a and 2b but now including the mixed solutions
 502 as a pseudo-3D representation. The highest overall surface propensity is observed for C6/A6.

503 **Table 4:** Surface enhancement ratio $R_{coop} = I_{surf,norm} / I_{sum}$ for the mixed solutions relative to the sum of
 504 the individual species' intensity $I_{sum}(Cx/Ay) = I_{surf,norm}(Cx) + I_{surf,norm}(Ay)$, using $I_{surf,norm}$ from Table 3.
 505 Errors are the result of error propagation of errors for determining the individual intensities.

	A1	A2	A4	A6
C1	<i>0.97</i> ± 0.29	<i>1.15</i> ± 0.12	<i>1.11</i> ± 0.05	<i>1.15</i> ± 0.05
C2	<i>1.92</i> ± 0.23	<i>1.18</i> ± 0.10	<i>1.18</i> ± 0.05	<i>1.11</i> ± 0.05
C4	<i>1.28</i> ± 0.07	<i>1.40</i> ± 0.06	<i>1.88</i> ± 0.05	<i>1.61</i> ± 0.05
C6	<i>1.84</i> ± 0.05	<i>2.27</i> ± 0.06	<i>2.96</i> ± 0.06	<i>1.59</i> ± 0.05

506


507 **Microscopic mechanism for cooperative surface enrichment**

508 When only a single molecular ion species is present, the molecular ions on the surface repel each
 509 other via their charged headgroups while their inorganic counter ions are located beneath the surface
 510 layer, as schematically illustrated in Fig. 4. Coulomb repulsion makes a high surface coverage of
 511 molecular ions energetically unfavorable. However, in the mixed-solute systems, Coulomb repulsion is
 512 reduced as the alkyl-ammonium cations and alkyl-carboxylate anions act as counter ions for each other,
 513 fostering a cooperative effect that allows for greater coverage of organic molecular ions at the surface.
 514 Cooperative surface enrichment similar to the observation in the present study has been reported for the
 515 C6/A6 system,(Ekholm et al., 2018) and was qualitatively attributed to a combination of ion pairing
 516 between the charged functional groups of the respective organic ion, hydrophobic expulsion of the alkyl
 517 chains from the surface, and van der Waals interactions between the alkyl chains. Furthermore, the close
 518 packing of the alkyl chains contributes to the effect: Molecules align perpendicular to the surface and
 519 are stabilized by van der Waals interactions between the chains, analogous to alcohols.(Walz et al.,
 520 2015; Walz et al., 2016)

521 **Surface orientation**

522 For the single-species solutions, we concluded from the C 1s peak-intensity ratios, $R = I_2/I_1$, between
 523 intensities originating from the carbon atom close to or within the functional group I_1 relative to that
 524 from the chain carbons I_2 , that the Cx anions seem to have an average orientation perpendicular to the
 525 surface plane, whereas the Ay cations are rather lying parallel to the surface plane. What then is the
 526 molecular orientation in the mixed cases, considering the much higher molecule number densities at the
 527 surface? In Table 5, we present the C 1s peak-intensity ratios R and R / R_{ideal} as defined for the single-
 528 component cases. Again, a value of R / R_{ideal} above (below) 1 indicates a preferable orientation with the
 529 chain (the functional group) closer towards the surface. We observe that the Cx species retain their
 530 preferential perpendicular orientation, as expected. Similarly, the Ay species largely maintain their

531 preferentially parallel orientation for the most part. Interestingly, the data imply Ay changing into a
 532 perpendicular orientation for C6/A4, C6/A6, and C4/A6, adapting a configuration that is normal to the
 533 surface and thus aligned with Cx at the surface. The molecular-scale mechanism of the cooperative
 534 surface propensity may thus include changes of the orientation from lying down to standing up, enabling
 535 higher molecular surface densities. Note however, that the results for the latter two cases are less reliable
 536 since the peak ratio I_2/I_1 was constrained for the Cx component, thus possibly arbitrarily inflating the
 537 ratio for Ay. Still, such a result is not unexpected considering that a close packing of aligned molecules
 538 uses the available space more effectively (compare Fig. 4c). This result may also be related to surface
 539 saturation being likely reached with the particular concentration used, which has the tendency to force
 540 molecules into an aligned configuration.(Walz et al., 2015; Walz et al., 2016)

541

542 **Figure 4:** Schematic illustration of attractive (green arrows) and repulsive (orange arrows)
 543 between the organic and inorganic ions in the surface region for the C6 (panel 4a), A6 (4b), and C6/A6
 544 (4c) cases.

545 **Table 5:** Relative C 1s peak-intensity contribution from the chain I_2 *versus* the functional group I_1 for
 546 (a) the Cx and (b) the Ay species in aqueous solution. I_1 and I_2 of each species were extracted separately
 547 from the combined PE signal *via* fitting, and $R = I_2/I_1$ was calculated. The result is compared against
 548 $R_{ideal} = x-1, y-1$, calculated from the number of carbons which contribute to I_2 . Below each entry we
 549 also present R / R_{ideal} in bold. A value of $R / R_{ideal} > 1$ ($R / R_{ideal} < 1$) indicates a preferable orientation
 550 with the chain (the functional group) closer towards the surface. Values marked with a star (*) in panel
 551 (a) for mixtures of Cx with A6 are no fit results since these values were constrained during the fitting
 552 to reach a stable outcome for the strongly overlapping p2 peaks of Cx/A6; values were chosen to
 553 represent averages of the results from the other Cx/Ay mixtures with $y < 6$. The error for all other values
 554 is estimated to be within ± 0.1 via error propagation.

(a) Cx		R _{ideal}	no Ay	A1	A2	A4	A6
C2	1		$R = 1.19$	1.39	1.24	1.14	1.25*
			$R/R_{ideal} = 1.19$	1.39	1.24	1.14	1.25*
C4	3		3.63	3.68	3.63	4.27	3.79*
			1.21	1.23	1.21	1.42	1.26*
C6	5		6.80	6.59	6.76	6.78	6.80*
			1.36	1.32	1.35	1.36	1.36*

(b) Ay		R _{ideal}	no Cx	C1	C2	C4	C6
A2	1		$R = 0.87$	0.87	0.82	0.88	0.89
			$R/R_{ideal} = 0.87$	0.87	0.82	0.88	0.89
A4	3		2.77	2.79	2.82	2.76	3.69
			0.92	0.93	0.94	0.92	1.23
A6	5		5.09	4.41	4.68	6.14	9.91
			1.02	0.88	0.94	1.23	1.98

555

556

557 Surface composition

558 We discussed that the surface propensity of the single species increases with the number of carbons
 559 x,y, and that cooperative ion–ion interactions lead to an additional increase of surface propensity for
 560 the mixed solutions. How do these two effects combined influence the relative amounts of Cx and Ay
 561 at the surface? In Table 6, we summarize the ratio $I_{surf,norm}(Ay)/I_{surf,norm}(Cx)$, *i.e.*, the ratio of the total
 562 intensities for each species, which is an indirect measure of the amount of Ay molecules relative to the
 563 amount of Cx molecules at the surface. We observed that the ratio is larger than unity when the Cx
 564 moiety has a short (C2) or no chain (C1), *i.e.*, the surfaces of these solutions are dominated by the Ay
 565 species. For Cx with longer chains, C4 and C6, combined with short-chained Ay, A1 and A2, the
 566 situation is reversed, *i.e.*, the ratio is smaller than unity. If the chains of both molecules are long, then
 567 the ratio converges to 1 (a 1:1 molecule ratio), which is expected when considering that a mutual charge
 568 neutralization would favor equal amounts of cationic Cx and anionic Ay species at the surface. Note
 569 that A6 is a longer molecule than C6 because of the nitrogen in the functional group, which explains
 570 the larger than unity intensity ratio for Cx/A6 (with x = 4,6), *i.e.*, the A6 molecule is likely protruding

571 out further when both are aligned upright at the surface. We conclude that the species with the longer
 572 chain dominate the surface of the mixed solutions, and if both species contain long carbon chains, they
 573 are present in approximately equal amounts.

574 **Table 6:** Relative surface contribution of Ay *versus* Cx to the C 1s PE spectra of the mixed solutions,
 575 *i.e.*, an intensity ratio obtained as $I_{\text{surf,norm}}(\text{Ay})/I_{\text{surf,norm}}(\text{Cx})$. Errors are calculated via error propagation,
 576 and can get large if the denominator is very small (such as for C1/A2).

	A1	A2	A4	A6
C1	2.12 ± 0.94	8.40 ± 2.99	4.29 ± 0.13	3.35 ± 0.05
C2	1.56 ± 0.16	1.88 ± 0.15	2.77 ± 0.05	2.45 ± 0.05
C4	0.59 ± 0.05	0.84 ± 0.05	1.09 ± 0.05	1.46 ± 0.05
C6	0.59 ± 0.05	0.69 ± 0.05	1.11 ± 0.05	1.60 ± 0.05

577

578 **Amount of carbon at the surface**

579 So far, we discussed the number density of organic molecular ions at the surface. However, some
 580 atmospherically relevant aspects, such as the availability of carbon for reactions with incoming radicals
 581 and the effects on water accommodation, rather scale with the absolute amount of carbon.(Shiraiwa et
 582 al., 2011; Davies et al., 2013; Ergin and Takahama, 2016; Miles et al., 2016; Ruehl et al., 2016) Here,
 583 the total C 1s surface intensity, $I_{\text{surf}} = I_{\text{tot}} - I_{\text{tot}}(\text{C1})$, *i.e.*, not normalized by the number of carbons (x,y),
 584 provides a measure of how the amount of surface carbon varies. These values are summarized in Table 7.
 585 Since molecular ions with higher surface propensity also tend to contain more carbon atoms, the amount
 586 of carbon at the surface scales even stronger with the alkyl chain length than the amount of organic
 587 molecular ions itself. For example, the relative amount of carbon at the surface is \sim 1400 times higher
 588 for C6/A6 than for C1/A1.

589 **Table 7:** Relative amounts of carbon at the surface, expressed as the total intensity minus the bulk
 590 contribution $I_{\text{surf}} = I_{\text{tot}} - I_{\text{tot}}(\text{C1})$. The error for all values is estimated to be ± 0.05 .

	single	----	A1	A2	A4	A6
		single	0.20	2.46	24.5	124
		mix:				
C1	0	----	0.19	1.76	16.4	82.7
C2	1.32	----	1.54	3.10	21.6	92.0
C4	10.5	----	8.13	12.9	57.3	179
C6	54.5	----	53.8	80.3	199	268

591 **Implications for inorganic ions**

592 Another aspect of the surface enrichment of organic molecular ions concerns their ability to draw
 593 inorganic ions to the surface. Inorganic ions such as halides are important in atmospheric chemistry, as

594 exemplified by the ozone depletion through a reaction with iodide and bromide,(Moreno et al., 2018;
595 Chen et al., 2021) the production of Cl_2 from OH (gas) and Cl^- (aq),(Laskin et al., 2006) and the reaction
596 between N_2O_5 (gas) and Br^- (aq).(Sobyra et al., 2019) These reactions involve a gas-phase species and
597 a solvated halide ion, hinging on the presence of the latter at the surface. In single-solute solutions, the
598 inorganic ions act as counter ions to the surface-enriched organic ions, which leads to the formation of
599 an electric double layer where organic ions occupy the surface and inorganic ions reside in a sub-layer
600 underneath. The considerable enrichment of either positively or negatively charged organic ions on the
601 surface has been shown to lead to a notable increase in the concentration of inorganic counter ions
602 within this sub-layer.(Gopakumar et al., 2022) However, in mixed cationic–anionic molecular ion
603 solutions, the inorganic ions are not the main counter ions of the organic ions, as discussed above. As a
604 result, the inorganic counter ions can be expected to exhibit reduced enrichment in the sub-layer of such
605 mixed cationic–anionic molecular ion solutions (compare Fig. 4 and Ref. (Gopakumar et al., 2022)),
606 and hence fewer ions are available for reactions with gas-phase species.

607 **Atmospheric implications**

608 Before elaborating on the atmospheric implications, we briefly discuss the conditions of our
609 measurements and their atmospheric relevance. Our PES studies from aqueous solutions were
610 performed near ~ 10 °C temperature and at rough vacuum conditions. Such temperatures are found in
611 the atmosphere, both at ground level and higher up. Operation at low pressure implies that the
612 measurements were made under evaporative conditions with the immediate surface being at or slightly
613 below the vapor pressure of water, which are also found in the atmosphere. We note that this pertains
614 to the water solvent, while the investigated molecular ions do not have an appreciable vapor pressure.
615 Based on these considerations, we are confident that the phenomena we report are relevant for
616 atmospheric aerosols, and we will now proceed to elaborate on the atmospheric implications.

617 Organic matter is ubiquitous in atmospheric aerosols, both on land and in the ocean, from the
618 tropics to the Arctic. Many organic substances are surface active to a certain extent and also contain
619 (de)protonatable groups such as amino and carboxyl groups, forming molecular ions in a broad pH
620 range from slightly below 5 to somewhat above 10. On the microscopic level, the surface composition
621 of aqueous aerosols has been discussed in terms of solvent-solute interaction, and we show here that
622 solute-solute interactions can also substantially increase the amounts of organics at the surface. The
623 presence of an outer organics-enriched layer has been shown to influence a number of relevant
624 properties and processes, such as optical properties and shortwave radiative effects, water
625 accommodation, and chemical aging, see, for example, Refs. (McFiggans et al., 2006; Shiraiwa et al.,
626 2011; Sareen et al., 2013; Davies et al., 2013; Ergin and Takahama, 2016; Miles et al., 2016; Ruehl et
627 al., 2016; Ovadnevaite et al., 2017; Lowe et al., 2019).

628 Organics at the surface lower the surface tension, which is most relevant for the present study. This
629 directly affects aerosol droplet formation, as described by classic Köhler theory (Köhler, 1936;

630 McFiggans et al., 2006), and leads to significant enhancements of cloud condensation nuclei (Sareen
631 et al., 2013; Ovadnevaite et al., 2017). Furthermore, the amphiphilic organics at the surface tend to be
632 oriented with the carbon chains outwards. These organics can form a hydrophobic film, which, on the
633 microscopic scale, will reduce the sticking coefficient of incoming water molecules and thereby affect
634 water accommodation, as well as reduce the frequency of water molecules leaving the liquid phase,
635 i.e., reduce evaporation (McFiggans et al., 2006; Davies et al., 2013; Ergin and Takahama, 2016; Miles
636 et al., 2016; Ruehl et al., 2016). Yet another aspect is that surface species are more accessible than
637 bulk-solvated species for reactions with atmospheric radicals. The cooperatively enhanced surface
638 propensity sets the stage for further chemistry, as surface species are chemically more active than those
639 in the aerosol bulk. This affects, e.g., the aerosol chemical aging, *i.e.*, the time evolution of the
640 chemical composition via chemical and photochemical processes (McFiggans et al., 2006; George and
641 Abbatt, 2010; Shiraiwa et al., 2011). These three examples illustrate how surface enrichment of
642 organics influences atmospherically fundamental surface properties and processes.

643 On the microscopic scale, many common amphiphilic organics containing amino and carboxyl
644 groups are strongly surface enriched by solute-solvent interactions, implying that modeling aqueous
645 aerosols as homogenous droplets would be inadequate for surface-related phenomena. Our present
646 results show that the surface propensity can be further strongly enhanced in a wide and
647 environmentally relevant pH range by solute-solute interactions, mainly between the oppositely
648 charged molecular ions. This implies that to properly model the surface composition of aqueous
649 aerosols, and hence all surface related properties and processes, such cooperative effects boosting the
650 single-solute surface propensity would have to be considered.

651 On the macroscopic scale, these changes in surface composition can, therefore, significantly
652 influence radiative forcing *via* aerosol growth, cloud condensation nuclei activity, and aerosol
653 chemical aging. Our results demonstrate the principal feasibility of a more advanced input for creating
654 parameterized descriptions of aerosol surface composition needed to properly account for their impacts
655 in climate models. Specifically, the observed drastic increase in surfactant density due to the molecular
656 interactions between different types of organic surfactants would be one effect to be included in future
657 modeling, e.g., cloud droplet formation.

658 **Conclusions**

659 The ionic alkyl amines and carboxylic acids, crucial in the atmosphere as organic compounds, are
660 prevalent over their non-ionic forms in solutions at pH near 7. We investigated the composition of
661 surfaces in aqueous solutions containing single components as well as mixtures of the carboxylic acid
662 cations formate, acetate, butyrate, hexanoate and the alkyl amine anions methylammonium,
663 ethylammonium, butylammonium, hexylammonium, relevant in an atmospheric context. By using
664 surface-sensitive X-ray-based PES measurements, we show that mixtures of these compounds exhibit
665 a notable surface enrichment in organic ions compared to solutions with just one species. The

666 availability of molecular ions at the surface scales exponentially as a function of carbon chain length,
667 yielding an increase of up to a factor ~230 of the molecular number density, and ~1400 times the amount
668 of carbon between mixtures of the smallest species and the largest species studied here. This enrichment
669 arises mainly from ion-pairing interactions of the two ionic species, even at low bulk-solution
670 concentrations. Yet, surface saturation imposes a limit on the maximum achievable enrichment. From
671 this result, it is anticipated that even small variations in composition with admixture of different species
672 can lead to significant changes of atmospherically relevant surface properties and processes such as
673 surface tension, condensation rates, evaporation rates, water accommodation, and the chemical aging
674 of aerosols. Furthermore, changes in the surface composition and condition may significantly impact
675 radiative forcing at a larger scale *via* aerosol growth and cloud condensation nuclei activity. Our
676 findings underscore the necessity for a comprehensive understanding of the surface composition of
677 aqueous solutions of organic molecules, which is a critical aspect for enhancing the accuracy of aerosol
678 modeling within climate models.

679 **Author Contributions**

680 G. Ö. and O. B. conceived the experiments. H. K., S. G., B. C., F. T., D. V., R. M., J. P., H. B., A. N. B.,
681 G. Ö., B. W., and O. B. planned, prepared, carried out the experiments, and discussed the data. H. K.
682 and S. T. analyzed the data. S. T., B. W., and O. B. wrote the manuscript with feedback from all authors.

683 **Data Availability**

684 The data of relevance to this study have been deposited at the following DOI:
685 [10.5281/zenodo.12644491](https://doi.org/10.5281/zenodo.12644491).

686 **Conflicts of interest**

687 There are no conflicts to declare.

688 **Acknowledgements**

689 We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the
690 provision of experimental facilities. Parts of this research were carried out at PETRA III, and we would
691 like to thank Moritz Hoesch and his team for assistance in using beamline P04. Beamtime was allocated
692 for proposal I-20220937 EC. H. K. and B. W. acknowledge funding from the European Research
693 Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant
694 agreement No. 883759, AQUACHIRAL). S. T. acknowledges support from the JSPS KAKENHI Grant
695 No. JP20K15229 and ISHIZUE 2024 of Kyoto University. F. T. acknowledges funding by the Deutsche
696 Forschungsgemeinschaft (DFG, German Research Foundation) - Project 509471550, Emmy Noether
697 Programme. F. T. and B. W. acknowledge support by the MaxWater initiative of the Max-Planck-

698 Gesellschaft. O. B. acknowledges support from the Swedish Research Council (VR) through Project
699 2023-04346 and the Swedish Foundation for International Cooperation in Research and Higher
700 Education (STINT) through Project 202100-2932. R. M., J. P., and A. N. B. acknowledge support from
701 the Swedish-Brazilian collaboration STINT-CAPES process no. 88881.465527/2019-01. A. N. B.
702 acknowledges support from FAPESP (the São Paulo Research Foundation, Process number
703 2017/11986-5) and Shell and ANP (Brazil's National Oil, Natural Gas and Biofuels Agency); and
704 CNPq-Brazil process 401581/2016-0.

705 **References**

706 Bagschik, K., Wagner, J., Buß, R., Riepp, M., Philippi-Kobs, A., Müller, L., Buck, J., Trinter, F.,
707 Scholz, F., Seltmann, J., Hoesch, M., Viehhaus, J., Grübel, G., Oepen, H. P., and Frömter, R.: Direct
708 2D spatial-coherence determination using the Fourier-analysis method: multi-parameter
709 characterization of the P04 beamline at PETRA III, *Optics Express*, 28, 10.1364/oe.382608, 2020.

710 Björneholm, O., Öhrwall, G., de Brito, A. N., Ågren, H., and Caravetta, V.: Superficial Tale of Two
711 Functional Groups: On the Surface Propensity of Aqueous Carboxylic Acids, Alkyl Amines, and
712 Amino Acids, *Acc. Chem. Res.*, 55, 3285-3293, 10.1021/acs.accounts.2c00494, 2022.

713 Chen, S., Artiglia, L., Orlando, F., Edebeli, J., Kong, X., Yang, H., Boucly, A., Corral Arroyo, P.,
714 Prisle, N., and Ammann, M.: Impact of Tetrabutylammonium on the Oxidation of Bromide by Ozone,
715 *ACS Earth and Space Chemistry*, 5, 3008-3021, 10.1021/acsearthspacechem.1c00233, 2021.

716 Davies, J. F., Miles, R. E. H., Haddrell, A. E., and Reid, J. P.: Influence of organic films on the
717 evaporation and condensation of water in aerosol, *Proceedings of the National Academy of Sciences*,
718 110, 8807-8812, 10.1073/pnas.1305277110, 2013.

719 Dupuy, R., Filser, J., Richter, C., Buttersack, T., Trinter, F., Gholami, S., Seidel, R., Nicolas, C.,
720 Bozek, J., Egger, D., Oberhofer, H., Thürmer, S., Hergenhahn, U., Reuter, K., Winter, B., and Bluhm,
721 H.: Ångstrom-Depth Resolution with Chemical Specificity at the Liquid-Vapor Interface, *Phys. Rev.*
722 *Lett.*, 130, 10.1103/PhysRevLett.130.156901, 2023.

723 Ekholm, V.: Ion pairing and Langmuir-like adsorption at aqueous surfaces studied by core-level
724 spectroscopy, Doctoral thesis, comprehensive summary, Digital Comprehensive Summaries of
725 Uppsala Dissertations from the Faculty of Science and Technology, *Acta Universitatis Upsaliensis*,
726 Uppsala, 62 pp., 2018.

727 Ekholm, V., Caleman, C., Bjärnhall Prytz, N., Walz, M.-M., Werner, J., Öhrwall, G., Rubensson, J.-
728 E., and Björneholm, O.: Strong enrichment of atmospherically relevant organic ions at the aqueous

729 interface: the role of ion pairing and cooperative effects, *Phys. Chem. Chem. Phys.*, 20, 27185-27191,
730 10.1039/c8cp04525a, 2018.

731 Ergin, G. and Takahama, S.: Carbon Density Is an Indicator of Mass Accommodation Coefficient of
732 Water on Organic-Coated Water Surface, *J. Phys. Chem. A*, 120, 2885-2893,
733 10.1021/acs.jpca.6b01748, 2016.

734 George, I. J. and Abbatt, J. P. D.: Heterogeneous oxidation of atmospheric aerosol particles by gas-
735 phase radicals, *Nat. Chem.*, 2, 713-722, 10.1038/nchem.806, 2010.

736 Goldstein, A. H. and Galbally, I. E.: Known and Unexplored Organic Constituents in the Earth's
737 Atmosphere, *Environ. Sci. Technol.*, 41, 1514-1521, 10.1021/es072476p, 2007.

738 Gopakumar, G., Unger, I., Saak, C.-M., Öhrwall, G., Naves de Brito, A., Rizuti da Rocha, T. C.,
739 Nicolas, C., Caleman, C., and Björneholm, O.: The surface composition of amino acid – halide salt
740 solutions is pH-dependent, *Environmental Science: Atmospheres*, 2, 441-448, 10.1039/dlea00104c,
741 2022.

742 Grushka, E.: Characterization of exponentially modified Gaussian peaks in chromatography, *Anal.*
743 *Chem.*, 44, 1733-1738, 10.1021/ac60319a011, 1972.

744 Hüfner, S., Schmidt, S., and Reinert, F.: Photoelectron spectroscopy—An overview, *Nuclear*
745 *Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and*
746 *Associated Equipment*, 547, 8-23, 10.1016/j.nima.2005.05.008, 2005.

747 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H.,
748 DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M.,
749 Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C.,
750 Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M.,
751 Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, J., Huffman, J. A., Onasch, T.
752 B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S.,
753 Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T.,
754 Hatakeyama, S., Shimo, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D.,
755 Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M.,
756 Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the
757 Atmosphere, *Science*, 326, 1525-1529, 10.1126/science.1180353, 2009.

758 Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van
759 Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi,
760 S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E.,

761 Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, *Atmos.*
762 *Chem. Phys.*, 5, 1053-1123, 10.5194/acp-5-1053-2005, 2005.

763 Köhler, H.: The nucleus in and the growth of hygroscopic droplets, *Trans. Faraday Soc.*, 32, 1152-
764 1161, 10.1039/tf9363201152, 1936.

765 Laskin, A., Wang, H., Robertson, W. H., Cowin, J. P., Ezell, M. J., and Finlayson-Pitts, B. J.: A New
766 Approach to Determining Gas-Particle Reaction Probabilities and Application to the Heterogeneous
767 Reaction of Deliquesced Sodium Chloride Particles with Gas-Phase Hydroxyl Radicals, *J. Phys.*
768 *Chem. A*, 110, 10619-10627, 10.1021/jp063263+, 2006.

769 Lee, M.-T., Orlando, F., Artiglia, L., Chen, S., and Ammann, M.: Chemical Composition and
770 Properties of the Liquid–Vapor Interface of Aqueous C1 to C4 Monofunctional Acid and Alcohol
771 Solutions, *J. Phys. Chem. A*, 120, 9749-9758, 10.1021/acs.jpca.6b09261, 2016.

772 Lowe, S. J., Partridge, D. G., Davies, J. F., Wilson, K. R., Topping, D., and Riipinen, I.: Key drivers
773 of cloud response to surface-active organics, *Nat. Commun.*, 10, 10.1038/s41467-019-12982-0, 2019.

774 Malerz, S., Haak, H., Trinter, F., Stephansen, A. B., Kolbeck, C., Pohl, M., Hergenhahn, U., Meijer,
775 G., and Winter, B.: A setup for studies of photoelectron circular dichroism from chiral molecules in
776 aqueous solution, *Rev. Sci. Instrum.*, 93, 015101, 10.1063/5.0072346, 2022.

777 Malerz, S., Trinter, F., Hergenhahn, U., Ghrist, A., Ali, H., Nicolas, C., Saak, C.-M., Richter, C.,
778 Hartweg, S., Nahon, L., Lee, C., Goy, C., Neumark, D. M., Meijer, G., Wilkinson, I., Winter, B., and
779 Thürmer, S.: Low-energy constraints on photoelectron spectra measured from liquid water and
780 aqueous solutions, *Phys. Chem. Chem. Phys.*, 23, 8246-8260, 10.1039/d1cp00430a, 2021.

781 McCormick, R. A. and Ludwig, J. H.: Climate Modification by Atmospheric Aerosols, *Science*, 156,
782 1358-1359, 10.1126/science.156.3780.1358, 1967.

783 McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S.,
784 Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C. D., Snider, J. R.,
785 and Weingartner, E.: The effect of physical and chemical aerosol properties on warm cloud droplet
786 activation, *Atmos. Chem. Phys.*, 6, 2593-2649, 10.5194/acp-6-2593-2006, 2006.

787 Miles, R. E. H., Davies, J. F., and Reid, J. P.: The influence of the surface composition of mixed
788 monolayer films on the evaporation coefficient of water, *Phys. Chem. Chem. Phys.*, 18, 19847-19858,
789 10.1039/c6cp03826c, 2016.

790 Minofar, B., Jungwirth, P., Das, M. R., Kunz, W., and Mahiuddin, S.: Propensity of Formate, Acetate,
791 Benzoate, and Phenolate for the Aqueous Solution/Vapor Interface: Surface Tension Measurements
792 and Molecular Dynamics Simulations, *J. Phys. Chem. C*, 111, 8242-8247, 10.1021/jp068804+, 2007.

793 Mocellin, A., Gomes, A. H. d. A., Araújo, O. C., de Brito, A. N., and Björneholm, O.: Surface
794 Propensity of Atmospherically Relevant Amino Acids Studied by XPS, *J. Phys. Chem. B*, 121, 4220-
795 4225, 10.1021/acs.jpcb.7b02174, 2017.

796 Moreno, C. G., Gálvez, O., López-Arza Moreno, V., Espildora-García, E. M., and Baeza-Romero, M.
797 T.: A revisit of the interaction of gaseous ozone with aqueous iodide. Estimating the contributions of
798 the surface and bulk reactions, *Phys. Chem. Chem. Phys.*, 20, 27571-27584, 10.1039/c8cp04394a,
799 2018.

800 Noziere, B.: Don't forget the surface, *Science*, 351, 1396-1397, 10.1126/science.aaf3253, 2016.

801 Öhrwall, G., Prisle, N. L., Ottosson, N., Werner, J., Ekholm, V., Walz, M.-M., and Björneholm, O.:
802 Acid-Base Speciation of Carboxylate Ions in the Surface Region of Aqueous Solutions in the
803 Presence of Ammonium and Aminium Ions, *J. Phys. Chem. B*, 119, 4033-4040, 10.1021/jp509945g,
804 2015.

805 Ottosson, N., Wernersson, E., Söderstrom, J., Pokapanich, W., Kaufmann, S., Svensson, S., Persson,
806 I., Öhrwall, G., and Björneholm, O.: The Protonation State of Small Carboxylic Acids at the Water
807 Surface from Photoelectron Spectroscopy, *Phys. Chem. Chem. Phys.*, 13, 12261-12267,
808 10.1039/c1cp20245f, 2011.

809 Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G., Ceburnis, D., Decesari, S.,
810 Rinaldi, M., Hodas, N., Facchini, M. C., Seinfeld, J. H., and O' Dowd, C.: Surface tension prevails
811 over solute effect in organic-influenced cloud droplet activation, *Nature*, 546, 637-641,
812 10.1038/nature22806, 2017.

813 Powis, I., Holland, D. M. P., Antonsson, E., Patanen, M., Nicolas, C., Miron, C., Schneider, M.,
814 Soshnikov, D. Y., Dreuw, A., and Trofimov, A. B.: The influence of the bromine atom Cooper
815 minimum on the photoelectron angular distributions and branching ratios of the four outermost bands
816 of bromobenzene, *J. Chem. Phys.*, 143, 144304, 10.1063/1.4931642, 2015.

817 Ruehl, C. R., Davies, J. F., and Wilson, K. R.: An interfacial mechanism for cloud droplet formation
818 on organic aerosols, *Science*, 351, 1447-1450, 10.1126/science.aad4889, 2016.

819 Sareen, N., Schwier, A. N., Lathem, T. L., Nenes, A., and McNeill, V. F.: Surfactants from the gas
820 phase may promote cloud droplet formation, *Proceedings of the National Academy of Sciences*, 110,
821 2723-2728, 10.1073/pnas.1204838110, 2013.

822 Sasaki, S.: Analyses for a planar variably-polarizing undulator, *Nuclear Instruments and Methods in*
823 *Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 347,
824 83-86, 10.1016/0168-9002(94)91859-7, 1994.

825 PLÉIADES beamline website, Synchrotron SOLEIL, Saint-Aubin: <https://www.synchrotron-soleil.fr/en/beamlines/pleiades>

827 Shiraiwa, M., Ammann, M., Koop, T., and Pöschl, U.: Gas uptake and chemical aging of semisolid
828 organic aerosol particles, *Proceedings of the National Academy of Sciences*, 108, 11003-11008,
829 10.1073/pnas.1103045108, 2011.

830 Sobyra, T. B., Pliszka, H., Bertram, T. H., and Nathanson, G. M.: Production of Br₂ from N₂O₅ and
831 Br-in Salty and Surfactant-Coated Water Microjets, *The Journal of Physical Chemistry A*, 123, 8942-
832 8953, 10.1021/acs.jpca.9b04225, 2019.

833 Thürmer, S., Seidel, R., Faubel, M., Eberhardt, W., Hemminger, J. C., Bradforth, S. E., and Winter,
834 B.: Photoelectron Angular Distributions from Liquid Water: Effects of Electron Scattering, *Phys. Rev.*
835 *Lett.*, 111, 173005, 10.1103/PhysRevLett.111.173005, 2013.

836 Thürmer, S., Malerz, S., Trinter, F., Hergenhahn, U., Lee, C., Neumark, D. M., Meijer, G., Winter, B.,
837 and Wilkinson, I.: Accurate Vertical Ionization Energy and Work Function Determinations of Liquid
838 Water and Aqueous Solutions, *Chem. Sci.*, 12, 10558-10582, 10.1039/d1sc01908b, 2021.

839 The Intergovernmental Panel on Climate Change (IPCC): Climate Change 2022: Impacts, Adaptation
840 and Vulnerability, 2022.

841 Tsigaridis, K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P., Bahadur, R., Balkanski, Y.,
842 Bauer, S. E., Bellouin, N., Benedetti, A., Bergman, T., Berntsen, T. K., Beukes, J. P., Bian, H.,
843 Carslaw, K. S., Chin, M., Curci, G., Diehl, T., Easter, R. C., Ghan, S. J., Gong, S. L., Hodzic, A.,
844 Hoyle, C. R., Iversen, T., Jathar, S., Jimenez, J. L., Kaiser, J. W., Kirkevåg, A., Koch, D., Kokkola,
845 H., Lee, Y. H., Lin, G., Liu, X., Luo, G., Ma, X., Mann, G. W., Mihalopoulos, N., Morcrette, J. J.,
846 Müller, J. F., Myhre, G., Myriokefalitakis, S., Ng, N. L., O'Donnell, D., Penner, J. E., Pozzoli, L.,
847 Pringle, K. J., Russell, L. M., Schulz, M., Sciare, J., Seland, Ø., Shindell, D. T., Sillman, S., Skeie, R.
848 B., Spracklen, D., Stavrakou, T., Steenrod, S. D., Takemura, T., Tiitta, P., Tilmes, S., Tost, H., van
849 Noije, T., van Zyl, P. G., von Salzen, K., Yu, F., Wang, Z., Wang, Z., Zaveri, R. A., Zhang, H.,

850 Zhang, K., Zhang, Q., and Zhang, X.: The AeroCom evaluation and intercomparison of organic
851 aerosol in global models, *Atmos. Chem. Phys.*, 14, 10845-10895, 10.5194/acp-14-10845-2014, 2014.

852 Twomey, S.: Pollution and the planetary albedo, *Atmospheric Environment* (1967), 8, 1251-1256,
853 10.1016/0004-6981(74)90004-3, 1974.

854 Viefhaus, J., Scholz, F., Deinert, S., Glaser, L., Ilchen, M., Seltmann, J., Walter, P., and Siewert, F.:
855 The Variable Polarization XUV Beamline P04 at PETRA III: Optics, mechanics and their
856 performance, *Nucl. Instrum. Methods Phys. Res., Sect. A*, 710, 151-154, 10.1016/j.nima.2012.10.110,
857 2013.

858 Walz, M. M., Werner, J., Ekholm, V., Prisle, N. L., Öhrwall, G., and Björneholm, O.: Alcohols at the
859 aqueous surface: chain length and isomer effects, *Phys. Chem. Chem. Phys.*, 18, 6648-6656,
860 10.1039/c5cp06463e, 2016.

861 Walz, M. M., Caleman, C., Werner, J., Ekholm, V., Lundberg, D., Prisle, N. L., Öhrwall, G., and
862 Björneholm, O.: Surface behavior of amphiphiles in aqueous solution: a comparison between different
863 pentanol isomers, *Phys. Chem. Chem. Phys.*, 17, 14036-14044, 10.1039/c5cp01870f, 2015.

864 Werner, J., Persson, I., Björneholm, O., Kawecki, D., Saak, C.-M., Walz, M.-M., Ekholm, V., Unger,
865 I., Valtl, C., Caleman, C., Öhrwall, G., and Prisle, N. L.: Shifted equilibria of organic acids and bases
866 in the aqueous surface region, *Phys. Chem. Chem. Phys.*, 20, 23281-23293, 10.1039/c8cp01898g,
867 2018.

868 Winter, B. and Faubel, M.: Photoemission from Liquid Aqueous Solutions, *Chem. Rev.*, 106, 1176-
869 1211, Doi 10.1021/Cr040381p, 2006.