

The Critical Role of Aqueous-Phase Processes in 1 **Aromatic-Derived Nitrogen-Containing Organic** 2 Aerosol Formation in Cities with Different 3 **Energy Consumption Patterns** 4 5 6 Yi-Jia Ma^{1,2,3}, Yu Xu^{2,3}*, Ting Yang^{1,2,3}, Lin Gui^{1,2,3}, Hong-Wei Xiao^{2,3}, Hao Xiao^{2,3}, 7 and Hua-Yun Xiao^{2,3} 8 9 ¹School of Environmental Science and Engineering, Shanghai Jiao Tong University, 10 Shanghai 200240, China 11 ²School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, 12 China ³Shanghai Yangtze River Delta Eco-Environmental Change and Management 13 Observation and Research Station, Ministry of Science and Technology, Ministry of 14 15 Education, Shanghai 200240, China 16 17 Yu Xu (E-mail: xuyu360@sjtu.edu.cn) +8615885507087 18 19 Shanghai Jiao Tong University, 800 Dongchuan Road

20	Abstract. Nitrogen-containing organic compounds (NOCs) impact air quality and
21	human health. Here, the abundance, potential precursors, and main formation
22	mechanisms of NOCs in $PM_{2.5}$ during winter were compared for the first time among
23	Haerbin (coal-dependent for heating), Beijing (natural gas and coal as heating energy),
24	and Hangzhou (no centralized heating policy). The total signal intensity of CHON+,
25	CHN+, and CHON- compounds was highest in Haerbin and lowest in Hangzhou.
26	Anthropogenic aromatics accounted for 73%-93% of all identified precursors of
27	CHON+, CHN+, and CHON- compounds in Haerbin. Although the abundance of
28	aromatics-derived NOCs was lower in Beijing than in Haerbin, aromatics were also
29	the main contributors to NOC formation in Beijing. Hangzhou exhibited the lowest
30	levels of aromatic precursors. Furthermore, non-metric multidimensional scaling
31	analysis indicated an overall reduction in the impact of fossil fuel combustion on
32	NOC pollution along the route from Haerbin to Beijing to Hangzhou. We found that
33	aqueous-phase processes (mainly condensation, hydrolysis or dehydration processes
34	for reduced NOCs, and mainly oxidization or hydrolysis processes for oxidized NOCs)
35	can promote the transformation of precursors to produce NOCs, leading to the most
36	significant increase in aromatic NOC levels in Haerbin (particularly on haze days).
37	Reduced precursor emissions in Beijing and Hangzhou (the lowest) constrained the
38	aqueous-phase formation of NOCs. The overall results suggest that the aerosol NOC
39	pollution in coal-dependent cities is mainly controlled by anthropogenic aromatics

- 40 and aqueous-phase processes. Thus, without effective emission controls, the
- 41 formation of NOCs through aqueous-phase processes may still pose a large threat to
- 42 air quality.
- 43
- 44 Keywords: Aerosols, Nitrogen-containing organic compounds, Heating energy
- 45 consumption, Anthropogenic pollutants, Formation mechanism
- 46

47 1. Introduction

48 Nitrogen-containing organic compounds (NOCs) are abundant reactive nitrogen 49 species in aerosol particles, accounting for up to 40%-80% of total nitrogen 50 deposition (Li et al., 2023; Xi et al., 2023; Yu et al., 2020). Clearly, aerosol NOCs can 51 significantly contribute to the global nitrogen cycle (Li et al., 2023; Cape et al., 2011). 52 Moreover, the formation of secondary organic aerosols (SOA) and light-absorbing 53 organic aerosols (e.g., brown carbon) is also tightly associated with NOCs (Wang et 54 al., 2024; Liu et al., 2023b; Zeng et al., 2021), thus affecting the radiative balance and 55 air quality (Yuan et al., 2023; Jiang et al., 2023). In particular, certain NOCs, such as nitroaromatics and peroxyacyl nitrates, are characterized as phytotoxins and potential 56 57 carcinogens, posing threats to ecosystems and human health (Shi et al., 2023; Singh 58 and Kumar, 2022; Huang et al., 2024). Therefore, understanding the characteristics, 59 origins, and atmospheric processes of NOCs is essential for comprehending their 60 climate and health effects.

Aerosol NOCs can be derived from primary emissions associated with anthropogenic activities and natural sources (Cape et al., 2011; Lin et al., 2023; Xu et al., 2020a; Wang et al., 2017; Song et al., 2018; Song et al., 2022; Ma et al., 2024). Secondary formation processes may play a more crucial role in the formation of NOCs in fine aerosol particles, which involve interactions among volatile organic compounds (VOCs), atmospheric oxidants, and reactive inorganic nitrogen species

0/	(Montoya-Aguilera et al., 2018; Perraud et al., 2012; Haliquist et al., 2009). For
68	instance, laboratory studies have observed the formation of organic nitrates from the
69	oxidation of isoprene and α -/ β -pinene by atmospheric oxidants and nitrogen oxide
70	(NO _x) (Surratt et al., 2010; Rollins et al., 2012; Nguyen et al., 2015). Additionally,
71	aqueous-phase reactions of NH_4^+ (or NH_3) with biogenic VOCs or carbonyl
72	compounds have been suggested to be important mechanisms of reduced NOC (Re-
73	NOCs) formation (Abudumutailifu et al., 2024; Laskin et al., 2014; Li et al., 2019b;
74	Liu et al., 2023b; Wang et al., 2024). However, understanding the origins, formation
75	mechanisms, and environmental impacts of NOCs is hindered by the elusive and
76	intractable molecular information regarding NOCs and their precursors.

2010.

D 1

77 Aerosol liquid water (ALW) can greatly increase the formation of aerosol NOCs 78 by facilitating the conversion of water-soluble organic gases into particles and subsequently enabling aqueous-phase reactions (Li et al., 2019a; Lv et al., 2022; Liu 79 80 et al., 2023b). A positive correlation between aerosol NOC abundance and either ALW 81 or relative humidity (RH) has been observed in several observation studies (Jiang et 82 al., 2023; Liu et al., 2023b; Xu et al., 2020b). In particular, it has been suggested that 83 increased ALW levels can exacerbate winter haze in China (Wu et al., 2018; Hodas et 84 al., 2014; Lv et al., 2022; Wang et al., 2021d; Liu et al., 2023b; Wang et al., 2021a; Li 85 et al., 2019a). Presumably, precursors and ALW are the two key factors in the formation of aerosol NOCs. Haze environments have potentially high RH levels and 86

87	large emissions of NOC precursors. Moreover, in Chinese cities with different energy
88	consumption (e.g., coal, biomass, and natural gas) for winter heating (Zhang et al.,
89	2021b; Zhang et al., 2023b), the types and emission intensities of pollutants released
90	from different heating sources are expected to vary considerably (Bond et al., 2006;
91	Stockwell et al., 2015; Křůmal et al., 2019). However, the potential effects of ALW in
92	the formation of NOCs in Chinese cities with different energy consumption during
93	winter, particularly in haze periods, are not well documented. Moreover, the roles of
94	ALW-related NOC formation processes in the formation of haze in cities with
95	different energy consumption types also remain largely unknown.
96	In this study, we present the measurements of the NOCs and other chemical
97	compositions in PM _{2.5} collected from three cities (Haerbin, Beijing, and Hangzhou)
98	with different energy consumption during winter. The specific objectives of this study
99	were: (1) to investigate the differences in the abundance, composition, and major
100	precursors of NOCs in different cities with different energy consumption, especially
101	on polluted days; and (2) to elucidate the potential effects of ALW on the formation of

102 oxidized NOCs (Ox-NOCs) and reduced NOCs (Re-NOCs) during winter 103 (particularly on polluted days) in cities with different energy consumption. The 104 research findings are expected to provide valuable implications for the mitigation of 105 aerosol NOCs pollution in urban environments.

106

6

107 2. Materials and methods

108 **2.1. Study site description and sample collection**

109	The study sites are located in three urban areas, including Haerbin (HEB, i.e.,
110	Harbin, 126.64°E, 45.77°N), Beijing (BJ, 116.41°E, 40.04°N), and Hangzhou (HZ,
111	120.16°E, 30.30°N) (Fig. S1). The city of HEB, with a population density of 9.95
112	million, is situated in the northeastern region of China. It relies heavily on coal for
113	centralized heating during winter. The rapid urbanization and increased coal
114	consumption have significantly deteriorated air quality in HEB in recent years (Ma et
115	al., 2020). In contrast, BJ has largely shifted towards the utilization of cleaner energy
116	sources (e.g., natural gas) for centralized heating in recent years, particularly
117	following the implementation of the "Beijing 2013–2017 Clean Air Action Plan" (Vu
118	et al., 2019; Yuan et al., 2023). HZ, situated within the Yangtze River Delta, is exempt
119	from the necessity of heating due to the relatively mild winter climate (average
120	temperature of 6.6 \pm 2.4 °C during the sampling period, Table S1). Clearly, the
121	distinctive energy consumption patterns observed in these three cities during winter
122	provide a valuable opportunity to examine the impact of various precursors and
123	aqueous-phase processes on aerosol NOC formation.

Sample collection was carried out simultaneously in three cities from 16
December 2017 to 14 January 2018. PM_{2.5} samples were collected every two or three
days with a duration of 24 hours onto prebaked (450°C for ~10 hours) quartz fiber

127	niters (Paintex, Pain Corporation, USA) using a nigh-volume air sampler (Series 2031,
128	Laoying, China). One blank sample was collected at each sampling site. A total of 39
129	samples were collected, all of which were stored at -30° C. Meteorological data (e.g.,
130	temperature, relative humidity (RH) and wind speed) together with concentrations of
131	various pollutants (e.g., SO_2 and NO_2) were obtained from nearby environmental
132	stations. The sampling periods were classified as either "clean" or "haze" based on
133	whether the daily average concentration of $PM_{2.5}$ was below or above 75 $\mu g\ m^{-3}$
134	(Zhang and Cao, 2015; Xu et al., 2024).

135

136 2.2. Chemical analysis

137 The extraction and analysis methods for NOCs were consistent with those 138 described in our recent publication (Ma et al., 2024). Briefly, a portion of each filter 139 was extracted with methanol (LC-MS grade, CNW Technologies Ltd.) using 140 sonication in an ice bath (~4°C). The extracts were filtered through a 0.22 µm polytetrafluoroethylene syringe filter and then concentrated to 300 µL under a gentle 141 142 stream of nitrogen gas. The concentrated extracts underwent composition analysis via 143 an ultra-performance liquid chromatography coupled with quadrupole time-of-flight 144 mass spectrometry equipped with an electrospray ionization (ESI) source (UPLC-ESI-145 QToFMS, Waters Acquity Xevo G2-XS) (Wang et al., 2021c; Ma et al., 2024). This 146 analysis was done in both ESI+ and ESI- modes. The organic compounds were

147	separated on a C_{18} column (2.1 \times 100 mm, 1.7 μm particle size, Waters) with an 18-
148	minute gradient elution. The mobile phases comprised ultrapure water with 0.1%
149	formic acid (A) and methanol with 0.1% formic acid (B). Gradient elution was
150	conducted according to the following protocol: 1% B was held for 1.5 minutes,
151	followed by an increase to 54% B over a period of 6.5 minutes. Thereafter, the B was
152	increased to 95% over a period of 3 minutes. After reaching 100% B in one minute,
153	this state was maintained for 3 minutes. Finally, the concentration was returned to 1%
154	B in 0.5 minutes and held for 2.5 minutes. Due to uncertainties in ionization
155	efficiencies for different compounds (Ditto et al., 2022; Yang et al., 2023), an
156	intercomparison (mainly compared among samples within this study) of compound
157	relative abundance was conducted without accounting for differences in ionization
158	efficiency in the present study. This consideration was consistent with previous
159	studies (Xu et al., 2023; Jiang et al., 2022; Ma et al., 2024).
1.0	A mother filter continuing alternativelle anter to densing Milli O mother (490 inc

Another filter portion was ultrasonically extracted using Milli-Q water (~4°C ice bath) to analyze the concentrations of inorganic ions and organic acids. The inorganic ions (e.g., NO_3^- , SO_4^{2-} , CI^- , Ca^{2+} , Mg^{2+} , Na^+ , and NH_4^+) and organic acids (e.g., formic acid, acetic acid, oxalic acid, succinic acid, glutaric acid, and methanesulfonic acid) were quantified using an ion chromatograph system (Dionex Aquion, Thermo Scientific, USA) as described previously (Xu et al., 2022b; Yang et al., 2024b).

166

167 **2.3. Compound categorization and precursor identification**

168	The identified molecular formulas via UPLC-ESI-QToFMS were categorized
169	into different compound classes based on their elemental compositions, which
170	included CHO-, CHON-, CHONS-, and CHOS- in ESI- mode and CHO+, CHON+,
171	and CHN+ in ESI+ mode (Ma et al., 2024). Here, we mainly focus on NOCs (i.e.,
172	CHN+, CHON+, and CHON- compounds) (Ma et al., 2024; Jiang et al., 2022; Wang
173	et al., 2017). The carbon oxidation state (OS _C) and double bond equivalent (DBE)
174	were calculated to indicate the oxidation level and unsaturation degree of the organics,
175	respectively (Sect. S1) (Kroll et al., 2011; Ma et al., 2024). Additionally, the modified
176	aromaticity index (AI_{mod}) and aromaticity equivalent (X_C) were used to evaluate
177	aromaticity of organics (Koch and Dittmar, 2006), as detailed in Sect. S1.
178	The potential precursors of NOCs were identified based on the methodology
179	outlined in previous studies (Nie et al., 2022; Guo et al., 2022; Jiang et al., 2023).
180	The classification of CHON+ and CHON- compounds was refined into following
181	categories, including aliphatics-, heterocyclics-, and aromatics-derived Re-NOCs
182	and isoprene-, monoterpenes-, aliphatics-, and aromatics-derived Ox-NOCs.
183	Moreover, CHN+ compounds were classified into aliphatic, monoaromatic, and
184	polyaromatic CHN+ compound (Wang et al., 2021b; Yassine et al., 2014). A detailed
185	description of the revised workflow for classifying NOCs according to potential
186	precursors was provided in Sect. S2 and Fig. S2.

187

188 **2.4. Classification of potential pathways for NOC formation**

189	To identify potential aqueous-phase processes for aerosol NOC formation, we
190	screened precursor-product pairs from the organic compounds that have been detected
191	(Su et al., 2021; Xu et al., 2023; Jiang et al., 2023). The reaction pathways of Re-
192	NOCs (mainly CHON+ compounds in this study) were refined into the following
193	categories, including condensation (cond_N), hydrolysis (hy_N), dehydration (de_N),
194	cond_hy_N (involving cond_N and hy_N), cond_de_N (involving cond_N and de_N),
195	hy_de_N (involving hy_N and de_N), cond_hy_de_N (involving cond_N, hy_N and
196	de_N) and unknown_N (unknown processes) formation pathways (Fig. S3 and Table
197	S4) (Sun et al., 2024; Abudumutailifu et al., 2024; Laskin et al., 2014; Liu et al.,
198	2023c). Another significant class of Re-NOCs is the CHN+ compounds. Their
199	potential formation mechanisms include cond_N, de_N, cond_de_N, and other
200	unidentified (unknown_N) pathways (Fig. S4 and Table S4) (Abudumutailifu et al.,
201	2024; Laskin et al., 2014; Liu et al., 2023c). In addition, the reaction pathways of Ox-
202	NOCs (mainly CHON- compounds in this study) were refined into the following
203	categories, including ox_N, hy_N, ox_hy_N (involving ox_N and hy_N), and other
204	unidentified (unknown_N) pathways (Jiang et al., 2023; Su et al., 2021) (Fig. S5 and
205	Table S4). A detailed overview of the methodologies employed to discern potential
206	NOC formation pathways was shown in Sect. S3, Table S4, and Figs. S3–S5.

207	It is important to acknowledge the potential limitations in the categorization
208	methodology of NOC formation pathways described above. This is because the
209	approach applied here and in previous studies (Jiang et al., 2023; Su et al., 2021) may
210	classify NOCs from primary emissions as products of secondary aqueous-phase
211	reactions. Accordingly, our results should be regarded as indicating a maximal
212	potential (or an upper limit) for NOC generation from aqueous-phase reactions. In this
213	study, NOCs produced from the reaction pathways identified by the abovementioned
214	classification methodology can explain 76% of CHON+ compounds, 61% of CHN+
215	compounds, and 65% of CHON- compounds. Thus, the classification of potential
216	pathways for NOC formation was representative, at least in this study.

217

218 **2.5. More parameter calculations and data analysis**

219 A thermodynamic model (ISORROPIA-II) was used to estimate the ALW concentration and pH value, as described in previous studies (Xu et al., 2020b; Xu et 220 al., 2023; Xu et al., 2022c). Ambient hydroxyl radical (•OH) concentrations were 221 222 predicted using empirical formulas proposed by Ehhalt and Rohrer (Ehhalt and Rohrer, 223 2000), which was reported in detail in our previous field observations (Liu et al., 224 2023a; Lin et al., 2023). The ventilation coefficient (VC) is an indicator of the 225 potential for atmospheric dilution of pollutants, which was calculated by multiplying 226 the wind speed by the planetary boundary layer height (PBLH) (Gani et al., 2019).

1.

227	Non-metric multidimensional scaling (NMDS) was employed to visualize the
228	distributions of NOCs (CHON+, CHN+, and CHON- compounds) in two dimensions
229	based on Bray-Curtis distances (Chao et al., 2006). The stress values ranged from
230	0.03 to 0.11 (less than 0.2, Table S5) in our analysis, indicating that the differences
231	among samples can be well represented in the two-dimensional pattern. To further
232	assess the influence of anthropogenic emissions and aqueous-phase processes on the
233	distribution of NOCs, the envfit function in the R package Vegan (Oksanen et al.
234	2007) was utilized. Furthermore, the Spearman rank correlation, a non-parametric
235	measure with less sensitivity to outliers and independent of data distribution
236	assumptions, was employed to examine the association patterns between NOCs and
237	the parameters related to anthropogenic emissions and aqueous-phase processes
238	(Kellerman et al., 2014).

1.

1. . 1.

239

3. Results and discussion 240

3.1. Overview of pollution and aerosol NOC characteristics in different cities 241

Figure 1a-c and Table S1 show the variations in major gaseous pollutants, PM2.5 242 243 and its major compositions, as well as meteorological parameters in three Chinese 244 cities with different energy consumptions during winter. The average PM2.5 concentration in HEB was 90.6 \pm 62.4 μg m^-3, which was significantly higher than 245 that observed in BJ (52.7 \pm 51.4 μg m^-3) and HZ (69.1 \pm 29.6 μg m^-3). Similarly, the 246

247	concentrations of SO ₂ and nss-Cl ⁻ were higher in HEB than in BJ and HZ. In addition,
248	a lower NO_3^{-}/SO_4^{2-} mass ratio (Table S1) was found in HEB. SO ₂ and nss-Cl ⁻ have
249	been suggested to be typical pollutants emitted from coal combustion during winter in
250	cities (Zhao and Sun, 1986; Streets and Waldhoff, 2000). The low NO_3^{-}/SO_4^{2-} mass
251	ratio can indicate a predominance of stationary sources (e.g., coal combustion) (Wang
252	et al., 2006; Arimoto et al., 1996; Xiao and Liu, 2004). These results suggest that coal
253	combustion during the winter heating season in HEB may significantly contributed to
254	severe $PM_{2.5}$ pollution. This consideration can also be supported by the highest coal
255	consumption in HEB in 2017–2018 (Fig. 1d). Due to the large-scale use of clean
256	energy (i.e., natural gas) in BJ (Fig. 1e), the coal consumption in BJ was the lowest
257	(Fig. 1d). This results in the lowest pollutant levels in BJ. From clean to polluted days,
258	HEB and BJ showed larger increases in pollutant levels (e.g., $PM_{2.5}$, SO_2 , and CO),
259	followed by HZ. Thus, the release of pollutants caused by the use of fossil fuels for
260	centralized heating in winter (only occurred in HEB and BJ) is undoubtedly one of the
261	important factors contributing to the generation of haze in HEB and BJ.

14

263 Figure 1. Box and whisker plots showing variations in the concentration of (a) PM_{2.5}, 264 (b) SO₂, and (c) nss-Cl⁻in all (gray), clean (blue), and haze (red) periods in different 265 cities. Each box encompasses the 25th-75th percentiles. Whiskers are the 5th and 95th percentiles. The green squares and solid lines inside boxes indicate the mean and 266 267 median value. The consumption of (d) raw coal and (e) natural gas in 2017 and 2018 268 in different cities was obtained from the local statistical yearbooks. Average 269 distributions in the signal intensity of species detected in PM2.5 collected during 270 different winter periods in different cities in (f) ESI+ and (g) ESI- modes. Percentage 271 variations in the signal intensity of each subgroup from clean to haze periods in 272 different cities in (h) ESI+ and (i) ESI- modes.

273

274	Figure 1f and g show the average signal intensity distributions of organic
275	compounds detected in $PM_{2.5}$ across sampling periods in different cities. The detailed
276	mass spectra of organic compounds detected in ESI+ and ESI- were shown in Fig. S6.
277	CHN ₁ + ($n = 437-448$) compounds were the main CHN molecules measured in ESI+
278	mode in all cities (Fig. 1f and Table S6), the signal intensity of which accounted for
279	over 77% of the total CHN ₁₋₃ + signal intensity. Similarly, CHON ₁ + compounds ($n =$
280	398–421) dominated in CHON ₁₋₃ + molecules, with a higher signal intensity than
281	CHON ₂₋₃ + (Fig. 1f and Table S6). The high abundances of CHN_1 + and $CHON_1$ +
282	compounds in NOCs were similar to previous reports about the NOC characteristics
283	of urban aerosols (He et al., 2024; Abudumutailifu et al., 2024). The signal intensity
284	fractions (40%-77%) of CHN+ compounds in total NOCs in these three cities were
285	higher than those observed (8.20%-17.47%) during winter in Ürümqi where the same
286	NOC analysis method was conducted (Ma et al., 2024). However, the signal intensity
287	fractions of CHON+ compounds in total NOCs were lower in these three cities
288	(23%-60%) than in Ürümqi (over 82.53%) (Ma et al., 2024). More frequent biomass
289	burning and relatively dry climate in Ürümqi (northwest China) (Ma et al., 2024) may
290	result in different sources and formation processes of NOCs compared to this study.
291	The signal intensity of these NOCs detected in ESI+ mode varied across cities, with
292	the highest CHN+ and CHON+ signal intensities in HEB, followed by BJ and HZ.
293	Moreover, we found that the total signal intensities of CHN+ and CHON+ compounds

294	increased by 382% in HEB from clean to haze periods, followed by increase of 102%
295	in BJ and increase of 31% in HZ (Fig. 1h and Table S5). This variation pattern of
296	CHN+ and CHON+ compounds from clean to haze periods was similar to that of the
297	pollutants mentioned previously (Fig. 1a-c). Given the high sensitivity of ESI+ mode
298	to protonatable species, reduced species (e.g., amine- and amide-like compounds)
299	were expected to predominate the NOCs (Han et al., 2023; Wang et al., 2018), the
300	formation of which was highly related to precursor emission level, aerosol acidity, and
301	ALW concentrations (Kuwata and Martin, 2012; Vione et al., 2005; Yang et al., 2024a;
302	Xu et al., 2020b). Thus, these results suggest that there may be significant differences
303	in the sources, precursor emission intensity, or main formation pathways of NOCs in
304	different energy consuming cities.
305	The number of NOCs identified in ESI- (296-301 molecules excluding sulfur-
306	containing compounds, Table S7) was found to be lower than that observed in ESI+

306 containing compounds, **Table S7**) was found to be lower than that observed in ESI+ 307 (1346–1361) (**Table S6**). This finding was similar to previous observations about the 308 NOCs of urban organic aerosols in Beijing, Mainz, Changchun, Guangzhou, and 309 Shanghai (Wang et al., 2021b; Wen et al., 2023; Wang et al., 2018). CHON₁– 310 compounds were the main NOC molecules in ESI– mode in all cities (**Fig. 1g** and 311 **Table S7**). The average signal intensity of CHON– compounds was highest in HEB, 312 followed by BJ and HZ. Moreover, the outbreak of CHON_{1–3} signal intensity during 313 polluted periods was found in HEB, whereas insignificant increases occurred in BJ

314	and HZ (Fig. 1i). Deprotonated NOCs with oxidized nitrogen-functional groups, such
315	as nitro (-NO2) or nitrooxy (-ONO2) groups, are more sensitive to the ESI- mode
316	(Wang et al., 2017; Jiang et al., 2023; Yuan et al., 2023). Clearly, the formation of
317	aerosol CHON- compounds was largely dependent on atmospheric oxidation capacity
318	and gas- and aqueous-phase reactions (Ng et al., 2017; Shi et al., 2020; Shi et al.,
319	2023). Thus, the differences in CHON- compound abundance in different polluted
320	periods and cities together with the spatiotemporal changes in CHN+ and CHON+
321	abundances mentioned previously were likely attributed to variations in sources,
322	mechanisms, or key influencing factors of NOC formation in these three cities, which
323	will be further discussed in the following sections.

324

325 **3.2.** Potential precursors of aerosol NOCs in different cities

326 Figure 2 presents the average signal intensity percentage and signal intensity distributions of different NOCs from various precursors in different cities during 327 winter. Aromatics-, heterocyclics-, and aliphatics-derived Re-NOCs together 328 accounted for more than 74% (74%-79%) of the total signal intensity of CHON+ 329 330 compounds in the three study cities (Fig. 2a-c and Table S8). Specifically, the proportion of the aromatics-derived CHON+ signal intensity in the total CHON+ 331 signal intensity was much higher in HEB (73%) than in BJ (33%), with the lowest 332 333 proportion observed in HZ (23%) (Fig. 2a-c). Furthermore, we observed that

334	aromatic CHN+ compounds (mono- and poly-aromatics) dominated the total CHN+
335	compounds in both number and abundance in all investigated cities (Table S9 and Fig.
336	2d-f). The average signal intensity percentage and signal intensity of aromatic CHN+
337	compounds were also highest in HEB (Fig. 2d–f and k). The calculated $\mathrm{AI}_{\mathrm{mod}}$ values
338	for CHON+ and CHN+ compounds were higher in HEB than in BJ and HZ (Table
339	S10), which further indicated a higher aromaticity of these NOCs in HEB. It has been
340	suggested that coal combustion can release a large amount of aromatic compounds
341	(Zhang et al., 2023a), which potentially increased NOC aromaticity (Yuan et al.,
342	2023). Thus, the higher signal proportion of aromatics-derived Re-NOCs in HEB can
343	be explained by the higher coal combustion emissions during winter. In contrast, the
344	use of clean energy during the central heating season in BJ and the reduced emissions
345	in HZ without central heating weakened the formation of aerosol aromatic NOCs.
346	CHON- compounds were also primarily dominated by aromatics-derived Ox-
347	NOCs in all three cities, accounting for more than 73% (73%–90%) of the total signal
348	intensity of CHON- compounds, on average (Fig. 3g-i). This finding was consistent
349	with field observations conducted in other Chinese cities such as Shanghai,
350	Changchun, Guangzhou, and Wangdu during winter (Wang et al., 2021b; Jiang et al.,
351	2023). The abundance of aromatics-derived Ox-CHON– compounds and the $\mathrm{AI}_{\mathrm{mod}}$
352	value of CHON- were highest in HEB and decreased sequentially in BJ and HZ (Fig.
353	2h and Table S10), further indicating our previous consideration that coal combustion

354 heating in HEB can lead to higher NOC pollution. It is worth noting that the 355 percentage of total signal intensity of Ox-NOCs with biogenic VOCs (BVOCs) as precursors was less than 3% (Fig. 2g-i and Table S8). This can be partly supported by 356 357 the previous observations showing that anthropogenic VOCs (AVOCs) were the main 358 contributors to the formation of Ox-NOCs (e.g., organic nitrates) in urban areas in 359 China (Wang et al., 2021b; Jiang et al., 2023). The overall results suggest the significant role of AVOCs in the formation of NOCs in all investigated cites, 360 361 particularly in HEB.

362

Figure 2. Average percentage distributions of signal intensities for (a–c) CHON+,
(d–f) CHN+, and (g–i) CHON– compounds from various sources in PM_{2.5} collected
from different cities during winter. Average signal intensity distributions for (j)

- 366 CHON+, (k) CHN+, and (l) CHON- compounds from various sources in PM2.5
- 367 collected from different cities during winter.
- 368

369	From clean to haze periods, the signal intensities of all aromatics-derived CHON
370	compounds increased significantly in HEB (Figs. 2a, j, g, l and S7). In contrast, the
371	signal intensities of aromatics-derived CHON compounds in BJ and HZ showed an
372	insignificant increase during haze periods. In addition, the average values of $\ensuremath{O/C_w}\xspace$ and
373	OS_{Cw} for CHON+ and CHON– compounds were higher in HEB than in BJ (second
374	highest) and HZ, and their increases from clean to haze periods were also greater in
375	HEB (Table S10). This indicates that aerosol NOCs in HEB were more oxidized
376	aromatics, particularly during haze. The average $N\!/C_w$ ratios of CHON+ and CHON–
377	compounds in HEB (0.13 and 0.15, respectively) (Table S10) were higher than those
378	of CHON+ (0.079) and CHON- (0.07) compounds in aerosols directly emitted from
379	coal combustion (Song et al., 2022; Song et al., 2018). The $N\!/\!C_w$ ratios were also
380	higher in HEB than in BJ and HZ and increased during hazy days (0.13 for CHON+
381	and 0.16 for CHON– in hazy days in HEB). It has been suggested that the $N\!/\!C_w$ ratio
382	of CHON- compounds tended to increase (from 0.109 to 0.119) after aging of fuel
383	combustion-derived aerosols (Zhao et al., 2022a). Thus, these results, combined with
384	previous analysis of potential precursors for NOCs, suggest that anthropogenic
385	precursor emissions and their atmospheric transformation to form CHON compounds

386	were stronger in HEB than in BJ and HZ. Moreover, considering that the emission
387	intensity of precursors during clean and hazy days may not significantly change,
388	secondary processes may significantly promote the formation of NOCs in HEB during
389	hazy days (the most significant increase in NOC abundance). However, this
390	promoting effect during hazy days was insignificant in BJ and HZ (less increase in
391	NOC abundance).

392

393 **3.3.** Main factors influencing aerosol NOC formation in different cities

394 The Spearman correlation analysis between various parameters and NOCs was 395 conducted to investigate the key factors influencing NOC molecular distributions (Fig. 396 3 and Figs. S8-S12). The peak intensity of most CHON+ compounds (mainly 397 aromatics, as mentioned previously) showed a strong correlation (P < 0.01) with the 398 concentrations of combustion source-related tracers (e.g., SO₂, nss-Cl⁻, nss-K⁺, CO, 399 and NO₂) (Zhao and Sun, 1986; Streets and Waldhoff, 2000; Shen et al., 2009; Zhang 400 et al., 2011; Mafusire et al., 2016; Liu et al., 2019; Zhang et al., 2021a; Wang et al., 401 2020) in HEB (Figs. 3a and S8a–d). Although there was a significant correlation (P <402 0.05) between most CHON+ compounds and those combustion source indicators in 403 BJ, the strength of this correlation was weaker in BJ than in HEB (Figs. 3e and S8f-i). 404 However, similar significant correlations between them were not observed in HZ 405 (Figs. 3i and S8k-n). Thus, the greatest contribution of anthropogenic activities to the

406 formation of CHON+ compounds in winter was in HEB (central heating with coal), 407 followed by BJ (central heating with coal and natural gas) and HZ (without central 408 heating). Most of CHN+ and CHON- compounds showed a similar spatial response 409 pattern to those anthropogenic activities (Figs. S9 and S10). These results are 410 consistent with the previous analysis of NOC precursors (Fig. 2), which concluded 411 that the intensity of anthropogenic pollutant emissions in different energy consuming cities was an important factor affecting the formation of NOC and causing spatial 412 413 differences in NOC abundance.

415 **Figure 3.** Spearman rank correlation coefficients (with P < 0.01 in HEB and P < 0.05416 in BJ and HZ) of individual CHON+ molecules with selected parameters in (**a**–**d**) 417 HEB, (**e**–**h**) BJ and (**i**–**l**) HZ. The color scale indicates Spearman correlations between 418 the intensity of individual CHON+ molecules and each parameter. The symbol *n* in

419	the bottom right corner of each panel indicates the number of molecular formulas
420	significantly correlated with the variables. The subgroups in the panels include
421	polycyclic aromatic-like (PA), highly aromatic-like (HA), highly unsaturated-like
422	(HU), unsaturated aliphatic-like (UA), and saturated-like (Sa) compounds.
423	
424	Furthermore, we found that the peak intensities of most CHON+, CHN+, and
425	CHON– compounds (mainly aromatics) were significantly correlated ($P < 0.01$) with
426	the concentrations of ALW, NH_4^+ , oxalic acid, and SO_4^{2-} (Figs. 3b-d, S8e, and
427	S11–S12) in HEB. The correlations between these NOCs and parameters weakened in
428	BJ and disappeared in HZ (Figs. 3, S8, and S11-12). It is generally accepted that
429	$\mathrm{SO_4^{2^-}}$, $\mathrm{NH_4^+}$, and $\mathrm{NO_3^-}$ in fine aerosols are primarily formed through secondary
430	processes (Gao et al., 2021; Wang et al., 2021d). NH_4^+ can serve as a key reactant in
431	the formation of aerosol NOCs (e.g., "carbonyl-to-imine" transformation) in the
432	aqueous-phase (Laskin et al., 2014; Lee et al., 2013; Li et al., 2019b). Previous studies
433	have identified oxalic acid (C ₂ H ₂ O ₄) as a tracer for aqueous-phase SOA (Xu et al.,
434	2022a; Carlton and Turpin, 2013). Additionally, numerous laboratory and field
435	observational studies have shown that ALW can promote the formation of NOCs (Lv
436	et al., 2022; Liu et al., 2023b; Jimenez et al., 2022; Jiang et al., 2023). Thus, these
437	results indicate that aqueous-phase processes can significantly promote the formation
438	of NOCs in HEB, however, as the precursor emission intensity gradually decreased in

439	BJ and HZ, this aqueous-phase promoting effect also decreased.
440	The NMDS analysis between various parameters and NOCs was conducted to
441	further investigate the variations in key factors affecting the formation of NOCs from
442	clean to haze days (Fig. 4). The formation of CHON+, CHN+, and CHON-
443	compounds with higher $\mathrm{AI}_{\mathrm{mod}}$ values (mainly aromatics, as mentioned previously)
444	during haze days in HEB and BJ were closely associated with the factors indicating
445	anthropogenic precursor emissions and aqueous-phase reaction processes. In contrast,
446	the level of oxidants (i.e., O_3 and $\bullet OH$) played a more important role during clean
447	days in HEB and BJ, driving more highly saturated NOC formation during clean days
448	(Fig. 4). A reasonable explanation for this is that the solar radiation and •OH levels on
449	polluted days were lower than those on clean days (Table S1). The impacts of various
450	factors on the formation of aerosol NOCs showed a weak discrimination between
451	haze and clean days in HZ (Fig. 4c, f and i). Laboratory studies have shown that
452	reactive components (e.g., •OH and $\mathrm{H_2O_2})$ in the aqueous phase can continuously
453	convert low-solubility organics to form aqueous phase SOA (Chen et al., 2008; Huang
454	et al., 2011). Field observations also suggested that precursors (most of them are
455	aromatic compounds) released from the combustion of fossil fuels significantly
456	contributed to the aqueous SOA formation (> 50% total molecules) (Xu et al., 2022a)
457	through the rapid aqueous-phase conversion of primary organic aerosol (POA) to
458	SOA at high RH (Wang et al., 2021a). This implies that higher precursor abundance

459	can drive more aerosol NOC formation via aqueous-phase processes. As mentioned
460	previously, the emission intensity of precursors decreased sequentially from HEB to
461	BJ and then to HZ. Moreover, the ALW concentrations were much higher on polluted
462	days than on clean days in three investigated cities. The rising ALW during the
463	pollution period and the quiescent steady state of the atmosphere favored the
464	formation of SOA from anthropogenic emission precursors (Guo et al., 2014; He et al.,
465	2018). Thus, the above discussion can suggest that the spatial differences in precursor
466	emission intensity (higher in HEB) and enhancement of aqueous-phase processes in
467	polluted days were the main factors leading to the differences in the proportion
468	(higher in HEB) of increase in NOC abundance from clean days to polluted days in
469	three different energy consuming cities. In addition, the increased VC value (Table
470	S1) in clean days (beneficial for the diffusion of pollutants) (Gani et al., 2019) was
471	also an important factor limiting the abundance of NOCs (Fig. 4), resulting in a lower
472	NOC abundance on clean days compared to polluted days (Fig. 1).

Figure 4. Nonmetric multidimensional scaling of $(\mathbf{a-c})$ CHON+, $(\mathbf{d-f})$ CHN+, and (g-i) CHON– compounds from organic aerosol in different cities. The color and size of the circle indicate the H/C ratio and AI_{mod} value of compounds, respectively. Significant relationships between the variables and ordination (999 permutations) are indicated by p < 0.05 (grey) and p < 0.01 (red). Insignificant correlations are not shown. The scores of the samples collected during clean and haze periods were shown as blue and brown squares, respectively.

481

482 As mentioned above, the aerosol NOCs of HZ were less affected by 483 anthropogenic pollutants emitted from coal and natural gas combustion compared to

484	HEB and BJ with centralized heating. Interestingly, we found that the molecular
485	distributions of most aromatic CHON+ compounds in HZ were not only influenced
486	by some anthropogenic pollutants (e.g., SO2 and NO2), but also by methanesulfonic
487	acid (CH ₄ O ₃ S) (Fig. 4c). Moreover, neither CHN+ nor CHON+ exhibited significant
488	correlations with factors related to secondary processes in HZ (Fig. 4c and f).
489	Methanesulfonic acid has been suggested to be a tracer for ocean aerosols (Ayers and
490	Gras, 1991; Suess et al., 2019). These results suggest that aerosol CHON+
491	compounds in HZ may be influenced by long-distance transport air masses originating
492	from the ocean. This consideration can be also supported by the fact that only HZ was
493	affected by air masses originated from the ocean (Fig. S13). Thus, marine emissions
494	may be an important contributor to aerosol NOCs in HZ, which was significantly
495	different from the cases of HEB and BJ where aromatic pollutants from fossil fuel
496	combustion and aqueous-phase processes control the composition and abundance of
497	aerosol NOCs.

498

499 3.4. Potential formation mechanisms of aerosol NOCs in cities with different
500 energy consumption

501 **Figure 5** shows the average signal intensity percentage and signal intensity 502 distributions of NOCs formed by different aqueous-phase processes (**Table S4** and 503 **Figs. S3–S5**) in different cities during winter. The identification of specific reaction

504	pathways was detailed in Figs. S3–S5 and Sect. S3. During the entire study period,
505	the cond_N, cond_hy_N, and cond_de_N pathways together accounted for more than
506	68% (68%–74%) of the total signal intensity of CHON+ compounds in the three cities
507	(Fig. 5a-c and Table S11). Specifically, the formation of CHON+ compounds was
508	mainly dominated by the cond_N and cond_hy_N pathways in HEB, with less impact
509	from the cond_de_N pathway (Fig. 5a). However, CHON+ compounds derived from
510	the cond_de_N pathway showed a much higher proportion in BJ and HZ than in HEB
511	(Fig. 5b and c). The cond_de_N pathway involves both condensation and dehydration
512	processes (Table S4 and Fig. S3). It has been suggested that higher temperatures can
513	facilitate the dehydration of amides into nitriles (Mekki-Berrada et al., 2013). The
514	temperatures in BJ and HZ were higher than those in HEB (Table S1), which may
515	partly explain the higher signal proportion of CHON+ compounds formed through the
516	cond_hy_N pathway in BJ and HZ than in HEB. Furthermore, the higher signal
517	proportions of CHN+ compounds formed through the de_N pathway in BJ (6%) and
518	HZ (11%) than in HEB (2%) may also be associated with this temperature-induced
519	dehydration mechanism (Fig. 5d-f and Table S12). For CHN+ compounds, the
520	cond_de_N process dominated their formation (Fig. 5d-f). In general, the cond_N,
521	cond_hy_N, and cond_de_N processes contributed most significantly to the formation
522	of Re-NOCs in HEB, followed BJ and HZ.

Figure 5. Average percentage distributions of signal intensities for aerosol (a–c)
CHON+, (d–f) CHN+, and (g–i) CHON– compounds from various reaction pathways
in different cities during winter. Average signal intensity distributions for aerosol (j)
CHON+, (k) CHN+, and (l) CHON– compounds from various reaction pathways in
different cities during winter.

529

A typical mechanism for Re-NOC formation is the aqueous-phase reactions between carbonyl compounds and NH_4^+ (or NH_3) (Abudumutailifu et al., 2024; Laskin et al., 2014; Li et al., 2019b; Liu et al., 2023b; Wang et al., 2024). If this mechanism is simplified as a second-order reaction (i.e., [Precursor] + [NH₃ and NH₄⁺] \leftrightarrow [Re-NOCs]), the production of Re-NOCs is expected to be proportional to the

535	abundances of precursor and NH_4^+ (Yang et al., 2023; Lin et al., 2023). Indeed, the
536	signal intensities of the Re-CHON+ and Re-CHN+ compounds were significantly
537	positively correlated with the signal intensities of their CHO precursors (identified
538	using the precursor-product pairs theory, Figs. S3 and S4) and NH_4^+ concentration in
539	HEB (Fig. 6a, b, d and e). This correlation gradually weakened from BJ to HZ (Fig.
540	6a, b, d and e). As previously discussed, differences in energy consumption patterns
541	resulted in the highest levels of anthropogenic aromatic compound emissions in HEB
542	during the winter, followed by BJ, with the lowest levels in HZ (Figs. 2 and S14)
543	Thus, the signal intensities of CHON+ and CHN+ compounds from cond_N,
544	cond_de_N, and cond_hy_N processes were higher in HEB than in BJ and lowest in
545	HZ (Fig. 5j and k).

Figure 6. Signal intensity of (**a**) Re-CHON+, (**b**) Re-CHN+, and (**c**) Ox-CHON– compounds as functions of signal intensity of precursors (CHO compounds). Signal intensity of (**d**) Re-CHON+ and (**e**) Re-CHN+ compounds as functions of the

- 550 concentrations of NH_4^+ .
- 551

552 Additionally, we noticed that the contribution of these aqueous-phase processes to 553 the formation of CHON+ and CHN+ compounds increased significantly from clean to 554 hazy days in HEB and BJ (Fig. 5). The increased ALW concentrations (Table S1) and 555 atmospheric stability during haze periods likely provided favorable conditions for the 556 precursors to undergo these aqueous-phase reactions, resulting in the formation of 557 NOCs. Clearly, high pollutant emission levels in HEB provided a greater potential to 558 convert precursors into more NOCs via the cond_N, cond_hy_N, and cond_de_N 559 processes during haze periods. Thus, the hazy days in the HEB showed the largest 560 increase in CHON+ and CHN+ compounds from the cond_N, cond_hy_N, and 561 cond_de_N processes (Fig. 5j and k). In contrast, the lower precursor emissions in 562 HZ without centralized heating policy were not sufficient to support the production of 563 large amounts of NOCs in the aqueous phase. These results also indicate that emission reduction is the key to controlling aerosol NOC pollution. 564

565 CHON- compounds derived from the ox_hy_N and ox_N processes together 566 accounted for more than 64% (64%-71%) of the total signal intensity of CHON-567 compounds in the three cities (**Fig. 5g-i, l** and **Table S13**). The signal intensity 568 proportions of CHON- compounds formed by the ox_hy_N process in these three 569 cities (ranging from 47% in HZ to 69% in HEB) were higher than that in Wangdu (<

570	20%) (Jiang et al., 2023). The observation study in Wangdu examined aerosol organic
571	components only in ESI- mode (Jiang et al., 2023), which may underestimate the
572	importance of the CHO+ compounds that could serve as precursors of Ox-NOCs. In
573	general, CHON- compounds formed through the ox_hy_N and ox_N processes
574	showed the highest abundance in HEB, followed by BJ and HZ (Fig. 5j-i). According
575	to a simplified reaction mechanism for the formation of Ox-NOCs via aqueous-phase
576	processes (i.e., [Precursor] + [Oxidants] ↔ [Ox-NOCs]) (Shi et al., 2023; Kroflič et
577	al., 2015; Vione et al., 2005), we can infer that Ox-NOCs production is proportional
578	to precursor levels when oxidants (e.g., $NO_2\ radical\ or\ NO_2^+)$ are in a steady state in
579	the atmosphere. Indeed, the signal intensities of the Ox-CHON- compounds were
580	significantly positively correlated with the signal intensities of their CHO precursors
581	identified using the precursor-product pairs theory in HEB (Fig. 6c). Moreover, this
582	correlation gradually weakened from BJ to HZ (Fig. 6c). Thus, the spatial differences
583	in the contribution of the ox_hy_N and ox_N processes to Ox-NOC production across
584	the three cities can also be explained by differences in precursor emission intensity, as
585	indicated by above mentioned Re-NOC formation.

586

587 **4. Conclusion**

588 The abundance, composition, potential precursors, and potential formation 589 mechanisms of NOCs in PM_{2.5} in three Chinese cities with different energy

590	consumption types during the winter were systematically investigated. On average,
591	the total signal intensity of NOCs (i.e., CHN+, CHON+, and CHON- compounds)
592	was highest in HEB, followed by BJ. The lowest total NOC signal intensity was found
593	in HZ. According to the identification of potential precursors of NOCs, we found that
594	anthropogenic aromatic compounds were the main precursors of NOCs during winter
595	in HEB where mainly relies on coal for winter heating, with less impact from BVOCs.
596	Anthropogenic aromatic precursors were also identified to be important contributors
597	to NOC formation in BJ which uses natural gas and coal for winter heating, although
598	the contribution ratio was lower in BJ than in HEB. In contrast, the lowest aromatic
599	precursor levels occurred in HZ without winter heating policy. Furthermore, the
600	NMDS analysis supported that the impact of anthropogenic fossil fuel combustion on
601	NOC pollution gradually decreased from HEB to BJ and then to HZ.

602 The formation of CHON+ compounds was mainly associated with the cond_N, cond_hy_N, and cond_de_N processes. The cond_N and cond_de_N processes 603 dominated the formation of CHN+ compounds. The production of CHON+ and 604 CHN+ compounds from the cond_N, cond_hy_N, and cond_de_N processes was 605 highest in HEB, followed by BJ and HZ. The ox_hy_N and ox_N processes 606 contributed significantly to CHON- compound formation, from which the highest 607 CHON- production occurred in HEB and the lowest in HZ. The spatial differences in 608 609 the contribution of different aqueous-phase processes to NOC production in the three

different cities can be attributed to differences in precursor emission intensity. In particular, the contribution of these aqueous-phase processes to the formation of CHON+ and CHN+ compounds showed the most significant increase from clean to hazy days in HEB, followed by BJ. We concluded that high pollutant emission levels can provide a greater potential to convert precursors to produce more NOCs via aqueous-phase processes during haze periods. The above findings are summarized in a diagram (**Fig. 7**).

Figure 7. Conceptual illustration showing the characteristics of different NOCs fromthe clean days to the haze days in different cities.

In general, the aerosol NOCs pollution during winter is closely linked to both the intensity of precursor emissions and the efficiency of aqueous-phase processes in converting these emissions into NOCs. The overall results highlight the importance of

623	emission reduction strategies in controlling aerosol NOCs pollution during winter.
624	Targeted reduction of precursor emissions, especially from coal combustion, could
625	significantly mitigate NOCs levels, thereby improving air quality and public health in
626	urban areas. Future research should focus on further elucidating the specific pathways
627	of aqueous-phase NOC formation and developing available models to predict NOC
628	dynamics under varying environmental conditions. Additionally, research into the
629	long-term effects of transitioning to cleaner energy sources on the reduction of NOC
630	pollution will be essential for guiding effective air quality management strategies.
631	
632	Data availability. The data presented in this work are available upon request from the
633	corresponding authors.
634	
635	Competing interests. The authors declare no conflicts of interest relevant to this
636	study.
637	
638	Supplement. Details of parameter calculation, classification method for identifying
639	precursors of NOCs, classification of possible aqueous-phase processes NOCs based
640	on precursor-product pairs, thirteen tables (Tables S1-S13), and fourteen extensive
641	figures (Figures S1-S14) are provided in the Supplement.
642	

36

643	Author contributions. YX designed the study. YJM, TY, LG, HX, and HWX
644	performed field measurements and sample collection; YJM performed chemical
645	analysis; YX and YJM performed data analysis; YJM and YX wrote the original
646	manuscript; and YX, YJM, and HYX reviewed and edited the manuscript.
647	
648	Financial support. This study was kindly supported by the National Natural Science
649	Foundation of China through grant 42303081 (Y. Xu) and Shanghai "Science and
650	Technology Innovation Action Plan" Shanghai Sailing Program through grant
651	22YF1418700 (Y. Xu).
652	
653	References
654	Abudumutailifu, M., Shang, X., Wang, L., Zhang, M., Kang, H., Chen, Y., Li, L.,
655	Ju, R., Li, B., Ouyang, H., Tang, X., Li, C., Wang, L., Wang, X., George, C., Rudich,
656	Y., Zhang, R., and Chen, J.: Unveiling the Molecular Characteristics, Origins, and
657	Formation Mechanism of Reduced Nitrogen Organic Compounds in the Urban
658	Atmosphere of Shanghai Using a Versatile Aerosol Concentration Enrichment System

- 659 Environ. Sci. Technol., 10.1021/acs.est.3c04071, 2024.
- 660 Arimoto, R., Duce, R. A., Savoie, D. L., Prospero, J. M., Talbot, R., Cullen, J. D.,
- 661 Tomza, U., Lewis, N. F., and Ray, B. J.: Relationships among aerosol constituents
- from Asia and the North Pacific during PEM-West A, J. Geophys. Res.-Atmos., 101,

	663	2011-2023,	htt	ps://doi.org	/10.	1029/9	95JD01	071,	1996.
--	-----	------------	-----	--------------	------	--------	--------	------	-------

- 664 Ayers, G. P. and Gras, J. L.: Seasonal relationship between cloud condensation
- 665 nuclei and aerosol methanesulphonate in marine air, Nature, 353, 834-835,
- 666 10.1038/353834a0, 1991.
- 667 Bond, T. C., Wehner, B., Plewka, A., Wiedensohler, A., Heintzenberg, J., and
- 668 Charlson, R. J.: Climate-relevant properties of primary particulate emissions from oil
- 669 and natural gas combustion, Atmos. Environ., 40, 3574-3587,
- 670 <u>https://doi.org/10.1016/j.atmosenv.2005.12.030</u>, 2006.
- 671 Cape, J. N., Cornell, S. E., Jickells, T. D., and Nemitz, E.: Organic nitrogen in
- 672 the atmosphere Where does it come from? A review of sources and methods,
- 673 Atmos. Res., 102, 30-48, <u>https://doi.org/10.1016/j.atmosres.2011.07.009</u>, 2011.
- 674 Carlton, A. G. and Turpin, B. J.: Particle partitioning potential of organic
- 675 compounds is highest in the Eastern US and driven by anthropogenic water, Atmos.
- 676 Chem. Phys., 13, 10203-10214, 10.5194/acp-13-10203-2013, 2013.
- 677 Chao, A., Chazdon, R. L., Colwell, R. K., and Shen, T.-J.: Abundance-Based
- 678 Similarity Indices and Their Estimation When There Are Unseen Species in Samples,
- 679 Biometrics, 62, 361-371, <u>https://doi.org/10.1111/j.1541-0420.2005.00489.x</u>, 2006.
- 680 Chen, Z. M., Wang, H. L., Zhu, L. H., Wang, C. X., Jie, C. Y., and Hua, W.:
- 681 Aqueous-phase ozonolysis of methacrolein and methyl vinyl ketone: a potentially
- 682 important source of atmospheric aqueous oxidants, Atmos. Chem. Phys., 8, 2255-

- 683 2265, 10.5194/acp-8-2255-2008, 2008.
- 684 Ditto, J. C., Machesky, J., and Gentner, D. R.: Analysis of reduced and oxidized
- 685 nitrogen-containing organic compounds at a coastal site in summer and winter, Atmos.
- 686 Chem. Phys., 22, 3045-3065, <u>https://doi.org/10.5194/acp-22-3045-2022</u>, 2022.
- 687 Ehhalt, D. H. and Rohrer, F.: Dependence of the OH concentration on solar UV, J.
- 688 Geophys. Res.-Atmos., 105, 3565-3571, <u>https://doi.org/10.1029/1999JD901070</u>, 2000.
- 689 Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib,
- 690 G., Hildebrandt Ruiz, L., and Apte, J. S.: Submicron aerosol composition in the
- 691 world's most polluted megacity: the Delhi Aerosol Supersite study, Atmos. Chem.
- 692 Phys., 19, 6843-6859, 10.5194/acp-19-6843-2019, 2019.
- Gao, J., Li, Y., Li, J., Shi, G., Liu, Z., Han, B., Tian, X., Wang, Y., Feng, Y., and
 Russell, A. G.: Impact of Formation Pathways on Secondary Inorganic Aerosol
 During Haze Pollution in Beijing: Quantitative Evidence From High-Resolution
 Observation and Modeling, Geophys. Res. Lett., 48, e2021GL095623,
 https://doi.org/10.1029/2021GL095623, 2021.
- 698 Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z.,
- 699 Shao, M., Zeng, L., Molina, M. J., and Zhang, R.: Elucidating severe urban haze
- 700 formation in China, P. Natl. Acad. Sci. USA, 111, 17373-17378,
- 701 doi:10.1073/pnas.1419604111, 2014.
- 702 Guo, Y., Yan, C., Liu, Y., Qiao, X., Zheng, F., Zhang, Y., Zhou, Y., Li, C., Fan, X.,

703	Lin, Z., Feng, Z., Zhang, Y., Zheng, P., Tian, L., Nie, W., Wang, Z., Huang, D.
704	Daellenbach, K. R., Yao, L., Dada, L., Bianchi, F., Jiang, J., Liu, Y., Kerminen, V. M.,
705	and Kulmala, M.: Seasonal variation in oxygenated organic molecules in urbar
706	Beijing and their contribution to secondary organic aerosol, Atmos. Chem. Phys., 22
707	10077-10097, 10.5194/acp-22-10077-2022, 2022.
708	Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys,
709	M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F.
710	Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L.
711	Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., Monod, A., Prévôt
712	A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation,
713	properties and impact of secondary organic aerosol: current and emerging issues,
714	Atmos. Chem. Phys., 9, 5155-5236, 10.5194/acp-9-5155-2009, 2009.
715	Han, Y., Zhang, X., Li, L., Lin, Y., Zhu, C., Zhang, N., Wang, Q., and Cao, J.
716	Enhanced Production of Organosulfur Species during a Severe Winter Haze Episode
717	in the Guanzhong Basin of Northwest China, Environ. Sci. Technol.,
718	https://doi.org/10.1021/acs.est.3c02914, 2023.
719	He, C., Che, H., Bao, Z., Liu, Y., Li, Q., Hu, M., Zhou, J., Zhang, S., Yao, X., Shi
720	Q., Chen, C., Han, Y., Meng, L., Long, X., Yang, F., and Chen, Y.: Evolution of
721	nucleophilic high molecular-weight organic compounds in ambient aerosols: a case

study, Atmos. Chem. Phys., 24, 1627-1639, 10.5194/acp-24-1627-2024, 2024. 722

723	He, QF., Ding, X., Fu, XX., Zhang, YQ., Wang, JQ., Liu, YX., Tang, MJ.,
724	Wang, XM., and Rudich, Y.: Secondary Organic Aerosol Formation From Isoprene
725	Epoxides in the Pearl River Delta, South China: IEPOX- and HMML-Derived Tracers,
726	J. Geophys. ResAtmos., 123, 6999-7012, https://doi.org/10.1029/2017JD028242,
727	2018.
728	Hodas, N., Sullivan, A. P., Skog, K., Keutsch, F. N., Collett, J. L., Jr., Decesari,
729	S., Facchini, M. C., Carlton, A. G., Laaksonen, A., and Turpin, B. J.: Aerosol Liquid
730	Water Driven by Anthropogenic Nitrate: Implications for Lifetimes of Water-Soluble
731	Organic Gases and Potential for Secondary Organic Aerosol Formation, Environ. Sci.
732	Technol., 48, 11127-11136, 10.1021/es5025096, 2014.
733	Huang, D., Zhang, X., Chen, Z. M., Zhao, Y., and Shen, X. L.: The kinetics and
734	mechanism of an aqueous phase isoprene reaction with hydroxyl radical, Atmos.
735	Chem. Phys., 11, 7399-7415, 10.5194/acp-11-7399-2011, 2011.
736	Huang, S., Shen, Z., Yang, X., Bai, G., Zhang, L., Zeng, Y., Sun, J., Xu, H., Ho,
737	S. S. H., Zhang, Y., and Cao, J.: Nitroaromatic compounds in six major Chinese cities:
738	Influence of different formation mechanisms on light absorption properties, Sci. Total
739	Environ., 930, 172672, https://doi.org/10.1016/j.scitotenv.2024.172672, 2024.
740	Jiang, H., Li, J., Tang, J., Zhao, S., Chen, Y., Tian, C., Zhang, X., Jiang, B., Liao,
741	Y., and Zhang, G.: Factors Influencing the Molecular Compositions and Distributions
742	of Atmospheric Nitrogen-Containing Compounds, J. Geophys. ResAtmos., 127,

743	e2021JD036284, https://doi.org/10.1029/2021JD036284, 2022.
744	Jiang, H., Cai, J., Feng, X., Chen, Y., Wang, L., Jiang, B., Liao, Y., Li, J., Zhang,
745	G., Mu, Y., and Chen, J.: Aqueous-Phase Reactions of Anthropogenic Emissions Lead
746	to the High Chemodiversity of Atmospheric Nitrogen-Containing Compounds during
747	the Haze Event, Environ. Sci. Technol., 57, 16500-16511, 10.1021/acs.est.3c06648,
748	2023.
749	Jimenez, N. G., Sharp, K. D., Gramyk, T., Ugland, D. Z., Tran, MK., Rojas, A.,
750	Rafla, M. A., Stewart, D., Galloway, M. M., Lin, P., Laskin, A., Cazaunau, M., Pangui,
751	E., Doussin, JF., and De Haan, D. O.: Radical-Initiated Brown Carbon Formation in
752	Sunlit Carbonyl-Amine-Ammonium Sulfate Mixtures and Aqueous Aerosol Particles,
753	ACS Earth Space Chem., 6, 228-238, 10.1021/acsearthspacechem.1c00395, 2022.
754	Kellerman, A. M., Dittmar, T., Kothawala, D. N., and Tranvik, L. J.:
755	Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology,
756	Nature Communications, 5, 3804, 10.1038/ncomms4804, 2014.
757	Koch, B. P. and Dittmar, T.: From mass to structure: an aromaticity index for
758	high-resolution mass data of natural organic matter, Rapid Commun. Mass Spectrom.,
759	20, 926-932, https://doi.org/10.1002/rcm.2386, 2006.
760	Kroflič, A., Grilc, M., and Grgić, I.: Does toxicity of aromatic pollutants increase
761	under remote atmospheric conditions?, Scientific Reports, 5, 8859,
762	10.1038/srep08859, 2015.

763	Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R.,
764	Wilson, K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E.
765	R., Smith, J. D., Kolb, C. E., and Worsnop, D. R.: Carbon oxidation state as a metric
766	for describing the chemistry of atmospheric organic aerosol, Nat. Chem., 3, 133-139,
767	https://doi.org/10.1038/nchem.948, 2011.
768	Křůmal, K., Mikuška, P., Horák, J., Hopan, F., and Krpec, K.: Comparison of
769	emissions of gaseous and particulate pollutants from the combustion of biomass and
770	coal in modern and old-type boilers used for residential heating in the Czech Republic,
771	Central Europe, Chemosphere, 229, 51-59,
772	https://doi.org/10.1016/j.chemosphere.2019.04.137, 2019.
773	Kuwata, M. and Martin, S. T.: Phase of atmospheric secondary organic material
774	affects its reactivity, P. Natl. Acad. Sci. USA, 109, 17354-17359,
775	doi:10.1073/pnas.1209071109, 2012.
776	Laskin, J., Laskin, A., Nizkorodov, S. A., Roach, P., Eckert, P., Gilles, M. K.,
777	Wang, B., Lee, H. J., and Hu, Q.: Molecular Selectivity of Brown Carbon
778	Chromophores, Environ. Sci. Technol., 48, 12047-12055,
779	https://doi.org/10.1021/es503432r, 2014.
780	Lee, A. K. Y., Zhao, R., Li, R., Liggio, J., Li, SM., and Abbatt, J. P. D.:
781	Formation of Light Absorbing Organo-Nitrogen Species from Evaporation of

782 Droplets Containing Glyoxal and Ammonium Sulfate, Environ. Sci. Technol., 47,

- 783 12819-12826, 10.1021/es402687w, 2013.
- 784 Li, X., Song, S., Zhou, W., Hao, J., Worsnop, D. R., and Jiang, J.: Interactions
- 785 between aerosol organic components and liquid water content during haze episodes in
- 786 Beijing, Atmos. Chem. Phys., 19, 12163-12174, 10.5194/acp-19-12163-2019, 2019a.
- 787 Li, Y., Fu, T.-M., Yu, J. Z., Yu, X., Chen, Q., Miao, R., Zhou, Y., Zhang, A., Ye, J.,
- Yang, X., Tao, S., Liu, H., and Yao, W.: Dissecting the contributions of organic
 nitrogen aerosols to global atmospheric nitrogen deposition and implications for
- recosystems, National Science Review, 10, 10.1093/nsr/nwad244, 2023.
- Li, Z., Nizkorodov, S. A., Chen, H., Lu, X., Yang, X., and Chen, J.: Nitrogencontaining secondary organic aerosol formation by acrolein reaction with
 ammonia/ammonium, Atmos. Chem. Phys., 19, 1343-1356, 10.5194/acp-19-13432019, 2019b.
- Lin, X., Xu, Y., Zhu, R.-G., Xiao, H.-W., and Xiao, H.-Y.: Proteinaceous Matter
 in PM_{2.5} in Suburban Guiyang, Southwestern China: Decreased Importance in LongRange Transport and Atmospheric Degradation, J. Geophys. Res.-Atmos., 128,
 e2023JD038516, https://doi.org/10.1029/2023JD038516, 2023.
- 799 Liu, T., Xu, Y., Sun, Q.-B., Xiao, H.-W., Zhu, R.-G., Li, C.-X., Li, Z.-Y., Zhang,
- 800 K.-Q., Sun, C.-X., and Xiao, H.-Y.: Characteristics, Origins, and Atmospheric
- 801 Processes of Amines in Fine Aerosol Particles in Winter in China, J. Geophys. Res.-
- 802 Atmos., 128, e2023JD038974, https://doi.org/10.1029/2023JD038974, 2023a.

803	Liu, XY.,	Не, КВ.,	Zhang, O	Q., Lu,	ZF.,	Wang,	SW.,	Zhang,	YX., a	nd

- 804 Streets, D. G.: Analysis of the origins of black carbon and carbon monoxide
- transported to Beijing, Tianjin, and Hebei in China, Sci. Total Environ., 653, 1364-
- 806 1376, <u>https://doi.org/10.1016/j.scitotenv.2018.09.274</u>, 2019.
- 807 Liu, X., Wang, H., Wang, F., Lv, S., Wu, C., Zhao, Y., Zhang, S., Liu, S., Xu, X.,
- 808 Lei, Y., and Wang, G.: Secondary Formation of Atmospheric Brown Carbon in China
- 809 Haze: Implication for an Enhancing Role of Ammonia, Environ. Sci. Technol., 57,
- 810 11163-11172, 10.1021/acs.est.3c03948, 2023b.
- 811 Liu, Z., Zhu, B., Zhu, C., Ruan, T., Li, J., Chen, H., Li, Q., Wang, X., Wang, L.,
- 812 Mu, Y., Collett, J., George, C., Wang, Y., Wang, X., Su, J., Yu, S., Mellouki, A., Chen,
- J., and Jiang, G.: Abundant nitrogenous secondary organic aerosol formation
 accelerated by cloud processing, iScience, 26, 108317,
 https://doi.org/10.1016/j.isci.2023.108317, 2023c.
- Lv, S., Wang, F., Wu, C., Chen, Y., Liu, S., Zhang, S., Li, D., Du, W., Zhang, F.,
 Wang, H., Huang, C., Fu, Q., Duan, Y., and Wang, G.: Gas-to-Aerosol Phase
 Partitioning of Atmospheric Water-Soluble Organic Compounds at a Rural Site in
 China: An Enhancing Effect of NH3 on SOA Formation, Environ. Sci. Technol., 56,
 3915-3924, 10.1021/acs.est.1c06855, 2022.
- 821 Ma, L., Li, B., Liu, Y., Sun, X., Fu, D., Sun, S., Thapa, S., Geng, J., Qi, H.,
- 822 Zhang, A., and Tian, C.: Characterization, sources and risk assessment of PM2.5-

- 823 bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in
- 824 Harbin, a cold city in Northern China, Journal of Cleaner Production, 264, 121673,
- 825 <u>https://doi.org/10.1016/j.jclepro.2020.121673</u>, 2020.
- 826 Ma, Y. J., Xu, Y., Yang, T., Xiao, H. W., and Xiao, H. Y.: Measurement report:
- 827 Characteristics of nitrogen-containing organics in PM_{2.5} in Ürümqi, northwestern
- 828 China differential impacts of combustion of fresh and aged biomass materials,
- 829 Atmos. Chem. Phys., 24, 4331-4346, 10.5194/acp-24-4331-2024, 2024.
- 830 Mafusire, G., Annegarn, H. J., Vakkari, V., Beukes, J. P., Josipovic, M., van Zyl,
- 831 P. G., and Laakso, L.: Submicrometer aerosols and excess CO as tracers for biomass
- 832 burning air mass transport over southern Africa, J. Geophys. Res.-Atmos., 121,
- 833 10,262-210,282, <u>https://doi.org/10.1002/2015JD023965</u>, 2016.
- 834 Mekki-Berrada, A., Bennici, S., Gillet, J.-P., Couturier, J.-L., Dubois, J.-L., and
- 835 Auroux, A.: Ammoniation-Dehydration of Fatty Acids into Nitriles: Heterogeneous or
- 836 Homogeneous Catalysis?, ChemSusChem, 6, 1478-1489,
- 837 <u>https://doi.org/10.1002/cssc.201300210</u>, 2013.
- 838 Montoya-Aguilera, J., Hinks, M. L., Aiona, P. K., Wingen, L. M., Horne, J. R.,
- 839 Zhu, S., Dabdub, D., Laskin, A., Laskin, J., Lin, P., and Nizkorodov, S. A.: Reactive
- 840 Uptake of Ammonia by Biogenic and Anthropogenic Organic Aerosols, in:
- 841 Multiphase Environmental Chemistry in the Atmosphere, ACS Symposium Series,
- 842 1299, American Chemical Society, 127-147, doi:10.1021/bk-2018-1299.ch007

- 844 Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N.,
- 845 Day, D. A., Donahue, N. M., Fry, J. L., Fuchs, H., Griffin, R. J., Guzman, M. I.,
- 846 Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. L., Kiendler-Scharr, A., Lee, B. H.,
- 847 Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang, B.,
- 848 Picquet-Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y., Schwantes, R. H., Shiraiwa,
- 849 M., Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J., and Zaveri, R. A.: Nitrate
- radicals and biogenic volatile organic compounds: oxidation, mechanisms, and
 organic aerosol, Atmos. Chem. Phys., 17, 2103-2162, 10.5194/acp-17-2103-2017,
- 852 2017.
- 853 Nguyen, T. B., Bates, K. H., Crounse, J. D., Schwantes, R. H., Zhang, X., 854 Kjaergaard, H. G., Surratt, J. D., Lin, P., Laskin, A., Seinfeld, J. H., and Wennberg, P. 855 O.: Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate 856 (MPAN) and its pathway toward secondary organic aerosol formation in the 857 atmosphere, Phys. Chem. Chem. Phys., 17, 17914-17926, 858 https://doi.org/10.1039/C5CP02001H, 2015.
- 859 Nie, W., Yan, C., Huang, D. D., Wang, Z., Liu, Y., Qiao, X., Guo, Y., Tian, L.,
- 860 Zheng, P., Xu, Z., Li, Y., Xu, Z., Qi, X., Sun, P., Wang, J., Zheng, F., Li, X., Yin, R.,
- 861 Dallenbach, K. R., Bianchi, F., Petäjä, T., Zhang, Y., Wang, M., Schervish, M., Wang,
- 862 S., Qiao, L., Wang, Q., Zhou, M., Wang, H., Yu, C., Yao, D., Guo, H., Ye, P., Lee, S.,

- 863 Li, Y. J., Liu, Y., Chi, X., Kerminen, V.-M., Ehn, M., Donahue, N. M., Wang, T.,
- 864 Huang, C., Kulmala, M., Worsnop, D., Jiang, J., and Ding, A.: Secondary organic
- 865 aerosol formed by condensing anthropogenic vapours over China's megacities, Nature
- 866 Geoscience, 15, 255-261, 10.1038/s41561-022-00922-5, 2022.
- 867 Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Stevens, M. H. H., Oksanen, M.
- 868 J., and Suggests, M.: The vegan package, Community ecology package, 10, 719, 2007.
- 869 Perraud, V., Bruns, E. A., Ezell, M. J., Johnson, S. N., Yu, Y., Alexander, M. L.,
- 870 Zelenyuk, A., Imre, D., Chang, W. L., Dabdub, D., Pankow, J. F., and Finlayson-Pitts,
- 871 B. J.: Nonequilibrium atmospheric secondary organic aerosol formation and growth, P.
- 872 Natl. Acad. Sci. USA, 109, 2836-2841, doi:10.1073/pnas.1119909109, 2012.
- 873 Rollins, A. W., Browne, E. C., Min, K.-E., Pusede, S. E., Wooldridge, P. J.,
- 874 Gentner, D. R., Goldstein, A. H., Liu, S., Day, D. A., Russell, L. M., and Cohen, R. C.:
- 875 Evidence for NO_x Control over Nighttime SOA Formation, Science, 337, 1210-1212,
- 876 <u>https://doi.org/10.1126/science.1221520</u>, 2012.
- 877 Shen, Z., Cao, J., Arimoto, R., Han, Z., Zhang, R., Han, Y., Liu, S., Okuda, T.,
- 878 Nakao, S., and Tanaka, S.: Ionic composition of TSP and PM2.5 during dust storms
- 879 and air pollution episodes at Xi'an, China, Atmos. Environ., 43, 2911-2918,
- 880 <u>https://doi.org/10.1016/j.atmosenv.2009.03.005</u>, 2009.
- 881 Shi, X., Qiu, X., Cheng, Z., Chen, Q., Rudich, Y., and Zhu, T.: Isomeric
- 882 Identification of Particle-Phase Organic Nitrates through Gas Chromatography and

883	Time-of-Flight Mass Spectrometry Coupled with an Electron Capture Negative
884	Ionization Source, Environ. Sci. Technol., 54, 707-713, 10.1021/acs.est.9b05818,
885	2020.
886	Shi, X., Qiu, X., Li, A., Jiang, X., Wei, G., Zheng, Y., Chen, Q., Chen, S., Hu, M.,
887	Rudich, Y., and Zhu, T.: Polar Nitrated Aromatic Compounds in Urban Fine
888	Particulate Matter: A Focus on Formation via an Aqueous-Phase Radical Mechanism,
889	Environ. Sci. Technol., 57, 5160-5168, 10.1021/acs.est.2c07324, 2023.
890	Singh, S. and Kumar, R.: Air Pollution and Its Associated Impacts on
891	Atmosphere and Biota Health, in: Extremes in Atmospheric Processes and
892	Phenomenon: Assessment, Impacts and Mitigation, edited by: Saxena, P., Shukla, A.,
893	and Gupta, A. K., Springer Nature Singapore, Singapore, 29-58, 10.1007/978-981-16-
894	7727-4_3, 2022.
895	Song, J., Li, M., Jiang, B., Wei, S., Fan, X., and Peng, P. a.: Molecular
896	Characterization of Water-Soluble Humic like Substances in Smoke Particles Emitted
897	from Combustion of Biomass Materials and Coal Using Ultrahigh-Resolution
898	Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass
899	Spectrometry, Environ. Sci. Technol., 52, 2575-2585,
900	https://doi.org/10.1021/acs.est.7b06126, 2018.

901 Song, J., Li, M., Zou, C., Cao, T., Fan, X., Jiang, B., Yu, Z., Jia, W., and Peng, P. 902 a.: Molecular Characterization of Nitrogen-Containing Compounds in Humic-like

- 903 Substances Emitted from Biomass Burning and Coal Combustion, Environ. Sci.
- 904 Technol., 56, 119-130, <u>https://doi.org/10.1021/acs.est.1c04451</u>, 2022.
- 905 Stockwell, C. E., Veres, P. R., Williams, J., and Yokelson, R. J.: Characterization
- 906 of biomass burning emissions from cooking fires, peat, crop residue, and other fuels
- 907 with high-resolution proton-transfer-reaction time-of-flight mass spectrometry, Atmos.
- 908 Chem. Phys., 15, 845-865, 10.5194/acp-15-845-2015, 2015.
- 909 Streets, D. G. and Waldhoff, S. T.: Present and future emissions of air pollutants
- 910 in China:: SO2, NOx, and CO, Atmos. Environ., 34, 363-374,
- 911 https://doi.org/10.1016/S1352-2310(99)00167-3, 2000.
- 912 Su, S., Xie, Q., Lang, Y., Cao, D., Xu, Y., Chen, J., Chen, S., Hu, W., Qi, Y., Pan,
- 913 X., Sun, Y., Wang, Z., Liu, C.-Q., Jiang, G., and Fu, P.: High Molecular Diversity of
- 914 Organic Nitrogen in Urban Snow in North China, Environ. Sci. Technol., 55, 4344-
- 915 4356, <u>https://dx.doi.org/10.1021/acs.est.0c06851</u>, 2021.
- 916 Suess, E., Aemisegger, F., Sonke, J. E., Sprenger, M., Wernli, H., and Winkel, L.
- 917 H. E.: Marine versus Continental Sources of Iodine and Selenium in Rainfall at Two
- 918 European High-Altitude Locations, Environ. Sci. Technol., 53, 1905-1917,
- 919 10.1021/acs.est.8b05533, 2019.
- 920 Sun, W., Hu, X., Fu, Y., Zhang, G., Zhu, Y., Wang, X., Yan, C., Xue, L., Meng,
- 921 H., Jiang, B., Liao, Y., Wang, X., Peng, P., and Bi, X.: Different formation pathways
- 922 of nitrogen-containing organic compounds in aerosols and fog water in northern

923 China, Atmos. Chem. Phys., 24, 6987-6999, 10.5194/acp-24-698	5987-2024, 2024	4.
--	-----------------	----

- 924 Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan,
- 925 A. J., Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.: Reactive
- 926 intermediates revealed in secondary organic aerosol formation from isoprene, P. Natl.
- 927 Acad. Sci. USA, 107, 6640-6645, doi:10.1073/pnas.0911114107, 2010.
- 928 Vione, D., Maurino, V., Minero, C., and Pelizzetti, E.: Aqueous Atmospheric
- 929 Chemistry: Formation of 2,4-Dinitrophenol upon Nitration of 2-Nitrophenol and 4-
- 930 Nitrophenol in Solution, Environ. Sci. Technol., 39, 7921-7931, 10.1021/es050824m,
- 931 2005.

Vu, T. V., Shi, Z., Cheng, J., Zhang, Q., He, K., Wang, S., and Harrison, R. M.:
Assessing the impact of clean air action on air quality trends in Beijing using a
machine learning technique, Atmos. Chem. Phys., 19, 11303-11314, 10.5194/acp-19-

935 11303-2019, 2019.

Wang, D., Shen, Z., Yang, X., Huang, S., Luo, Y., Bai, G., and Cao, J.: Insight
into the Role of NH3/NH4+ and NOx/NO3– in the Formation of Nitrogen-Containing
Brown Carbon in Chinese Megacities, Environ. Sci. Technol., 58, 4281-4290,
10.1021/acs.est.3c10374, 2024.

940 Wang, J., Sun, S., Zhang, C., Xue, C., Liu, P., Zhang, C., Mu, Y., Wu, H., Wang,

941 D., Chen, H., and Chen, J.: The pollution levels, variation characteristics, sources and

942 implications of atmospheric carbonyls in a typical rural area of North China Plain

- 943 during winter, Journal of Environmental Sciences, 95, 256-265,
- 944 <u>https://doi.org/10.1016/j.jes.2020.05.003</u>, 2020.
- 945 Wang, J., Ye, J., Zhang, Q., Zhao, J., Wu, Y., Li, J., Liu, D., Li, W., Zhang, Y.,
- 946 Wu, C., Xie, C., Qin, Y., Lei, Y., Huang, X., Guo, J., Liu, P., Fu, P., Li, Y., Lee, H. C.,
- 947 Choi, H., Zhang, J., Liao, H., Chen, M., Sun, Y., Ge, X., Martin, S. T., and Jacob, D. J.:
- 948 Aqueous production of secondary organic aerosol from fossil-fuel emissions in winter
- 949 Beijing haze, P. Natl. Acad. Sci. USA, 118, e2022179118,
 950 doi:10.1073/pnas.2022179118, 2021a.
- 950 doi:10.1075/pild5.2022179110, 2021d.
- 951 Wang, K., Zhang, Y., Huang, R.-J., Cao, J., and Hoffmann, T.: UHPLC-Orbitrap
- 952 mass spectrometric characterization of organic aerosol from a central European city
- 953 (Mainz, Germany) and a Chinese megacity (Beijing), Atmos. Environ., 189, 22-29,
- 954 <u>https://doi.org/10.1016/j.atmosenv.2018.06.036</u>, 2018.
- 955 Wang, K., Huang, R.-J., Brueggemand, M., Zhang, Y., Yang, L., Ni, H., Guo, J.,
- 956 Wang, M., Han, J., Bilde, M., Glasius, M., and Hoffmann, T.: Urban organic aerosol
- 957 composition in eastern China differs from north to south: molecular insight from a
- 958 liquid chromatography-mass spectrometry (Orbitrap) study, Atmos. Chem. Phys., 21,
- 959 9089-9104, <u>https://doi.org/10.5194/acp-21-9089-2021</u>, 2021b.
- 960 Wang, Y., Zhao, Y., Li, Z., Li, C., Yan, N., and Xiao, H.: Importance of Hydroxyl
- 961 Radical Chemistry in Isoprene Suppression of Particle Formation from α-Pinene
 962 Ozonolysis, ACS Earth Space Chem., 5, 487-499,

963	https://doi.org/10.1021/acsearthspacechem.0c00294, 2021c.
964	Wang, Y., Zhuang, G., Zhang, X., Huang, K., Xu, C., Tang, A., Chen, J., and An,
965	Z.: The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in
966	Shanghai, Atmos. Environ., 40, 2935-2952,
967	https://doi.org/10.1016/j.atmosenv.2005.12.051, 2006.
968	Wang, Y., Hu, M., Lin, P., Guo, Q., Wu, Z., Li, M., Zeng, L., Song, Y., Zeng, L.,
969	Wu, Y., Guo, S., Huang, X., and He, L.: Molecular Characterization of Nitrogen-
970	Containing Organic Compounds in Humic-like Substances Emitted from Straw
971	Residue Burning, Environ. Sci. Technol., 51, 5951-5961,
972	https://doi.org/10.1021/acs.est.7b00248, 2017.
973	Wang, Y., Hu, M., Hu, W., Zheng, J., Niu, H., Fang, X., Xu, N., Wu, Z., Guo, S.,
974	Wu, Y., Chen, W., Lu, S., Shao, M., Xie, S., Luo, B., and Zhang, Y.: Secondary
975	Formation of Aerosols Under Typical High-Humidity Conditions in Wintertime
976	Sichuan Basin, China: A Contrast to the North China Plain, J. Geophys. ResAtmos.,
977	126, e2021JD034560, <u>https://doi.org/10.1029/2021JD034560</u> , 2021d.
978	Wen, W., Shi, L., Li, L., Wang, L., and Chen, J.: Molecular characteristics of
979	ambient organic aerosols in Shanghai winter before and after the COVID-19 outbreak,
980	Sci. Total Environ., 869, 161811, <u>https://doi.org/10.1016/j.scitotenv.2023.161811</u> ,
981	2023.

982 Wu, Z., Wang, Y., Tan, T., Zhu, Y., Li, M., Shang, D., Wang, H., Lu, K., Guo, S.,

- 983 Zeng, L., and Zhang, Y.: Aerosol Liquid Water Driven by Anthropogenic Inorganic
- 984 Salts: Implying Its Key Role in Haze Formation over the North China Plain, Environ.
- 985 Sci. Technol. Lett., 5, 160-166, 10.1021/acs.estlett.8b00021, 2018.
- 986 Xi, Y., Wang, Q., Zhu, J., Yang, M., Hao, T., Chen, Y., Zhang, Q., He, N., and Yu,
- 987 G.: Atmospheric wet organic nitrogen deposition in China: Insights from the national
- 988 observation network, Sci. Total Environ., 898, 165629,
- 989 <u>https://doi.org/10.1016/j.scitotenv.2023.165629</u>, 2023.
- 990 Xiao, H.-Y. and Liu, C.-Q.: Chemical characteristics of water-soluble
- 991 components in TSP over Guiyang, SW China, 2003, Atmos. Environ., 38, 6297-6306,
- 992 <u>https://doi.org/10.1016/j.atmosenv.2004.08.033</u>, 2004.
- 993 Xu, B., Zhang, G., Gustafsson, Ö., Kawamura, K., Li, J., Andersson, A., Bikkina,
- 994 S., Kunwar, B., Pokhrel, A., Zhong, G., Zhao, S., Li, J., Huang, C., Cheng, Z., Zhu, S.,
- 995 Peng, P., and Sheng, G.: Large contribution of fossil-derived components to aqueous

996 secondary organic aerosols in China, Nature Communications, 13, 5115,

997 10.1038/s41467-022-32863-3, 2022a.

998 Xu, Y., Xiao, H., Wu, D., and Long, C.: Abiotic and Biological Degradation of 999 Atmospheric Proteinaceous Matter Can Contribute Significantly to Dissolved Amino 1000 Acids in Wet Deposition, Environ. Sci. Technol., 54, 6551-6561, 1001 10.1021/acs.est.0c00421, 2020a.

1002 Xu, Y., Dong, X.-N., Xiao, H.-Y., He, C., and Wu, D.-S.: Water-Insoluble

1003	Components	in	Rainwater	in	Suburban	Guiyang,	Southwestern	China:	А	Potential

- 1004 Contributor to Dissolved Organic Carbon, J. Geophys. Res.-Atmos., 127,
- 1005 e2022JD037721, <u>https://doi.org/10.1029/2022JD037721</u>, 2022b.
- 1006 Xu, Y., Dong, X.-N., Xiao, H.-Y., Zhou, J.-X., and Wu, D.-S.: Proteinaceous
- 1007 Matter and Liquid Water in Fine Aerosols in Nanchang, Eastern China: Seasonal
- 1008 Variations, Sources, and Potential Connections, J. Geophys. Res.-Atmos., 127,
- 1009 e2022JD036589, https://doi.org/10.1029/2022JD036589, 2022c.
- 1010 Xu, Y., Dong, X. N., He, C., Wu, D. S., Xiao, H. W., and Xiao, H. Y.: Mist
- 1011 cannon trucks can exacerbate the formation of water-soluble organic aerosol and
- 1012 PM_{2.5} pollution in the road environment, Atmos. Chem. Phys., 23, 6775-6788,
- 1013 https://doi.org/10.5194/acp-23-6775-2023, 2023.
- 1014 Xu, Y., Liu, T., Ma, Y. J., Sun, Q. B., Xiao, H. W., Xiao, H., and Xiao, H. Y.:
- 1015 Measurement report: Characteristics of aminiums in PM2.5 during winter clean and
- 1016 polluted episodes in China: aminium outbreak and its constraint, EGUsphere, 2024, 1-
- 1017 36, 10.5194/egusphere-2024-975, 2024.
- Xu, Y., Miyazaki, Y., Tachibana, E., Sato, K., Ramasamy, S., Mochizuki, T.,
 Sadanaga, Y., Nakashima, Y., Sakamoto, Y., Matsuda, K., and Kajii, Y.: Aerosol
 Liquid Water Promotes the Formation of Water-Soluble Organic Nitrogen in
 Submicrometer Aerosols in a Suburban Forest, Environ. Sci. Technol., 54, 1406-1414,
 <u>https://dx.doi.org/10.1021/acs.est.9b05849</u>, 2020b.

1023	Yang, L., Huang, RJ., Yuan, W., Huang, D. D., and Huang, C.: pH-Dependent
1024	Aqueous-Phase Brown Carbon Formation: Rate Constants and Implications for Solar
1025	Absorption and Atmospheric Photochemistry, Environ. Sci. Technol., 58, 1236-1243,
1026	10.1021/acs.est.3c07631, 2024a.
1027	Yang, T., Xu, Y., Ma, YJ., Wang, YC., Yu, J. Z., Sun, QB., Xiao, HW., Xiao,
1028	HY., and Liu, CQ.: Field Evidence for Constraints of Nearly Dry and Weakly
1029	Acidic Aerosol Conditions on the Formation of Organosulfates, Environ. Sci. Technol.
1030	Lett., 11, 981-987, 10.1021/acs.estlett.4c00522, 2024b.
1031	Yang, T., Xu, Y., Ye, Q., Ma, Y. J., Wang, Y. C., Yu, J. Z., Duan, Y. S., Li, C. X.,
1032	Xiao, H. W., Li, Z. Y., Zhao, Y., and Xiao, H. Y.: Spatial and diurnal variations of
1033	aerosol organosulfates in summertime Shanghai, China: potential influence of
1034	photochemical processes and anthropogenic sulfate pollution, Atmos. Chem. Phys., 23,
1035	13433-13450, https://doi.org/10.5194/acp-23-13433-2023, 2023.
1036	Yassine, M. M., Harir, M., Dabek-Zlotorzynska, E., and Schmitt-Kopplin, P.:
1037	Structural characterization of organic aerosol using Fourier transform ion cyclotron
1038	resonance mass spectrometry: Aromaticity equivalent approach, Rapid Commun.
1039	Mass Spectrom., 28, 2445-2454, https://doi.org/10.1002/rcm.7038, 2014.

- 1040 Yu, X., Pan, Y., Song, W., Li, S., Li, D., Zhu, M., Zhou, H., Zhang, Y., Li, D., Yu,
- 1041 J., Wang, X., and Wang, X.: Wet and Dry Nitrogen Depositions in the Pearl River
- 1042 Delta, South China: Observations at Three Typical Sites With an Emphasis on Water-

- 1043 Soluble Organic Nitrogen, J. Geophys. Res.-Atmos., 125, e2019JD030983,
- 1044 <u>https://doi.org/10.1029/2019JD030983</u>, 2020.
- 1045 Yuan, W., Huang, R.-J., Shen, J., Wang, K., Yang, L., Wang, T., Gong, Y., Cao,
- 1046 W., Guo, J., Ni, H., Duan, J., and Hoffmann, T.: More water-soluble brown carbon
- 1047 after the residential "coal-to-gas" conversion measure in urban Beijing, npj Climate
- 1048 and Atmospheric Science, 6, 20, 10.1038/s41612-023-00355-w, 2023.
- 1049 Zeng, Y., Ning, Y., Shen, Z., Zhang, L., Zhang, T., Lei, Y., Zhang, Q., Li, G., Xu,
- 1050 H., Ho, S. S. H., and Cao, J.: The Roles of N, S, and O in Molecular Absorption
- 1051 Features of Brown Carbon in PM2.5 in a Typical Semi-Arid Megacity in
- 1052 Northwestern China, J. Geophys. Res.-Atmos., 126, e2021JD034791,
- 1053 https://doi.org/10.1029/2021JD034791, 2021.
- 1054 Zhang, B., Shen, Z., He, K., Zhang, L., Huang, S., Sun, J., Xu, H., Li, J., Yang,
- 1055 L., and Cao, J.: Source Profiles of Particle-Bound Phenolic Compounds and Aromatic
- 1056 Acids From Fresh and Aged Solid Fuel Combustion: Implication for the Aging
- 1057 Mechanism and Newly Proposed Source Tracers, J. Geophys. Res.-Atmos., 128,
- 1058 e2023JD039758, https://doi.org/10.1029/2023JD039758, 2023a.
- 1059 Zhang, H., He, P., Liu, L., Dai, H., Zhao, B., Zeng, Y., Bi, J., Liu, M., and Ji, J. S.:
- 1060 Trade-offs between cold protection and air pollution-induced mortality of China's
- 1061 heating policy, PNAS Nexus, 2, 10.1093/pnasnexus/pgad387, 2023b.
- 1062 Zhang, T., Cao, J. J., Tie, X. X., Shen, Z. X., Liu, S. X., Ding, H., Han, Y. M.,

- 1063 Wang, G. H., Ho, K. F., Qiang, J., and Li, W. T.: Water-soluble ions in atmospheric
- aerosols measured in Xi'an, China: Seasonal variations and sources, Atmos. Res., 102,
- 1065 110-119, https://doi.org/10.1016/j.atmosres.2011.06.014, 2011.
- 1066 Zhang, Y.-L. and Cao, F.: Fine particulate matter (PM2.5) in China at a city level,
- 1067 Scientific Reports, 5, 14884, 10.1038/srep14884, 2015.
- 1068 Zhang, Z., Guan, H., Xiao, H., Liang, Y., Zheng, N., Luo, L., Liu, C., Fang, X.,
- 1069 and Xiao, H.: Oxidation and sources of atmospheric NOx during winter in Beijing
- 1070 based on δ18O-δ15N space of particulate nitrate, Environmental Pollution, 276,
- 1071 116708, <u>https://doi.org/10.1016/j.envpol.2021.116708</u>, 2021a.
- 1072 Zhang, Z., Zhou, Y., Zhao, N., Li, H., Tohniyaz, B., Mperejekumana, P., Hong,
- 1073 Q., Wu, R., Li, G., Sultan, M., Zayan, A. M. I., Cao, J., Ahmad, R., and Dong, R.:
- 1074 Clean heating during winter season in Northern China: A review, Renewable and
- 1075 Sustainable Energy Reviews, 149, 111339, <u>https://doi.org/10.1016/j.rser.2021.111339</u>,
- 1076 2021b.
- 1077 Zhao, D. and Sun, B.: Atmospheric Pollution from Coal Combustion in China,
- 1078 Journal of the Air Pollution Control Association, 36, 371-374,
- 1079 10.1080/00022470.1986.10466074, 1986.
- 1080