
Assessing rainfall radar errors with an inverse stochastic modelling
framework
Amy C. Green1, Chris Kilsby1, and András Bárdossy2

1School of Engineering, Newcastle University, Cassie Building, Newcastle upon Tyne,Tyne and Wear, NE1 7RU, United
Kingdom
2Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Stuttgart D-70569

Correspondence: Amy C. Green (amy.green3@newcastle.ac.uk)

Abstract. Weather radar is a crucial tool in rainfall estimation, providing high-resolution estimates in both space and time.

Despite this, radar rainfall estimates are subject to many error sources – including attenuation, ground clutter, beam blockage

and the drop-size distribution – with the true rainfall field unknown. A flexible stochastic model for simulating errors relating

to the radar rainfall estimation process is implemented, inverting standard weather radar processing methods, imposing path-

integrated attenuation effects, a stochastic drop-size distribution field, along with sampling and random errors. This can provide5

realistic weather radar images, of which we know the true rainfall field, and the corrected ‘best guess’ rainfall field which would

be obtained if they were observed in the real-world case. The structure of these errors is then investigated, with a focus on

frequency and behaviour of ‘rainfall shadows’. Half of simulated weather radar images have at least 3% of significant rainfall

rates shadowed and 25% had at least 45km2 containing rainfall shadows, resulting in underestimation of potential impacts

of flooding. A model framework for investigating the behaviour of errors relating to the radar rainfall estimation process is10

demonstrated, with the flexible and efficient tool performing well at generating realistic weather radar images visually, for a

large range of event types.

1 Introduction

Precipitation is extremely difficult to measure accurately, due to its intermittent nature, spatio-temporal variability, and sensitiv-

ity to environmental conditions (Savina et al., 2012). For urban hydrology weather radar plays an increasingly important role in15

quantitative precipitation estimation, due to the high spatio-temporal resolution of information needed (Thorndahl et al., 2017).

The small size of urban catchments and the intended hydrological applications – particularly for real-time or near real-time –

require information about precipitation fields at small temporal and spatial scales, from 1–10 minutes and 1–5km, respectively

(Berne et al. 2004, Ochoa-Rodriguez et al. 2015, De Vos et al. 2017, Thorndahl et al. 2017, Shehu and Haberlandt 2021).

Despite the suitability of weather radar for obtaining high-resolution rainfall estimates, there are many sources of error in20

the estimation process, with different sources of uncertainty reviewed in numerous studies (Michelson et al. 2005, Meischner

2005, Villarini and Krajewski 2010, Ośródka et al. 2014, Ciach and Gebremichael 2020). Errors include radar calibration and

stability problems; contamination by clutter and anomalous propagation; occultation; attenuation and assumptions made about

the drop-size distribution (DSD) (Marshall and Palmer 1948, Harrison et al. 2000). Some error sources can be corrected for,
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such as bias and systematic errors, ground clutter (Gabella and Notarpietro 2002, Ventura and Tabary 2013, Li et al. 2013)25

and attenuation (Nicol and Austin 2003, Krämer 2008, Jacobi and Heistermann 2016), resulting in significantly improved

reliability. Correction procedures are often limited, due to the cumulative nature of errors from a superposition of different

sources, with complex approaches showing only modest improvements to estimates. Information on the rainfall field is lost,

irretrievable, and we do not even know how often this happens.

There is therefore an ongoing need to account for errors in the radar rainfall estimation process (Villarini and Krajewski30

2010, Seo et al. 2018) and uncertainties should be acknowledged and modelled (Ciach et al. 2007, Gires et al. 2012, Villarini

et al. 2014, Rico-Ramirez et al. 2015). The poor quantification of uncertainties was highlighted as a fundamental issue in

AghaKouchak et al. (2010a), expanded in AghaKouchak et al. (2010b). An error model described in Hasan et al. (2014) found

uncertainties were easily identifiable for unbiased ZR-relationships, incorporating radar reflectivity uncertainties in Hasan

et al. (2016). Variograms were used to representing radar rainfall uncertainties Cecinati et al. (2017), eliminating the need for35

a covariance matrix for faster and more flexible calculation of the spatial correlation of errors. Uijlenhoet and Berne (2008)

created a stochastic model of range profiles for the DSD, using a Monte Carlo framework (Berne and Uijlenhoet, 2006) to

estimate uncertainties using two attenuation correction schemes. Yan et al. (2021) imposed random and non-linear radar errors

on simulated rainfall fields, with ZR-relationship errors appearing to have little influence overall.

Error quantification is challenging and errors propagate into future estimates for any model which requires rainfall as an40

input. The fundamental limitation in radar correction that the ‘true’ rainfall field is not available for comparisons. In this study,

the aim is to work backwards to obtain an estimate of the uncertainty in the radar rainfall estimation process. Using a new

model for simulating realistic space-time rainfall event fields with a high resolution (matching that of a U.K. standard C-band

weather radar) (Green et al., 2023), clustered parametrisation based on radar rainfall events extracted from the U.K. Met Office

operated High Moorsley weather radar. These simulation outputs are treated as the ‘true’ rainfall field. Errors relating to each45

step of the radar rainfall estimation process are then imposed on the simulated rainfall field, to obtain an ensemble of spatio-

temporal error fields for each event, in a stochastic manner, forming a superposition of different error sources. This is done by

inverting standard radar processing methods, allowing the identification of the frequency of occurrence and extent of the loss

of important information.

In this study, the data and study area are first discussed, as well as the simulation methods applied to obtain realistic space-50

time rainfall fields in Sect. 2. The methodology for the radar error model is then outlined in detail in Section 3, with detailed

explanations for each step of the model. Example event results are discussed in Section ??, with more general results based on

event images given in 5. A discussion and conclusions are given in Section 6, with model limitations, potential for generalisation

and future work also discussed.

2 Data55

An ensemble of realistic rainfall events are used, generated using the clustered rainfall model outlined in Green et al. (2023).

This model uses Fast Fourier Transform (FFT) methods to efficiently generate three dimensional rainfall event fields with a
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high-resolution matching that of radar data (1km, 5min) for a 200×200km domain. Events have prescribed properties, includ-

ing the correlation structure, spatial anisotropy, spatio-temporal anisotropy, marginal distribution, non-zero rainfall proportions

and advection. The model is used with multidimensional scaling and hierarchical clustering to parametrise rainfall event sim-60

ulations, for 100 rainfall events. A year of processed dual-polarisation C-band weather radar data, from the High Moorsley

weather radar (north east England) as part of the Met Office radar network is used. This dataset is used to parametrise simula-

tions of realistic space-time rainfall fields.

3 Radar error model

This section outlines a novel model for imposing errors in the radar rainfall estimation process on a rainfall field, focusing65

on four main error sources: random noise effects, attenuation effects, DSD error and sampling through estimation variance.

Sections 3.1–3.3 describe the error model in more detail, outlined in Fig. 1, written in Python. While the model is by no means

comprehensive, random error is included in the model. This is designed to provide a framework for investigating the impact of

these errors, improving understanding of the estimation process.

Simulated rainfall field

Estimate PIA from rainfall field

Add random noise field to attenuated
rainfall field

Estimate attenuated reflectivity from
attenuated rainfall field with noise

Attenuated reflectivity image

Repeat to
generate an
ensemble

Figure 1. Schematic for imposing the radar error model on simulated rainfall fields

3.1 Reprojecting to polar coordinates70

The simulated rainfall fields are given on a regular three-dimensional Cartesian grid. To apply radar processing methods

in reverse, the data must be reprojected into a polar coordinate system. Using nearest neighbour interpolation methods, the
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Cartesian grid is converted into polar data

Z(t,x,y)→ Z(t,θ,r) (1)

for ray angles θ = 1,2, . . .360 with ray bins r = 1,2, . . .167 of width 600m and average elevation angle of 1 degree. This

mirrors the radar configuration of the High Moorsley weather radar, used for parametrisation. The different elevation angles

and difference in sampling sizes of pixels are incorporated through the use of estimation variance in Sect. 3.5.75

3.2 Attenuation effects

A constrained gate-by-gate approach is applied to estimate the path-integrated attenuation (PIA) for each radar ray by inverting

standard forward attenuation models (Krämer and Verworn 2008, Jacobi and Heistermann 2016). Inverting the process gives

an estimated attenuated reflectivity Zi rate for the ith bin of width ∆r as

Ẑi = Zi,corr −
i−1∑

j=0

k̂j k̂i = c


Zcorr,i + (2∆r− 1)

i−1∑

j=0

k̂j




d

(2)

for constants c and d. This results in a realistic radar image of attenuated reflectivity in a polar coordinate system at each time

step of the event, denoted by Zcorr(t,θ,r). Using the scheme described above, we get a PIA estimate PIA(t) of

R̃(t) =




R(t)−PIAR(t)(t), if R(t)≥ PIAR(t)(t)

0, otherwise.
(3)

(4)

where PIA(t) = f{R(t)} is a function based on the estimation algorithm outlined in Jacobi and Heistermann (2016).80

3.3 Random noise effects

When considering empirical variograms for weather radar images, Pegram and Clothier (2001) found 10% of the variability

in images corresponded to nugget effects, highlighting the need for random noise effects in radar pixel simulations. This noise

is also evident in the marginal distributions of radar images, with the full year and an example ‘dry’ day image for the High

Moorsley weather radar given in Fig. 2, showing a large number of values in the range −32–0dBZ. Although rainfall rates85

of less than 0.01mmh−1 are hardly noticeable in terms of rainfall accumulations, this high density of low reflectivity rates in

radar images may have a significant effect on attenuation estimates along the radar rays. This noise may be attributed to the

measuring apparatus, non-meteorological echoes, or most likely a combination of various different sources. Errors are treated

as random noise, representing a combination of errors from unknown sources, clearly evident in real radar images.

The random noise field is added to rainfall values to prevent instabilities, with the marginal distribution from Fig. 2 converted90

to rainfall rates in Fig. 3. A log-normal marginal distribution would allow for a simple and easy transformation when simulating

the field using Gaussian random field theory. Empirical variograms of these values were estimated to identify an appropriate
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Figure 2. Histograms of an example dry radar image (blue) and all radar pixels above −32dBZ for the High Moorsley weather radar for the

year 2019, where unz is the reflectivity rate corresponding to the non-zero rainfall threshold of 0.1mmh−1

correlation structure, which has a very short correlation range of around 5km, with no clear anisotropy effects. The three-

dimensional noise field denoted by ε(t,x,y) is assumed to be log-normal, with a marginal distribution of

ε∼ LN(µε,Σ2
ε) (5)

where µε =−5.3 and σε = 1.7. A Gaussian random field is simulated with an Exponential correlation structure of ρε(h) =

exp{−h/rε} for a short range with rε = 5 and a nugget effect of nε = 0.35. This is transformed using an inverse Gaussian95

score transformation, then exponentiated resulting in a random noise field with the desired marginal distribution and correlation

structure. An example field is included in Fig. 3, from which we can see that the variability is slightly larger than in existing

images. This is however selected to preserve the proportion of −32dBZ reflectivity rates in images, with any values less than

−32dBZ treated as −32dBZ.

3.4 Drop-size distribution errors100

Attenuated rainfall rates R̃(t) can then be added to the three-dimensional noise field ε(t,x,y), which can then be converted

into a reflectivity field. A ZR-relationship is typically used, of the form Z = 10log10(aRb) for reflectivity Z (dBZ), rainfall

R (mmh−1) and constants a and b, which typically take the values a= 200 and b= 1.6 (Harrison et al., 2000). A constant

value for a and b is based on the assumption that the DSD varies spatially and temporally in a way characteristic of a particular

rainfall or weather type. Despite this, a fixed ZR-relationship results in a severe underestimation of peak rainfall intensities,105

due to the failure to account for natural variations in the DSD with intensity (Schleiss et al., 2020). Lee et al. (2007) indicated

that the overall DSD variability cannot be adequately explained by a single parameter. In Libertino et al. (2015), a varying

ZR-relationship in space and time improved rainfall accumulations at event scale, when comparing to a fixed relationship.

A large amount of scatter around the average power-law relationship is related to the various microphysical processes that are

responsible for the DSD variability. To account for this variability, in an attempt to generate more realistic reflectivity images,110

we assume that a=A(x,y) is a two-dimensional field varying in space. As the simulated rainfall events all have a fairly short

duration (6 hours or less), a constant DSD in time is initially used. This assumes that A is fairly constant over the time period

considered, although the model is flexible and the dimensions of A can be easily extended to include time.
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Figure 3. Histograms of low rainfall rates (and logarithms) corresponding to random noise (i.e. in the range −32 < Z ≤ 10,) from High

Moorsley weather radar for the year 2019, as well as an example simulated noise field

Parameters in the ZR-relationship typically take values in the ranges a ∈ (30,1000) and b ∈ (0.8,2) (Battan and Theiss

1973, Smith and Krajewski 1993), and so the parameter b is still treated as constant, but sampled from a Gaussian distribution115

with a low variance, centred around a value of µb = 1.6. This gives attenuated reflectivity estimates of

Z̃(t) = 10log10

{
A
[
R̃(t) + ε(t)

]b}
(6)

for

A(x,y)∼N2(µa,{1 + g(x,y)}Σa) b∼N(µb,σ
2
b ) (7)

for correlation structure ρa = σa exp{−h/ra} where µa = 220, σa = 2, ra = 30, µb = 1.6, σb = 0.02. The function g(x,y) =

ΣE(x,y) is the estimation variance based on pixel location (x,y), based on the proportion of the rainfall volume that the radar

can see for a given distance, which is discussed further in Sect. 3.5. Attenuated reflectivity fields are rounded to one decimal

place, and limited by a minimum value of −32dBZ, as is the case for actual reflectivity data.

3.5 Radar sampling120

Due to the nature of weather radar sampling, polar observations close to the weather radar location sample from a much smaller

volume than those further away (see Fig. 4). As observations are made further from the radar, effects of curvature of the earth

and the cloud height also affect the sampling volume of the radar. Bright band effects also impact the sampling volume, as
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radar observations above the freezing level are often unavailable due to the high reflectivity of melting precipitation causing

strong returns at the bright band level (Hooper and Kippax 1950, Kitchen et al. 1994, Hall et al. 2015).125

Ground

Cloud
base

Bright
band

Cloud
top

Weather
radar

Radar
beam

Figure 4. Schematic of a radar ray sampling volume for an example pixel, denoted as a vertical columns

Estimation variance principles are included in the DSD error to account for these sampling errors. The simulated rainfall

field is on a regular grid (1km resolution pixels). This is assumed to represent the total rainfall in the vertical column of space

above this kilometre square, where rainfall is falling on the ground. Making assumptions about the vertical behaviour of the

DSD of rainfall, this is incorporated into the model through the variance of the multiplicative parameter in the ZR-relationship,

dependent on the DSD and freezing level height.130

Representing the change in uncertainty based on the volume of rainfall sampled by the radar apparatus beam in a given pixel

(at different distances from the radar location), the estimation variance is defined as

σ2
E = V ar





c∫

0

Z(x,y,u)

∣∣∣∣∣∣∣

c∫

hx,y

Z(x,y,u)du





(8)

where hx,y is the lower elevation of the radar scan at (x,y). Simplifying to consider the two-dimensional case, heights are

discretised from the ground to the cloud top and clipping at the freezing level (Hooper and Kippax, 1950), giving

σ2
E = γ̄(V )−

nr∑

i

γ̄(vi) (9)

for distance from the radar h, vertical column of rainfall V , with radar ray sampling volumes vi for radar ray i= 1,2, . . .nr,

where γ̄ represents the mean variogram, for nr radar elevations. For distances of the discretised volumes the estimation variance

is calculated using the variogram model corresponding to the assumed distribution. Parametrisation is based on vertical weather135

radar data, considering the vertical raindrop volume distribution for a range of rainfall rates and heights. The variance of

sampling volumes at different ranges supported the concept, with simulations compared to vertical radar images in Berne et al.

(2005) for validation.

7

https://doi.org/10.5194/egusphere-2024-26
Preprint. Discussion started: 30 January 2024
c© Author(s) 2024. CC BY 4.0 License.



single time step towards the middle of the event is included, with a link to event videos included in each figure.

Crane (1979) referred to distortions in storm structures, as a result of attenuation, as shadows. We formally define a rainfall

shadow, taken as pixels where the simulated rainfall is significant (i.e. R> 1mmh−1), but the corrected rainfall much lower

(less than 10%) of the original simulated rate (i.e. Rcorr/R≤ 0.1).

4.1 Example fields150

For an example time step of a simulated event, each stage of the radar error model process is given in Fig. 5. The final radar

image appears visually realistic, with clear areas of rainfall, similar to raw radar images obtained from the High Moorsley

weather radar. A significant proportion of the signal is attenuated towards the edge of the domain, particularly in the top-right

of the image.

Simulated rainfall Attenuation Attenuated rainfall

Random noise field
Attenuated rainfall

(with noise)
Attenuated reflectivity

(PIA estimated from rainfall)
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Figure 5. Step-by-step error model fields, including the simulated rainfall field R(t), attenuation PIA, attenuated rainfall R̃(t), random

noise field ε(t), attenuated rainfall with random noise R̃(t)+ ε(t), and attenuated reflectivity Z̃(t) for a single time step of an example

simulated event

4.2 Event A: High bias155

The event shown in Fig. 6 has an area of moderate intensity rainfall in the centre of the image with a large extent, resulting in

high bias. The simulated radar image for an ensemble member associated with the event looks realistic, with the reflectivity and

corrected rainfall rates showing significant rainfall amounts missing throughout. The average bias, RMSE and pixel variability

corresponding to the event in Fig. 7. The average bias and RMSE are very high, taking values over 5mmh−1.

8

https://doi.org/10.5194/egusphere-2024-26
Preprint. Discussion started: 30 January 2024
c© Author(s) 2024. CC BY 4.0 License.



Simulated field (t = 20 min) Example reflectivity field Corrected rainfall field
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Figure 6. Simulated rainfall field and example reflectivity and corrected rainfall field for simulated event A (video link)

Pixel variability is very low for most of the image, except centre of top right minimum RMSE is greater than 5mmh−1 in160

a large area of the domain, suggesting that the rainfall is consistently underestimated throughout the entire ensemble. A large

area of moderate-intensity rainfall on top of the radar is overcorrected, mimicking effects resulting from full attenuation of the

radar signal by intervening rainfall. In this case, the correction techniques could not improve the image significantly, and so
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Figure 7. Average bias, RMSE, pixel standard deviation, maximum RMSE, minimum RMSE and average proportional error for simulated

event A (video link)
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information on a large portion of the rainfall field has been lost, particularly when forward attenuation correction algorithms

are implemented.165

This result is reiterated when looking at the rainfall shadows in Fig. 8, where around a quarter of the image is shadowed, for

100% of ensemble members. This event has very high average bias, with pixel variability varying drastically throughout the

image. Large areas of rainfall are missing, and the differing variability throughout and spatial distribution of the error structure

suggests that a mean field bias or multiplicative correction would not improve estimates significantly. The information on the

rainfall structure are rates would be lost in this case.170
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Figure 8. Percentage of corrected rainfall less than 10% of original simulated field, and frequency of shadowed pixels over the ensemble for

simulated event A (video link)

4.3 Event B: Low variability

Figure 9 shows a rainfall event with a small extent of light rainfall, with mostly mist and no rain throughout the image, resulting

in low variability. There is a small amount of light rainfall on the centre-left of the radar domain, with the corrected rainfall

image exhibiting lower rainfall rates here. The radar image appears realistic, with a small amount of signal damping towards

the left of the image, at a range beyond the light rainfall.175
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Figure 9. Simulated rainfall field and example reflectivity and corrected rainfall field for simulated event B (video link)

10

https://doi.org/10.5194/egusphere-2024-26
Preprint. Discussion started: 30 January 2024
c© Author(s) 2024. CC BY 4.0 License.



0 100

0

50

100

150

Mean bias

0 100

0

50

100

150

Mean RMSE

0 100

0

50

100

150

Pixel variability

0 100

0

50

100

150

Maximum RMSE

0 100

0

50

100

150

Minimum RMSE

0 100

0

50

100

150

Proportional error

0

5

10

5

10

0.5

1.0

5

10

5

10

0.25

0.50

0.75

Figure 10. Average bias, RMSE, pixel standard deviation, maximum RMSE, minimum RMSE and average proportional error for simulated

event B (video link)

The corresponding bias and RMSE for this event are given in Fig. 10, as well as the pixel variability, maximum and minimum

RMSE over the ensemble and average proportional error. Over the ensemble, the average bias is close to zero except for the low-

intensity rainfall areas (at most 0.5mmh−1), with low average, minimum and maximum RMSE. The pixel variability is slightly
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Figure 11. Percentage of corrected rainfall less than 10% of original simulated field, and frequency of shadowed pixels over the ensemble

for simulated event B (video link)
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higher in the rainfall area, with pixels radially further away in this area showing lower pixel variability (less than 0.02mmh−1),

with the remaining variability appearing uniform. In Fig. 11, the rainfall is shadowed in 100% of rainfall ensemble (i.e. all180

ensemble members) in the area of light-intensity rainfall identified in Fig. 9. The frequency of shadows over the ensemble

taking mostly values of either zero or one. This event has very low variability between ensemble members, likely due to

(mostly) non-zero rainfall amounts in the images.

4.4 Event C: High variability

Figure 12 shows an event with a small area of heavy rainfall rates, which results in high variability in event errors. Most185

of the radar domain shows zero rainfall rates, except a very small area of high-intensity rainfall (greater than 100mmh−1)

towards the top of the domain. The example radar image is again realistic, showing mostly noise. Radial lines at top right past

a small amount of high-intensity rainfall suggest that attenuation effects have not been sufficiently corrected.The corrected

rainfall image overestimates areas of high-intensity rainfall, due to cumulative errors introduced as part of forward attenuation

correction procedures. Although there is not a large area of high-intensity rainfall, the rainfall field spatial distribution has still190

been significantly impacted by the errors caused by attenuation.
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Figure 12. Simulated rainfall field and example reflectivity and corrected rainfall field for simulated event C (video link)

From Fig. 13, these radial lines show positive average bias and a higher RMSE than the rest of the image which is close

to zero, however none of these exceed 0.2mmh−1. Errors are not noticeable from the maximum RMSE field, but have much

higher minimum RMSE than the rest of the image. In this case, it appears that the attenuated high-intensity rainfall has been

over-corrected, with the area showing an average proportional error greater than one. Areas radially past this are underestimated195

and although most of the pixels past this are light rainfall or mist, the rays have been significantly impacted, showing a clear

gap resulting from corresponding rainfall in the reflectivity images.

The shadowed pixels in Fig. 14 shows radial lines in areas where the corrected rainfall is less than 10% of the simulated

rainfall, most of these pixels do not have significant rainfall rates so are not classed as shadowed, with only a handful of pixels

showing shadows and none for 100% of the ensemble, resulting in high variability within the ensemble.200

From the videos of event errors, this high-intensity rainfall moves across the image, affecting different rays, with some

pixels showing rainfall shadows past the high-intensity rainfall. This is not consistent throughout the ensemble, with most
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Figure 13. Average bias, RMSE, pixel standard deviation, maximum RMSE, minimum RMSE and average proportional error for simulated

event C (video link)

pixels showing shadows in less than 100% of the ensemble members. This small area of high-intensity rainfall has resulted

in high variability across the ensemble, which is impacted significantly by the over-estimation of high-intensity rainfall rates,

with the DSD error also contributing towards the variability for such a high rainfall rate.205
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Figure 14. Percentage of corrected rainfall less than 10% of original simulated field, and frequency of shadowed pixels over the ensemble

for simulated event C (video link)
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4.5 Summary

In cases where the absolute bias is low, rainfall shadows may still exist, suggesting average bias is not a good metric to use

when identifying event errors. Even with a low absolute bias, the rainfall could be overestimated for pixels closer to the radar,

and underestimated past these pixels (which is very common along radar rays where attenuation has been overestimated). In

these cases, the spatial distribution of rainfall is often incorrect, which could have detrimental effects when using the rainfall210

fields for any quantitative modelling.

Typically events with high bias correspond to events with large rainfall shadows, with shadow frequencies close to either

zero or one, suggesting that in cases where there is high bias, the model uncertainty is low. Simulated rainfall events which

exhibited high ensemble variability were as a result of potential interactions between small areas of high-intensity rainfall and

DSD errors, which corresponded to higher variability in shadows throughout the ensemble. Videos of all simulated events (and215

corresponding errors) are available here.

5 Results: Individual image-based errors

The behaviour of individual radar images is considered, looking at the average, minimum and maximum behaviours over the

ensemble, including the variability. In this section, attempts are made to find metrics and properties of rainfall images with the

aim of identifying instances where there is a very high level of uncertainty or error arising from the rainfall estimation process.220

The impact of the rainfall location with respect to the radar is considered, as well identifying how often significant information

on the rainfall field is lost. For individual image based errors, we introduce three image metrics relating to rainfall shadows

given below.

1. ARS: The actual area (km2) of the radar image that contains rainfall shadows.

2. LARS: The largest single area (km2) of rainfall shadows in a radar image.225

3. PRS: The proportion of significant rainfall (i.e. R> 1mmh−1) that is shadowed.

5.1 Average ensemble behaviour

The relationship between the average rainfall rate and proportion of rainfall in an images with the image RMSE is shown in Fig.

15, showing that events with high average rainfall rates and large heavy rainfall proportions have the highest RMSE. Images

showing fairly low proportions (i.e. 5–10%) of heavy rainfall still exhibiting fairly high RMSE. Figure 15 also shows the230

relationship between the mean and standard deviation of non-zero rainfall rates with the image RMSE, showing higher RMSE

for events with high average and standard deviation in non-zero rainfall rates. This may be due to the large errors resulting

in large gradients between pixels, where a large rainfall rate along a ray damps the signal so that subsequent observations are

much lower, increasing pixel variability in image.
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Figure 15. Average rainfall rate and proportion of heavy rainfall (left) and average non-zero rainfall and standard deviation of non-zero

rainfall (right), coloured according to the image RMSE for event images

Figure 16 shows the average rainfall rate and proportion of non-zero rainfall in event images, for the average bias, RMSE,235

ARS and PRS. For larger rainfall rates and proportions of rainfall, the bias increases, with low proportions of low rainfall

rates exhibiting negative average bias. This is also the case for the average non-zero rainfall rates, however the relationship

between the proportion of non-zero rainfall and RMSE is less distinct, highlighting the significant impact of very small areas of

intense rainfall rates on the image RMSE. Figure 16 also shows that there are some low average rainfall rates and proportions

of non-zero rainfall which correspond to high areas of rainfall shadowed. This may be attributed to noise, however it does240

suggest again that events do not need to include intense large-scale rainfall areas to result in significant rainfall shadows. The
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Figure 16. Average non-zero rainfall rate and proportion of non-zero rainfall and average bias for ensemble images of all events
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proportion of rainfall shadowed also appears to increase exponentially as the average non-zero rainfall rate increases, which is

not the case with the proportion of rainfall in images.

The relationships in Fig. 16 are heavily skewed by a high density of images with low average rainfall rates and proportions.

For a clearer image of the behaviour for event images, we consider images with an average rainfall rate of at least 0.1mmh−1245

in Fig. 17. This shows a much clearer relationship between the corrected rainfall field and the rainfall shadows, with strong

correlations between the average bias and the average rainfall rate. The relationship becoming less clear for higher rainfall

thresholds for conditional average, with the strongest correlation between the non-zero rainfall average and the RMSE.

The ARS in images may increase exponentially with increasing average rainfall rates, however this may be skewed with

the small number of images with very high ARS (larger than 1000km2). For the thresholded rainfall averages of 0, 0.1, 0.5250

and 1, up until an average rainfall rate of 0.15, 0.6, 1.5 and 2mmh−1, the ARS is consistently low, with low variability. The

relationship between the proportion of rainfall in Fig. 17 is more complex, with two distinct types of image behaviour.
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Figure 17. Average rainfall (with thresholds 0, 0.1, 0.5 and 1mmh−1) and average bias, RMSE, and shadow area, proportion and largest

shadow for event images with an average rainfall rate of at least 0.1mmh−1
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While a correlation is evident between the conditional average rainfall rates and the PRS, there is clearly a large number

of images with low average rainfall rates and large PRS. These high PRS with low average rainfall rates are most likely

corresponding to images with a very low proportion of rainfall rates large enough to be classed as shadows. If just one rainfall255

pixel is shadowed, there would be a large increase in the PRS in this case, highlighting the impact that shadows have in images

with low rainfall extents, with fairly low average rainfall rates.

The LARS appear to have a similar relationship to the ARS, however these are again skewed by very high ARS and so

the relationship is less clear. Considering the overall average behaviour of the ensemble does not take full advantage of the

model framework, and different ensemble member properties, as important variation information is lost, which may increase260

understanding of the uncertainty associated with the radar rainfall estimation process.

5.2 Ensemble variability

The variability between ensemble members for each event image is considered, using th ensemble standard deviation to identify

areas were the event errors have a high level of uncertainty in image properties. Figure 18 shows the relationship between the

average non-zero rainfall rate and the standard deviation of the images bias and RMSE, showing rainfall images with an265

average non-zero rainfall rate less than 0.5mmh−1, there is no clear relationship between the average rainfall and variability in

the bias of estimates. For images with an average non-zero rainfall rate above 0.5mmh−1, there appears to be a strong positive

correlation between the two, suggesting that past this image threshold, the uncertainty in the image bias is directly proportional

to the average non-zero rainfall rate.

The relationship between the average non-zero rainfall rate and the image RMSE variability is very different, appearing270

inversely proportional to the variability in image RMSE. This may be attributed to the fact that for higher rainfall rates, there

are more rainfall shadows. In areas where there are rainfall shadows, the variability between ensemble members decreases

significantly due to the effects of the radar ray signal being fully damped. There is a moderate relationship between the

variability PRS and the average non-zero rainfall, however this is less distinct.
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Figure 18. Standard deviation of the ensemble bias and RMSE for ensemble images of all events
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Figure 19. Standard deviation of the ensemble area, proportion of rainfall, and largest area shadowed, for event images

The standard deviation of the ARS, PRS, and LARS are given in Fig. 19. From this we can see that the uncertainty in the275

ARS increases with increasing average rainfall rate, with similar behaviour for the LARS in images, however there are a lot

of imageS with no ARS skewing the relationship. Again the relationship between the average non-zero rainfall rate and the

variability of the PRS is not clear, as is the case with the average PRS.

5.3 Rainfall location : second moment of area

The location of rainfall with respect to the radar location will also impact the error structure, which is reflected in the variability280

in the PRS for different average rainfall rates. Atlas and Banks (1951) stated that distortion due to range attenuation includes

a displacement towards the radar of maximum intensity, packing contours on the near-side of the storm, suggesting that the

location of high-intensity rainfall will also have an impact on errors. The amount of rainfall lost due to attenuation effects is

likely to be higher for images with high-intensity rainfall in a more central location, due to the cumulative nature of attenuation

effects along a radar ray.285

As illustrated in Fig. 20, the closer to radar the rainfall is, the more rays it will impact, and the earlier on in a ray it damps

the signal, affecting more radar bins. There is evidence of this in Fig. 7, where high-intensity rainfall occurred in the centre of

the image, resulting in very high errors.

Radar domain 

Weather radar 

High-intensity rainfall 

Non-attenuated ray 

Slightly attenuated ray

Attenuated ray 

Very attenuated ray 

Figure 20. Schematic of the different effect high-intensity rainfall has on the radar rays based on its location within the domain
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To formally investigate this, we introduce the second moment of area of a rainfall (or reflectivity) image, estimated by con-

sidering the centroid of each image using the second areal moment. For rainfall field R(t) on a Cartesian grid with dimensions290

(Nx,Ny), the second moment of area can be estimated as

MR(t) =
Nx∑

x=1

Ny∑

y=1

R(x,y, t)d(x,y)2 =
Nx∑

x=1

Ny∑

y=1

R(x,y, t)
{

(x− rx)2 + (y− ry)2
}

(11)

where d(x,y) =
√

(x− rx)2 + (y− ry)2 is the distance of a pixel from the radar location (rx, ry). Both the actual and nor-

malised rainfall fields are used to see the different impact between the shape of the field, with and without considering the

actual magnitude of estimates.

Fig. 21 shows the relationship between the second moment of area and normalised second moment of area for event images,

and the corresponding ensemble average bias, RMSE, ARS, LARS and PRS. There are significant differences between the295

moments and normalised moments, with positive correlations for image moments and an inverse relationship for normalised

image moments, which is particularly prominent when considering the RMSE. There is a significant positive correlation be-

tween image moment and RMSE, ARS and PRS, with the relationship for the LARS is less clear.
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Figure 21. (Normalised) second moment of area for the average bias, RMSE, area, proportion and largest area of shadowed rainfall for event

images

This suggests that for the second moment of area calculated on rainfall rates, the strong non-linear dependence on absolute

rainfall amount is overriding all other information about the field, such as rainfall location. For the normalised second moments300

of area, this dependence has been removed, and so the relationship is solely based on the impact of the rainfall location. In this

case, a smaller second moment of area (corresponding to a more central rainfall location) suggests larger rainfall shadows.

Fig. 22 shows the relationship between the second moment of area and normalised second moment of area for events, and

the corresponding ensemble uncertainty in terms of the standard deviation for the bias, ARS, LARS and PRS. This shows

that images with a larger image moment have lower variability in the RMSE. The normalised image moments appear to be305
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Figure 22. (Normalised) second moment of area for the standard deviation of bias, RMSE, area, proportion and largest area of shadowed

rainfall for event images

positively correlated with the average bias and RMSE, and negatively correlated with the ARS, PRS and LARS. The variability

in rainfall shadows, for both the ARS and PRS, appears to decrease with increasing normalised image moments.

Image moments could be a key piece of information when attempting to identify radar images with high uncertainty in

estimates, particularly when using moments calculated from normalised rainfall rates across an image. In conclusion, this

analysis suggests that second moment of area has potential in identifying high uncertainty and missing information.310

5.4 Rainfall shadow frequency

The aim of this section is to identify how often rainfall shadows occur. Due to ensemble variability, to ensure frequencies

are not overestimated, we consider the ‘best case scenario’ over the ensemble. In terms of the ensemble, for each image the

ensemble member with the lowest errors is selected. This prevents overestimation, and as rainfall fields are parametrised with

existing corrected radar rainfall images that may themselves be subject to rainfall shadows, the simulations may inherently315

underestimate the frequencies and so considering the minimum likelihood of occurrence makes intuitive sense. Percentiles are

given for the minimum LARS, PRS and ARS in Table 1.

Percentile (%) Proportion shadowed Largest shadow Actual shadow

25 0.01 0 0

50 0.03 10.1 15.2

75 0.06 20.2 45.5

90 0.09 30.3 90.9

95 0.13 50.5 136.4
Table 1. Percentiles for the ECDF for the minimum ensemble rainfall shadow proportions, largest shadowed areas, and actual rainfall

shadowed for all events
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The empirical cumulative distribution function for the minimum LARS, PRS and ARS are estimated for simulated events,

with attenuation estimated from rainfall and reflectivity, given in Fig. 23.
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Figure 23. Empirical cumulative distribution functions (ECDF) for the minimum ensemble proportion, largest and actual area of image

containing rainfall shadows for all events

From the median of proportion of rainfall images simulated, half of the images have at least 3% of significant rainfall rates320

shadowed. When considering the ARS in images, we see that 25% of images have an ARS of 45km2 and 5% have a LARS of

over 50km2. A missing area of significant rainfall of this size, particularly for small or urban catchments, constitutes a major an

underestimation of flood risk, resulting in incorrect information provided in flood warnings. This highlights the importance of

gaining an improved understanding of rainfall shadows, and provides motivation for this project and future research in this area.

Gaps caused by the rainfall shadows identified would result in under-prediction of flooding, impacting both flood warnings and325

flood defence designs.

6 Discussion and conclusions

Errors relating to several different aspects of the radar rainfall estimation process are considered, using a radar error model

outlined in detail. This model is applied to realistic simulated rainfall events in a stochastic manner, generating an ensemble

of radar images corresponding to each time step of rainfall events. A Log-Normal random noise field was imposed on rainfall330
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estimates to account for underlying non-specific noise. The DSD uncertainty is included by replacing the multiplicative param-

eter a in the ZR-relationship with a two-dimensional spectral random field, with field variability determined by radar sampling

volumes. Attenuation effects are imposed by inverting standard gate-by-gate correction algorithms (Jacobi and Heistermann,

2016). To enable the direct comparison between the simulated rainfall before and after imposing the radar error model, each

radar image is corrected using a standard radar rainfall estimation process. This results in corrected rainfall field for each en-335

semble member, similar to what would be obtained from real radar rainfall images, allowing us to identify when and where

significant and/or systematic errors may occur.

This concept provides a methodology for developing a better understanding of errors relating the the radar rainfall estimation

process. By generating a ‘true’ rainfall field, and subsequently imposing errors to allow for the comparison with correct ‘best

guess’ stochastic radar rainfall estimates, allows us to address the fundamental limitation of weather radar correction schemes –340

that the real rainfall field is not known for comparisons. An investigation of the spatio-temporal behaviour of the error structure

is then possible, which provides key information about the radar rainfall estimation process.

A relationship between rainfall shadows, high bias and uncertainty, related to the amount of rainfall (i.e. proportion and rates)

in images was found. The impact rainfall location with respect to the weather radar is considered by introducing the second

moment of area, showing more central rainfall in the radar domain results in higher errors and variability. The minimum345

likelihood of rainfall shadows showed that 50% of images simulated have at least 3% of significant rainfall shadowed. In

addition, 25% of images had an ARS of over 45km2, with the minimum LARS for 5% of images exceeding an area of

50km2. This gap would result in underestimation of potential impacts of flooding. This highlights the importance of gaining an

improved understanding of rainfall shadows, and provides motivation for this project, and future research in this area. Weather

radar alone cannot be used for rainfall estimation, as information is regularly missed.350

6.1 Impact and transferability

Improved high-resolution rainfall estimates are needed for flood forecasting, by stakeholders and water managers, particularly

in (near) real time, for nowcasting and probable ensemble forecasting. The radar error model outlined in this study produces

visually realistic radar images, capturing key properties of radar images, with many potential uses for the model framework,

some of which are outlined below.355

1. Identification of radar rainfall properties which correspond to high errors and uncertainties could be extended and used

in a probabilistic manner, to better condition merged rainfall fields. Identifying areas where the spatial distribution of the

rainfall cannot be trusted (i.e. occasions where rainfall shadows are likely, such as areas past high intensity rainfall). This

includes information on the frequency and location of rainfall shadows as a merging criterion (i.e. putting more weight

on rainfall information from other sources when rainfall shadows are likely to occur at a given location).360

2. Application of the model to gridded rain gauge fields or forecasts, for comparison with corresponding weather radar

images, to better identify and understand radar rainfall errors.
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3. The importance of complex and efficient radar gauge merging methods is emphasised in this study, which do not trust

the spatial distribution of rainfall provided by weather radars alone. Additional information from other sensors is needed,

such as opportunistic sensors, citizen science data, rain gauges and microwave links. This study has provided a framework365

for methods of assessing the performance of these merging techniques.

4. Determining the optimal location for weather radars or rain gauges, such as establishing rain gauge networks in areas

where rainfall shadows are more likely, and not in densely populated areas (e.g. the city), where it may be too late for

warnings of missing information.

5. Assess how radar rainfall errors propagate into hydrological and hydrodynamic modelling, considering the impact that370

the incorrect distribution of rainfall has on discharge and flood depths.

6.2 Limitations and future work

A powerful framework for investigating radar rainfall errors has been developed and demonstrated, with model design allowing

for a high degree of flexibility and several natural extensions. The influence of different correction methods for radar rainfall

estimation process and the impact this has on the error structure should be investigated using the methodology in this study.375

Some error sources in radar rainfall estimation are not included in the radar error model, as they were beyond the scope

of this study. To improve the model, additional sources of error could be easily included (e.g. radar calibration errors using

an additive error in DBZ and bright band effects using a vertical representation for different weather types and seasons of

events). Mountainous regions are typically subject to more errors due to beam blockage from topography, however this could

be included in the model quite easily by an additive error based on existing clutter maps from the weather radar of interest.380

It would be interesting to repeat the study with different DSD structures, changing the correlation structure and marginal

distribution of this (previously Gaussian) field. A dependence between DSD parameters could be imposed, as a varying ZR-

relationship in space and time improved rainfall accumulations at event scale (Libertino et al., 2015).

Close to the radar, measurement volumes are small, systematically increasing in size with distance from the radar. Although

as part of the radar error model, the spatial sampling aspect is considered through the estimation variance, radar measure-385

ments are taken as instantaneously (as opposed to rain gauge measurements which are temporal aggregations by definition).

Implications of these space-time sampling properties mean that temporally we only have a snapshot of the pixel behaviour at

a given time. Correlation structure variability in space and time was incorporated through a spatio-temporal anisotropy factor,

without explicitly account for the different data sampling between the two dimensions. The simulation environment could be

modified to account for the temporal sampling issue by simulating temporally at a higher resolution than existing radar images,390

and sampling these to reproduce the snapshot effect. Methods could also be developed within an inverse modelling framework

(Grundmann et al., 2019) for obtaining field uncertainty in (near) real time.
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6.3 Concluding remarks

The overarching aim of this study is to contribute towards improvements in the radar rainfall estimation process, by gaining

an improved understanding of the frequency and location of the error structure relating to the process. With this in mind, we395

explore and exploit space-time properties of rainfall and reflectivity, to gain an improved understanding of the error structure

between the two, investigating the extent of uncertainties in the radar rainfall estimation process. This study has presented

an innovative model for investigating uncertainties in the radar rainfall estimation process; providing a flexible tool that has

many potential future applications. The radar error model, outlined in detail, generates a stochastic ensemble of radar images

corresponding to an existing rainfall field, by inverting the radar rainfall estimation process. This model incorporates many dif-400

ferent error sources, including: the drop-size distribution, attenuation effects, random noise and radar sampling. This provides

a method for identifying when and where radar errors are likely to occur, and how often information about the rainfall field is

lost, significantly impacting the spatial rainfall field. The insights from this study provide an improved understanding of the

error structure between rainfall and reflectivity, and the extent of uncertainties in the radar estimation process. A framework

has been provided for investigating the impact of errors relating to the radar rainfall estimation process, with many potential405

hydrological applications.

Author contributions. Amy Green: Conceptualisation , Methodology, Software, Formal analysis, Investigation, Data Curation, Writing -

Original Draft, Visualization. Chris Kilsby: Conceptualisation, Methodology, Writing - Review & Editing, Supervision. András Bárdossy:

Conceptualisation, Methodology, Supervision.

Competing interests. Author Andras Bardossy is an editor for HESS.410

Acknowledgements. This work is funded by the Natural Environment Research Council (NERC) sponsored Data, Risk and Environmental

Analytical Methods (DREAM) Centre for Doctoral Training in risk and mitigation research using big data (NE/M009009/1).

24

https://doi.org/10.5194/egusphere-2024-26
Preprint. Discussion started: 30 January 2024
c© Author(s) 2024. CC BY 4.0 License.



References

AghaKouchak, A., Bárdossy, A., and Habib, E.: Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed

copula, Advances in Water Resources, 33, 624–634, https://doi.org/10.1016/j.advwatres.2010.02.010, 2010a.415

AghaKouchak, A., Habib, E., and Bárdossy, A.: A comparison of three remotely sensed rainfall ensemble generators, Atmospheric Research,

98, 387–399, https://doi.org/10.1016/j.atmosres.2010.07.016, 2010b.

Atlas, D. and Banks, H. C.: The Interpretation of Microwave Reflections From Rainfall, Journal of Meteorology, 8, 271–282,

https://doi.org/10.1175/1520-0469(1951)008<0271:tiomrf>2.0.co;2, 1951.

Battan, L. J. and Theiss, J. B.: Wind Gradients and Variance of Doppler Spectra in Showers Viewed Horizontally, Journal of Applied420

Meteorology, 12, 688–693, https://doi.org/10.1175/1520-0450(1973)012<0688:wgavod>2.0.co;2, 1973.

Berne, A. and Uijlenhoet, R.: Quantitative analysis of X-band weather radar attenuation correction accuracy, Natural Hazards and Earth

System Science, 6, 419–425, https://doi.org/10.5194/nhess-6-419-2006, 2006.

Berne, A., Delrieu, G., Creutin, J. D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology,

Journal of Hydrology, 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004.425

Berne, A., Delrieu, G., and Andrieu, H.: Estimating the vertical structure of intense Mediterranean precipitation using two X-band weather

radar systems, Journal of Atmospheric and Oceanic Technology, 22, 1656–1675, https://doi.org/10.1175/JTECH1802.1, 2005.

Cecinati, F., Rico-Ramirez, M. A., Heuvelink, G. B., and Han, D.: Representing radar rainfall uncertainty with ensembles based on a time-

variant geostatistical error modelling approach, Journal of Hydrology, 548, 391–405, https://doi.org/10.1016/j.jhydrol.2017.02.053, 2017.

Ciach, G. J. and Gebremichael, M.: Empirical Distribution of Conditional Errors in Radar Rainfall Products, Geophysical Research Letters,430

47, 1–8, https://doi.org/10.1029/2020GL090237, 2020.

Ciach, G. J., Krajewski, W. F., and Villarini, G.: Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation

with NEXRAD data, Journal of Hydrometeorology, 8, 1325–1347, https://doi.org/10.1175/2007JHM814.1, 2007.

Crane, R. K.: Automatic Cell Detection and Tracking, IEEE Transactions on Geoscience Electronics, 17, 250–262,

https://doi.org/10.1109/TGE.1979.294654, 1979.435

De Vos, L., Leijnse, H., Overeem, A., and Uijlenhoet, R.: The potential of urban rainfall monitoring with crowdsourced automatic weather

stations in Amsterdam, Hydrology and Earth System Sciences, 21, 765–777, https://doi.org/10.5194/hess-21-765-2017, 2017.

Gabella, M. and Notarpietro, R.: ERAD 2002 Ground clutter characterization and elimination in mountainous terrain, Proceedings of ERAD,

pp. 305–311, https://www.copernicus.org/erad/online/erad-305.pdf, 2002.

Gires, A., Onof, C., Maksimovic, C., Schertzer, D., Tchiguirinskaia, I., and Simoes, N.: Quantifying the impact of small scale unmea-440

sured rainfall variability on urban runoff through multifractal downscaling: A case study, Journal of Hydrology, 442-443, 117–128,

https://doi.org/10.1016/j.jhydrol.2012.04.005, 2012.

Green, A. C., Kilsby, C., and Bardossy, A.: A framework for space-time modelling of rainfall events for hydrological applications of weather

radar, Journal of Hydrology (accepted), 2023.

Grundmann, J., Hörning, S., and Bárdossy, A.: Stochastic reconstruction of spatio-Temporal rainfall patterns by inverse hydrologic modelling,445

Hydrology and Earth System Sciences, 23, 225–237, https://doi.org/10.5194/hess-23-225-2019, 2019.

Hall, W., Rico-Ramirez, M. A., and Krämer, S.: Classification and correction of the bright band using an operational C-band polarimetric

radar, Journal of Hydrology, 531, 248–258, https://doi.org/10.1016/j.jhydrol.2015.06.011, 2015.

25

https://doi.org/10.5194/egusphere-2024-26
Preprint. Discussion started: 30 January 2024
c© Author(s) 2024. CC BY 4.0 License.



Harrison, D. L., Driscoll, S. J., and Kitchen, M.: Improving precipitation estimates from weather radar using quality control and correction

techniques, Meteorological Applications, 7, 135–144, 2000.450

Hasan, M. M., Sharma, A., Johnson, F., Mariethoz, G., and Seed, A.: Correcting bias in radar Z-R relationships due to uncertainty in point

rain gauge networks, Journal of Hydrology, 519, 1668–1676, https://doi.org/10.1016/j.jhydrol.2014.09.060, 2014.

Hasan, M. M., Sharma, A., Mariethoz, G., Johnson, F., and Seed, A.: Improving radar rainfall estimation by merg-

ing point rainfall measurements within a model combination framework, Advances in Water Resources, 97, 205–218,

https://doi.org/10.1016/j.advwatres.2016.09.011, 2016.455

Hooper, J. E. N. and Kippax, A. A.: The bright band — a phenomenon associated with radar echoes from falling rain, Quarterly Journal of

the Royal Meteorological Society, 76, 125–132, https://doi.org/10.1002/qj.49707632803, 1950.

Jacobi, S. and Heistermann, M.: Benchmarking attenuation correction procedures for six years of single-polarized C-

band weather radar observations in South-West Germany, Geomatics, Natural Hazards and Risk, 7, 1785–1799,

https://doi.org/10.1080/19475705.2016.1155080, 2016.460

Kitchen, M., Brown, R., and Davies, A. G.: Real-time correction of weather radar data for the effects of bright band, range

and orographic growth in widespread precipitation, Quarterly Journal of the Royal Meteorological Society, 120, 1231–1254,

https://doi.org/10.1002/qj.49712051906, 1994.

Krämer, S.: Quantitative Radardatenaufbereitung für die Niederschalgsvorhersage und die Siedlungsentwässerung, 2008.

Krämer, S. and Verworn, H.-R.: Improved C-band radar data processing for real time control of urban drainage systems, 11th International465

Conference on Urban Drainage, pp. 1–10, https://doi.org/https://doi.org/10.2166/wst.2009.282, 2008.

Lee, G. W., Seed, A. W., and Zawadzki, I.: Modeling the variability of drop size distributions in space and time, Journal of Applied Meteo-

rology and Climatology, 46, 742–756, https://doi.org/10.1175/JAM2505.1, 2007.

Li, Y., Zhang, G., Doviak, R. J., Lei, L., and Cao, Q.: A new approach to detect ground clutter mixed with weather signals, IEEE Transactions

on Geoscience and Remote Sensing, 51, 2373–2387, https://doi.org/10.1109/TGRS.2012.2209658, 2013.470

Libertino, A., Allamano, P., Claps, P., Cremonini, R., and Laio, F.: Radar estimation of intense rainfall rates through adaptive calibration of

the Z-R relation, Atmosphere, 6, 1559–1577, https://doi.org/10.3390/atmos6101559, 2015.

Marshall, J. S. and Palmer, W. M. K.: the Distribution of Raindrops With Size, Journal of Meteorology, 5, 165–166,

https://doi.org/10.1175/1520-0469(1948)005<0165:tdorws>2.0.co;2, 1948.

Meischner, P.: Weather Radar - Principles and Advanced Applications, https://books.google.com/books/about/Weather{_}Radar.html?id=475

pnNNi9gD1CIC, 2005.

Michelson, D., Einfalt, T., Holleman, I., Gjertsen, U., Friedrich, K., Haase, G., Lindskog, M., and Jurczyk, A.: Weather radar data quality in

Europe – quality control and characterization, ISBN 92-898-0018- 6, 2005.

Nicol, J. C. and Austin, G. L.: Attenuation correction constraint for single-polarisation weather radar, Meteorological Applications, 10,

345–354, https://doi.org/10.1017/S1350482703001051, 2003.480

Ochoa-Rodriguez, S., Wang, L. P., Gires, A., Pina, R. D., Reinoso-Rondinel, R., Bruni, G., Ichiba, A., Gaitan, S., Cristiano, E., Assel, J. V.,

Kroll, S., Murlà-Tuyls, D., Tisserand, B., Schertzer, D., Tchiguirinskaia, I., Onof, C., Willems, P., Veldhuis, M. C. T., Van Assel, J., Kroll,

S., Murlà-Tuyls, D., Tisserand, B., Schertzer, D., Tchiguirinskaia, I., Onof, C., Willems, P., and Ten Veldhuis, M. C.: Impact of spatial and

temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation, Journal of Hydrology,

531, 389–407, https://doi.org/10.1016/j.jhydrol.2015.05.035, 2015.485

26

https://doi.org/10.5194/egusphere-2024-26
Preprint. Discussion started: 30 January 2024
c© Author(s) 2024. CC BY 4.0 License.
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