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Abstract. Weather radar is a crucial tool for rainfall observation and forecasting, providing high-resolution estimates in both

space and time. Despite this, radar rainfall estimates are subject to many error sources – including attenuation, ground clutter,

beam blockage and the drop-size distribution – with the true rainfall field unknown. A flexible stochastic model for simulating

errors relating to the radar rainfall estimation process is implemented, inverting standard weather radar processing methods,

imposing path-integrated attenuation effects, a stochastic drop-size distribution field, along with sampling and random errors.5

This can provide realistic weather radar images, of which we know the true rainfall field, and the corrected ‘best guess’ rainfall

field which would be obtained if they were observed in the real-world case. The structure of these errors is then investigated,

with a focus on frequency and behaviour of ‘rainfall shadows’. Half of simulated weather radar images have at least 3%

of significant rainfall rates shadowed and 25% had at least 45km2 containing rainfall shadows, resulting in underestimation

of potential impacts of flooding. A model framework for investigating the behaviour of errors relating to the radar rainfall10

estimation process is demonstrated, with the flexible and efficient tool performing well at generating realistic weather radar

images visually, for a large range of event types.

1 Introduction

Precipitation is challenging to measure accurately, due to its intermittent nature, spatio-temporal variability, and sensitivity

to environmental conditions (Savina et al., 2012). For urban hydrology weather radar plays an increasingly important role in15

quantitative precipitation estimation, due to the high spatio-temporal resolution of information needed (Thorndahl et al., 2017).

The small size of urban catchments and the intended hydrological applications – particularly for real-time or near real-time –

require information about precipitation fields at small temporal and spatial scales, from 1–10 minutes and 1–5km, respectively

(Berne et al. 2004, Ochoa-Rodriguez et al. 2015, De Vos et al. 2017, Thorndahl et al. 2017, Shehu and Haberlandt 2021).

Despite the suitability of weather radar for obtaining high-resolution rainfall estimates, there are many sources of error in the20

estimation process, with different sources of uncertainty reviewed in numerous studies (Michelson et al. 2005, Meischner 2005,

Villarini and Krajewski 2010, Ośródka et al. 2014, Ciach and Gebremichael 2020). Errors include radar calibration and stability

problems; contamination by clutter and anomalous propagation; occultation; beam-broadening effect with non-uniform beam

filling; attenuation and assumptions made about the drop-size distribution (DSD) (Marshall and Palmer 1948, Harrison et al.
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2000). Some error sources can be corrected for, such as bias and systematic errors, ground clutter (Gabella and Notarpietro25

2002, Ventura and Tabary 2013, Li et al. 2013) and attenuation (Nicol and Austin 2003, Krämer 2008, Jacobi and Heistermann

2016), resulting in significantly improved reliability. Correction procedures are often limited, due to the cumulative nature of

errors from a superposition of different sources, with complex approaches showing only modest improvements to estimates.

Information on the rainfall field is lost, irretrievable, and we do not even know how often this happens.

There is therefore an ongoing need to account for errors in the radar rainfall estimation process (Villarini and Krajewski30

2010, Seo et al. 2018) and uncertainties should be acknowledged and modelled (Ciach et al. 2007, Gires et al. 2012, Villarini

et al. 2014, Rico-Ramirez et al. 2015). The poor quantification of uncertainties was highlighted as a fundamental issue in

AghaKouchak et al. (2010a), expanded in AghaKouchak et al. (2010b). An error model described in Hasan et al. (2014) found

uncertainties were easily identifiable for unbiased ZR-relationships, incorporating radar reflectivity uncertainties in Hasan

et al. (2016). Variograms were used to representing radar rainfall uncertainties Cecinati et al. (2017), eliminating the need for35

a covariance matrix for faster and more flexible calculation of the spatial correlation of errors. Uijlenhoet and Berne (2008)

created a stochastic model of range profiles for the DSD, using a Monte Carlo framework (Berne and Uijlenhoet, 2006) to

estimate uncertainties using two attenuation correction schemes. Yan et al. (2021) imposed random and non-linear radar errors

on simulated rainfall fields, with ZR-relationship errors appearing to have little influence overall.

Error quantification is challenging and errors propagate into future estimates for any model which requires rainfall as an40

input. The fundamental limitation in radar correction is that the ‘true’ rainfall field is not available for comparisons. In this

study, the aim is to work backwards to obtain an estimate of the uncertainty in the radar rainfall estimation process. Using a

new model for simulating realistic space-time rainfall event fields with a high resolution (matching that of a U.K. standard C-

band weather radar) (Green et al., 2023), clustered parametrisation based on radar rainfall events extracted from the U.K. Met

Office operated High Moorsley weather radar. These simulation outputs are treated as the ‘true’ rainfall field. Errors relating45

to each step of the radar rainfall estimation process are then imposed on the simulated rainfall field, to obtain an ensemble of

spatio-temporal error fields for each event, in a stochastic manner, forming a superposition of different error sources. This is

done by inverting standard radar processing methods, allowing the identification of the frequency of occurrence and extent of

the loss of important information.

In this study, the data and study area are first discussed, as well as the simulation methods applied to obtain realistic space-50

time rainfall fields in Sect. 2. The methodology for the radar error model is then outlined in detail in Sect. 3, with detailed

explanations for each step of the model. Example event results are discussed in Sect. 4.2–4.5, with more general results based

on event images given in Sect. 4.6–4.9. A discussion and conclusions are given in Sect. 5, with model limitations, potential for

generalisation and future work also discussed.

2 Data55

An ensemble of realistic rainfall events are used, generated using the clustered rainfall model outlined in Green et al. (2023).

This model uses Fast Fourier Transform (FFT) methods to efficiently generate three dimensional rainfall event fields with a
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high-resolution matching that of radar data (1km, 5min) for a 200×200km domain. Events have prescribed properties, includ-

ing the correlation structure, spatial anisotropy, spatio-temporal anisotropy, marginal distribution, non-zero rainfall proportions

and advection. The model is used with multidimensional scaling and hierarchical clustering to parametrise rainfall event sim-60

ulations, for 100 rainfall events.

A year of processed dual-polarisation C-band weather radar data is used to parametrise simulations of realistic space-

time rainfall fields. This is obtained from High Moorsley weather radar (Met Office, 2003), located near Durham, England

(54◦48’20”N, 001◦28’32”W), with a wavelength and frequency of 5.3cm and 5.6GHz respectively. This operates between 5

elevation angles 0.5–2 degrees, with one degree beam width, taking a scan at each elevation approximately every 5 minutes.65

3 Radar error model

This section outlines a novel model for imposing errors in the radar rainfall estimation process on a rainfall field, focusing

on four main error sources: random noise effects, attenuation effects, DSD error and sampling through estimation variance.

Sections 3.1–3.3 describe the error model in more detail, outlined in Fig. 1, written in Python. While the model is by no means

comprehensive, random error is included. This is designed to provide a framework for investigating the impact of these errors,70

improving understanding of the estimation process.

Simulated rainfall field

Estimate PIA from rainfall field

Add random noise field to attenuated
rainfall field

Estimate attenuated reflectivity from
attenuated rainfall field with noise

Attenuated reflectivity image

Repeat to
generate an
ensemble

Figure 1. Schematic for imposing the radar error model on simulated rainfall fields, outlined in more detail in Sect. 3.1–3.5
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3.1 Reprojecting to polar coordinates

The simulated rainfall fields are given on a regular three-dimensional Cartesian grid. To apply radar processing methods

in reverse, the data must be reprojected into a polar coordinate system. Using nearest neighbour interpolation methods, the

Cartesian grid is converted into polar data75

Z(t,x,y)→ Z(t,θ,r) (1)

for ray angles θ = 1,2, . . .360 with ray bins r = 1,2, . . .167 of width 600m and average elevation angle of 1 degree. This

mirrors the radar configuration of the High Moorsley weather radar, used for parametrisation. The different elevation angles

and difference in sampling sizes of pixels are incorporated through the use of estimation variance in Sect. 3.5.

3.2 Attenuation effects80

A constrained gate-by-gate approach is applied to estimate the path-integrated attenuation (PIA) for each radar ray by inverting

standard forward attenuation models (Krämer and Verworn 2008, Jacobi and Heistermann 2016). Inverting the process gives

an estimated attenuated reflectivity Zi rate for the ith bin of width ∆r as

Ẑi = Zi,corr −
i−1∑
j=0

k̂j k̂i = c

Zcorr,i + (2∆r− 1)

i−1∑
j=0

k̂j

d

(2)

for constants c and d. This results in a realistic radar image of attenuated reflectivity in a polar coordinate system at each time85

step of the event, denoted by Zcorr(t,θ,r). Using the scheme described above, for rainfall intensity R(t) at time t we get a PIA

estimate PIA(t) of

R̃(t) =

R(t)−PIAR(t)(t), if R(t)≥ PIAR(t)(t)

0, otherwise.
(3)

(4)

where PIA(t) = f{R(t)} is a function based on the estimation algorithm outlined in Jacobi and Heistermann (2016).90

3.3 Random noise effects

When considering empirical variograms for weather radar images, Pegram and Clothier (2001) found 10% of the variability

in images corresponded to nugget effects, highlighting the need for random noise effects in radar pixel simulations. This noise

is also evident in the marginal distributions of radar images, with the full year and an example ‘dry’ day image for the High

Moorsley weather radar given in Fig. 2, showing a large number of values in the range −32–0dBZ. Although rainfall rates95

of less than 0.01mmh−1 are hardly noticeable in terms of rainfall accumulations, this high density of low reflectivity rates in

radar images may have a significant effect on attenuation estimates along the radar rays. This noise may be attributed to the
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Figure 2. Histograms of an example dry radar image (blue) and all radar pixels above −32dBZ (orange) for the High Moorsley weather

radar for the year 2019, where unz is the reflectivity rate corresponding to the non-zero rainfall threshold of 0.1mmh−1

measuring apparatus, non-meteorological echoes, or most likely a combination of various different sources. Errors are treated

as random noise, representing a combination of errors from unknown sources, clearly evident in real radar images.

The random noise field is added to rainfall values to prevent numerical instabilities, with the marginal distribution from100

Fig. 2 converted to rainfall rates in Fig. 3. When considering the logarithm of weather radar noise (i.e. dry day images and

values of dBZ corresponding to rainfall rates less than 0.1mmh−1), these are sufficiently Gaussian to satisfy the assumption

of a Log-Normal marginal distribution for random noise effects. A Log-Normal marginal distribution allows for a simple and

easy transformation when simulating the field using Gaussian random field theory. Empirical variograms of these values were

estimated to identify an appropriate correlation structure, which has a very short correlation range of around 5km. The optimal105

spatial transformation for minimising least squares between the marginal variogram values of the two spatial dimensions is

used to estimate field anisotropy from empirical variogram fields, with estimates suggesting that isotropy of random noise

fields is a valid assumption in this case. The three-dimensional noise field denoted by ε(t,x,y) is assumed to be Log-Normal,

with a marginal distribution of

ε∼ LN(µε,Σ
2
ε) (5)110

where µε =−5.3 and σε = 1.7. A Gaussian random field is simulated with an Exponential correlation structure of ρε(h) =

exp{−h/rε} for a short range with rε = 5 and a nugget effect of nε = 0.35. This is transformed using an inverse Gaussian

score transformation, then exponentiated resulting in a random noise field with the desired marginal distribution and correlation

structure. An example field is included in Fig. 3, from which we can see that the variability is slightly larger than in existing

images. This is however selected to preserve the proportion of −32dBZ reflectivity rates in images, with any values less than115

−32dBZ treated as −32dBZ.

3.4 Drop-size distribution errors

Attenuated rainfall rates R̃(t) can then be added to the three-dimensional noise field ε(t,x,y), which can then be converted

into a reflectivity field. A ZR-relationship is typically used, of the form Z = 10log10(aRb) for reflectivity Z (dBZ), rainfall

R (mmh−1) and constants a and b, which typically take the values a= 200 and b= 1.6 (Harrison et al., 2000). A constant120
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Figure 3. Histograms of low rainfall rates (and logarithms) corresponding to empirical random noise (i.e. in the range −32< Z ≤ 10)

obtained from High Moorsley weather radar for the year 2019 (blue), as well as an example simulated noise field (orange)

value for a and b is based on the assumption that the DSD varies spatially and temporally in a way characteristic of a particular

rainfall or weather type. Despite this, a fixed ZR-relationship results in a severe underestimation of peak rainfall intensities,

due to the failure to account for natural variations in the DSD with intensity (Schleiss et al., 2020). Lee et al. (2007) indicated

that the overall DSD variability cannot be adequately explained by a single parameter. In Libertino et al. (2015), a varying

ZR-relationship in space and time improved rainfall accumulations at event scale, when comparing to a fixed relationship.125

A large amount of scatter around the average power-law relationship is related to the various microphysical processes that are

responsible for the DSD variability. To account for this variability, in an attempt to generate more realistic reflectivity images,

we assume that a=A(x,y) is a two-dimensional field varying in space. As the simulated rainfall events all have a fairly short

duration (6 hours or less), a constant DSD in time is initially used. This assumes that A is fairly constant over the time period

considered, although the model is flexible and the dimensions of A can be easily extended to include time.130

Parameters in the ZR-relationship typically take values in the ranges a ∈ (30,1000) and b ∈ (0.8,2) (Battan and Theiss

1973, Smith and Krajewski 1993), and so the parameter b is still treated as constant, but sampled from a Gaussian distribution

with a low variance, centred around a value of µb = 1.6. This gives attenuated reflectivity estimates of

Z̃(t) = 10log10

{
A
[
R̃(t) + ε(t)

]b}
(6)

for135

A(x,y)∼N2(µa,{1 + g(x,y)}Σa) b∼N(µb,σ
2
b ) (7)
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for correlation structure ρa = σa exp{−h/ra} where µa = 220, σa = 2, ra = 30, µb = 1.6, σb = 0.02. The function g(x,y) =

ΣE(x,y) is the estimation variance based on pixel location (x,y), based on the proportion of the rainfall volume that the radar

can see for a given distance, which is discussed further in Sect. 3.5. Attenuated reflectivity fields are rounded to one decimal

place, and limited by a minimum value of −32dBZ, as is the case for actual reflectivity data.140

3.5 Radar sampling

Due to the nature of weather radar sampling, polar observations close to the receiver sample from a much smaller volume than

those further away, as can be seen for an example pixel in Fig. 4. Effects of curvature of the earth, cloud height and bright band

effects also impact the sampling volume, and furthermore radar observations above the freezing level are unavailable due to

the high reflectivity of melting precipitation (Hooper and Kippax 1950, Kitchen et al. 1994, Hall et al. 2015).145

Ground

Cloud
base

Bright
band

Cloud
top

Weather
radar

Radar
beam

Figure 4. Schematic of a radar ray sampling volume for an example pixel, denoted as a vertical columns

To address this, sampling errors are included as part of the DSD model, designed to increase uncertainty in the DSD where

the volume of rainfall sampled by the radar beam is lower. Areas where it is unrealistic for the radar beam to be sampling

rainfall (e.g. above the bright band level, outside the base and top of the cloud) are removed with flexible model parameters

which can be adjusted. In this case, the configuration of High Moorsley weather radar is used (see Sect. 2).

The radar sampling error is defined using estimation variance principles, by representing the change in uncertainty between150

the actual and sampled volume. Assuming a pixel is a vertical column denoted by V , dependent on the radar configuration and

distance of the pixel from the weather radar, parts of this vertical column will be sampled by the radar, denoted by ν (see Fig.

6). The estimation variance σE can be defined as

σE = 2γ̄(V,ν)− γ̄(ν,ν)− γ̄(V,V ) (8)

where γ̄ is the mean variogram, and V and ν are the total and sampled volumes respectively. By discretising the vertical pixel155

into small blocks, we can estimate the empirical variograms in Eq. 8, with an example of discretised blocks contributing to

each term in Fig. 5, based on a variogram model for the vertical distribution of the DSD.

We consider a vertical column of rainfall, assuming that the cloud base, bright band and cloud top are 1km, 4km and

10km and an Exponential variogram model for below the bright band level. Discretising the vertical column of rainfall into
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V

(b)

v

(a)

(a) Contributes to
variogram in first term
of Eq. 8.

(b) Contributes to
variogram in second
term of Eq. 8.

(c) Contributes to
variogram in third term
of Eq. 8.(c)

Figure 5. Example of variogram contributions for a discretised volume V , given volume ν is sampled, highlighting an example of discretised

blocks contributing to empirical variogram estimation for each of the terms in Eq. 8

blocks of height 10m (see Fig. 6), the empirical distances for each discretised block are calculated using the variogram model.160

Parametrisation is based on analyses of vertical weather radar data (Berne et al., 2005), considering the vertical raindrop

volume distribution for a range of rainfall rates and heights. The variance of sampling volumes at different ranges supported

the concept, with simulations compared to vertical radar images for validation.

Discretised
vertical pixel

column

v

Sampled
volume by
radar rays

V

Figure 6. Example of vertical structure of a rainfall pixel, with discretised blocks representing the volume V , with the volume sampled by

the radar beam ν highlighted in yellow

4 Results

In this section, the performance of the model is considered by looking at example fields for each step of the simulation165

process. We consider 100 rainfall events simulated using the methods outlined in Green et al. (2023), parametrised by radar

rainfall events from High Moorsley weather radar (see Sect. 2). For each event, the model was run n= 100 times to obtain an

ensemble of weather radar images. To enable direct comparisons, each radar image is corrected using a standard radar rainfall

estimation process, resulting in corrected rainfall for each ensemble member, similar to what would be obtained from a radar
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rainfall images. This includes an attenuation correction (Jacobi and Heistermann, 2016), a ZR-relationship (Harrison et al.,170

2017) and reprojecting to a Cartesian grid, to allow for direct comparisons with the original simulated rainfall field R.

Defining the difference between the simulated ‘true’ rainfall field (R) and the corrected rainfall field (Rcorr,i) after applying

the radar error model as the error, we consider specific events R, individual event time steps R(t) throughout the ensemble

(i.e. image-based) and behaviour of all events. To investigate the capacity of the radar error model to capture uncertainty, we

consider the error metrics outlined below.175

1. The mean bias between corrected ensemble members and original simulated rainfall

BIAS(R) =
1

n

n∑
i=1

(R−Rcorr,i) (9)

for ensemble members i= 1, . . . ,100.

2. The root-mean-square-error (RMSE) across the ensemble

RMSE(R) =

√√√√ 1

n

n∑
i=1

(R−Rcorr,i)
2
. (10)180

3. The pixel variability throughout the ensemble, using the standard deviation

S.D.(Rcorr) =

√∑n
i=1

(
Rcorr,i− R̄corr,i

)2
n

(11)

4. The minimum and maximum RMSE values across the ensemble

RMSEmin(R) = min
i=1,...,n

{√
(R−Rcorr,i)

2
.

}
, RMSEmax(R) = max

i=1,...,n

{√
(R−Rcorr,i)

2

}
. (12)

5. The average error across the ensemble, as a percentage of the original simulated rainfall field for all non-zero simulated185

rainfall pixels

pR =
1

n

n∑
i=1

(
1− Rcorr,i

R

)
× 100% (13)

where R> 0.

Additional metrics defined to identify cases where significant amounts of rainfall are missing in corrected rainfall fields. Crane

(1979) referred to distortions in storm structures, as a result of attenuation, as shadows. In this study we define rainfall shadows190

as areas where information about the rainfall field is lost from a simulated weather radar image, after correction methods

have been applied. A formal definition of a rainfall shadow in this case is taken to be a pixel where the simulated rainfall

is significant (i.e. R> 1mmh−1), but the corrected rainfall much lower (less than 10%) than the original simulated rate (i.e.

Rcorr/R≤ 0.1|R> 1).
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We first consider example fields for each stage of the error model in Sect. 4.1 and then three events which show high195

bias, and low and high variability in Sect. 4.2–4.4, quantified based on the metrics above at an event level.The behaviour of

individual radar images is considered, looking at the average, minimum and maximum behaviours over the ensemble, including

the variability. Attempts are made to find metrics and properties of rainfall images with the aim of identifying instances where

there is a very high level of uncertainty or error arising from the rainfall estimation process. The impact of the rainfall location

with respect to the radar is considered, as well as identifying how often significant information on the rainfall field is lost. For200

individual image based errors, we introduce three image metrics relating to rainfall shadows given below.

1. ARS: The actual area (km2) of the radar image that contains rainfall shadows.

2. LARS: The largest single area (km2) of rainfall shadows in a radar image.

3. PRS: The proportion of significant rainfall (i.e. R> 1mmh−1) that is shadowed.

4.1 Example fields205

For an example time step of a simulated event, each stage of the radar error model process is given in Fig. 7. The final radar

image (Fig. 7f) appears realistic, with clear areas of rainfall, similar to raw radar images obtained from the High Moorsley

weather radar. A significant proportion of the signal is attenuated towards the edge of the domain, particularly in the top-right

of the image.

4.2 Event A: High bias210

The event shown in Fig. 8a has an area of moderate intensity rainfall in the centre of the image with a large extent, resulting

in high bias. The simulated radar image for an ensemble member associated with the event looks realistic, with the reflectivity

and corrected rainfall rates (see Fig. 8b–c) showing significant rainfall amounts missing throughout. The average bias, RMSE

and pixel variability corresponding to the event in Fig. 8 are given in Fig. 9. The average bias and RMSE are very high (see

Fig. 9a–b), taking values over 5mmh−1.215

Figure 9c shows very low pixel variability for most of the image which is reflected in the range of RMSE values throughout

the ensemble given in Fig. 9d–e, with a large area in the centre of the image showing bias and RMSE greater than 5mmh−1,

suggesting that the rainfall is consistently underestimated throughout the ensemble. A large area of moderate-intensity rainfall

on top of the radar is overcorrected, mimicking effects resulting from full attenuation of the radar signal by intervening rainfall.

In this case, the correction techniques could not improve the image significantly, and so information on a large portion of the220

rainfall field has been lost, particularly when forward attenuation correction algorithms are implemented.

This result is reiterated when looking at the rainfall shadows in Fig. 10b, where around a quarter of the image is shadowed,

for 100% of ensemble members. This event has very high average bias, with pixel variability varying drastically throughout the

image. Large areas of rainfall are missing, and the differing variability throughout and spatial distribution of the error structure

suggests that a mean field bias or multiplicative correction would not improve estimates significantly. The information on the225

rainfall structure are rates would be lost in this case.
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Figure 7. Step-by-step error model fields, including the (a) simulated rainfall field R(t), (b) attenuation PIA, (c) attenuated rainfall R̃(t),

(d) random noise field ε(t), (e) attenuated rainfall with random noise R̃(t)+ ε(t), and (f) attenuated reflectivity Z̃(t) for a single time step

of an example simulated event

4.3 Event B: Low variability

Figure 11a shows a rainfall event with a small extent of light rainfall, with mostly dry conditions throughout the image, resulting

in low variability throughout the simulated ensemble. There is a small amount of light rainfall on the centre-left of the radar

domain, with the corrected rainfall image in Fig. 11c exhibiting lower rainfall rates here than the original simulated rainfall.230

The radar image in Fig. 11 appears realistic, with a small amount of signal damping towards the left of the image, at a range

beyond the rainfall seen in Fig. 11a.

100 50 0 50 100
Distance from radar (km)

100

75

50

25

0

25

50

75

100

Di
st

an
ce

 fr
om

 ra
da

r (
km

)

(a) Simulated field (t = 10 min)

100 50 0 50 100
Distance from radar (km)

(b) Example reflectivity field

100 50 0 50 100
Distance from radar (km)

(c) Example corrected rainfall field

0

1

2

3

4

5

6

7

8

Ra
in

fa
ll 

R(
t) 

(m
m

h
1 )

20

0

20

40

60

Re
fle

ct
iv

ity
 Z

(t)
 (d

BZ
)

0

1

2

3

4

5

6

7

8

Ra
in

fa
ll 

R c
or

r(t
) m

m
h

1 )
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Figure 9. (a) Average bias, (b) average RMSE, c) pixel variability (S.D.), d) maximum RMSE, e) minimum RMSE and (f) average propor-

tional error for simulated event A (video link)

The corresponding bias and RMSE for this event are given in Fig. 12, as well as the pixel variability, maximum and minimum

RMSE over the ensemble and average proportional error. Over the ensemble, the average bias (see Fig. 12a) is close to zero

except for the low-intensity rainfall areas (at most 0.5mmh−1), with low average, minimum and maximum RMSE in Fig.235

12b, d and e. The pixel variability is slightly higher in the rainfall area (see Fig. 12c), with pixels at a larger distance from

the transmitter in this area showing lower pixel variability (less than 0.02mmh−1), with the remaining variability appearing

uniform. In Fig. 13b, the rainfall is shadowed in 100% of the rainfall ensemble (i.e. all ensemble members) in the area of
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Figure 10. (a) Percentage of corrected rainfall less than 10% of original simulated field, and (b) frequency of shadowed pixels over the

ensemble for simulated event A (video link)
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Figure 11. (a) Simulated rainfall field, (b) example reflectivity and (c) corrected rainfall field for simulated event B (video link)

light-intensity rainfall identified in Fig. 11. The frequency of shadows over the ensemble taking mostly values of either zero or

one. This event has very low variability between ensemble members, likely due to (mostly) non-zero rainfall amounts in the240

images.

4.4 Event C: High variability

Figure 14 shows an event with a small area of heavy rainfall rates, which results in high variability in event errors. Most of the

radar domain shows zero rainfall rates, except a very small area of high-intensity rainfall (greater than 100mmh−1) towards the
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Figure 12. (a) Average bias, (b) average RMSE, c) pixel variability (S.D.), d) maximum RMSE, e) minimum RMSE and (f) average propor-

tional error for simulated event B (video link)
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Figure 13. (a) Percentage of corrected rainfall less than 10% of original simulated field, and (b) frequency of shadowed pixels over the

ensemble for simulated event B (video link)

top of the domain. The example radar image (see Fig. 14b) is again realistic, showing mostly noise. Radial lines at top right245

past a small amount of high-intensity rainfall suggest that attenuation effects have not been sufficiently corrected. In Fig. 14c

the corrected rainfall image has areas of high-intensity rainfall which are overestimated, due to cumulative errors introduced as

part of forward attenuation correction procedures. Although there is not a large area of high-intensity rainfall, the rainfall field

spatial distribution has still been significantly impacted by the errors caused by attenuation.

From Fig. 15a–b, these radial lines show positive average bias and a higher RMSE than the rest of the image which is close250

to zero, however none of these exceed 0.2mmh−1. Errors are not noticeable from the maximum RMSE field, but have much

higher minimum RMSE than the rest of the image (see Fig. 15d–e). In this case, it appears that the attenuated high-intensity

rainfall has been over-corrected, with the area showing an average proportional error greater than one. Areas at a larger distance

from the transmitter are underestimated and although most of the pixels past this are light rainfall or mist, the rays have been

significantly impacted, showing a clear gap resulting from corresponding rainfall in the reflectivity images.255
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Figure 14. (a) Simulated rainfall field, (b) example reflectivity and (c) corrected rainfall field for simulated event C, with high intensity

rainfall (average throughout event over 10mmh−1) highlighted in red (video link)
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Figure 15. (a) Average bias, (b) average RMSE, c) pixel variability (S.D.), d) maximum RMSE, e) minimum RMSE and (f) average propor-

tional error for simulated event C, with high intensity rainfall (average throughout event over 10mmh−1) highlighted in red (video link)

The shadowed pixels in Fig. 16 shows radial lines in areas where the corrected rainfall is less than 10% of the simulated

rainfall, most of these pixels do not have significant rainfall rates so are not classed as shadowed, with only a handful of pixels

showing shadows and none for 100% of the ensemble, resulting in high variability within the ensemble.
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Figure 16. (a) Percentage of corrected rainfall less than 10% of original simulated field, and (b) frequency of shadowed pixels over the

ensemble for simulated event C, with high intensity rainfall (average throughout event over 10mmh−1) highlighted in red (video link)

From the videos of event errors, this high-intensity rainfall moves across the image, affecting different rays, with some

pixels showing rainfall shadows past the high-intensity rainfall. This is not consistent throughout the ensemble, with most260

pixels showing shadows in less than 100% of the ensemble members. This small area of high-intensity rainfall has resulted
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in high variability across the ensemble, which is impacted significantly by the over-estimation of high-intensity rainfall rates,

with the DSD error also contributing towards the variability for such a high rainfall rate.

4.5 Specific events: Summary

In cases where the absolute bias is low, rainfall shadows may still exist, suggesting average bias is a poor metric to use when265

identifying event errors. Even with a low absolute bias, the rainfall could be overestimated for pixels closer to the radar, and

underestimated past these pixels (which is very common along radar rays where attenuation has been overestimated). In these

cases, the spatial distribution of rainfall is often incorrect, which could have detrimental effects when using the rainfall fields

for any quantitative modelling. Typically events with high bias correspond to events with large rainfall shadows, with shadow

frequencies close to either zero or one, suggesting that in cases where there is high bias, the model uncertainty is low. Simulated270

rainfall events which exhibited high ensemble variability were as a result of potential interactions between small areas of high-

intensity rainfall and DSD errors, which corresponded to higher variability in shadows throughout the ensemble. Videos of all

simulated events (and corresponding errors) are available here.

4.6 Individual image-based errors: Average ensemble behaviour

The relationship between the average rainfall rate and proportion of rainfall in an images with the image RMSE is shown in275

Fig. 17a, showing that events with high average rainfall rates and large heavy rainfall proportions have the highest RMSE.

Images showing fairly low proportions (i.e. 5–10%) of heavy rainfall still exhibiting fairly high RMSE. Figure 17b shows the

relationship between the mean and standard deviation of non-zero rainfall rates with the image RMSE, showing higher RMSE

for events with high average and standard deviation in non-zero rainfall rates. This may be due to the large errors resulting
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Figure 17. (a) Average rainfall rate and proportion of significant rainfall and (b) average and standard deviation of non-zero rainfall, coloured

according to the image RMSE for event images
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in large gradients between pixels, where a large rainfall rate along a ray damps the signal so that subsequent observations are280

much lower, increasing pixel variability in image.

Figure 18 shows the average rainfall rate (see Fig. 18a–e) and proportion of non-zero rainfall (see Fig. 18f–j) in event images,

for the average bias, RMSE, ARS, PRS and LARS. For larger rainfall rates and proportions of rainfall, the bias increases, with

low proportions of low rainfall rates exhibiting negative average bias. This is also the case for the average non-zero rainfall rates,

however the relationship between the proportion of non-zero rainfall and RMSE is less distinct, highlighting the significant285

impact of very small areas of intense rainfall rates on the image RMSE. Figure 18 also shows that there are some low average

rainfall rates and proportions of non-zero rainfall which correspond to high areas of rainfall shadowed. This may be attributed

to noise, however it does suggest again that events do not need to include intense large-scale rainfall areas to result in significant

rainfall shadows. The proportion of rainfall shadowed also appears to increase exponentially as the average non-zero rainfall

rate increases, which is not the case with the proportion of rainfall in images.290

The relationships in Fig. 18 are heavily skewed by a high density of images with low average rainfall rates and proportions.

For a clearer image of the behaviour for event images, images with an average rainfall rate of 0.1mmh−1, 0.5mmh−1 and

1mmh−1 Fig. 19. This shows a much clearer relationship between the corrected rainfall field and the rainfall shadows, with

strong correlations between the average bias and the average rainfall rate (see Fig. 19a, f and k). The relationship becoming

less clear for higher rainfall thresholds for conditional average, with the strongest correlation between the non-zero rainfall295

average and the RMSE (see Fig. 19b).

From Fig. 19c, 19h and 19d, the ARS in images may increase exponentially with increasing average rainfall rates, however

this may be skewed with the small number of images with very high ARS (larger than 1000km2). For the thresholded rainfall

rates, most rates correspond to a low ARS, however appears to increase exponentially, particularly in Fig. 19c. There are some

images with low ARS which have high thresholded rainfall rates, which may be a result of small areas of high-intensity rainfall,300

where there is no resulting shadows as there is no other areas of significant rainfall rates in R(t). The relationship between the
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Figure 18. Average rainfall rate (a–e) and proportion of non-zero rainfall (f–j) for metrics including average bias, RMSE, area of rainfall

shadowed (ARS), proportion of rainfall shadowed (PRS) and largest rainfall shadow area (LARS) for ensemble images of all events
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Figure 19. Average thresholded rainfall rate for R(t)> 0.1mmh−1 (a–e), R(t)> 0.5mmh−1 (f–j) and R(t)> 1mmh−1 (k–o) for metrics

including average bias, RMSE, area of rainfall shadowed (ARS), proportion of rainfall shadowed (PRS) and largest rainfall shadow area

(LARS) for ensemble images of all events

proportion of rainfall is more complex (see Fig. 19d, i and n), with two distinct types of image behaviour. While a correlation is

evident between the conditional average rainfall rates and the PRS, there is clearly a large number of images with low average

rainfall rates and large PRS. These high PRS with low average rainfall rates are most likely corresponding to images with a

very low proportion of rainfall rates large enough to be classed as shadows. If just one rainfall pixel is shadowed, there would305

be a large increase in the PRS in this case, highlighting the impact that shadows have in images with low rainfall extents, with

fairly low average rainfall rates.

From Fig. 19e, 19j and 19o the LARS appear to have a similar relationship to the ARS, however these are again skewed by

very high ARS and so the relationship is less clear. Considering the overall average behaviour of the ensemble does not take

full advantage of the model framework, and different ensemble member properties, as important variation information is lost,310

which may increase understanding of the uncertainty associated with the radar rainfall estimation process.

4.7 Individual image-based errors: Ensemble variability

The variability between ensemble members for each event image is considered, using the ensemble standard deviation to

identify areas were the event errors have a high level of uncertainty in image properties. Figure 20a shows the relationship

between the average non-zero rainfall rate and the standard deviation of the image bias, showing rainfall images with an315

average non-zero rainfall rate less than 0.5mmh−1, there is no clear relationship between the average rainfall and variability in
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Figure 20. Standard deviation of the ensemble bias (a) and RMSE (b) for average non-zero rainfall rates of ensemble images for all events

the bias of estimates. For images with an average non-zero rainfall rate above 0.5mmh−1, there appears to be a strong positive

correlation between the two, suggesting that past this image threshold, the uncertainty in the image bias is directly proportional

to the average non-zero rainfall rate.

The relationship between the average non-zero rainfall rate and the image RMSE variability in Fig. 20b is very different,320

appearing inversely proportional to the variability in image RMSE. This may be attributed to the fact that for higher rainfall

rates, there are more rainfall shadows. In areas where there are rainfall shadows, the variability between ensemble members

decreases significantly due to the effects of the radar ray signal being fully damped. There is a moderate relationship between

the variability PRS and the average non-zero rainfall, however this is less distinct.

The standard deviation of the ARS, PRS, and LARS are given in Fig. 21. From Fig. 21a we can see that the uncertainty in325

the ARS increases with increasing average rainfall rate, with similar behaviour for the LARS in images (see Fig. 21c), however

there are a lot of images with no ARS skewing the relationship. Again the relationship between the average non-zero rainfall

rate and the variability of the PRS is not clear (see Fig. 21b).
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Figure 21. Standard deviation of the area of rainfall shadowed (a), proportion of rainfall shadowed (b) and largest area of rainfall shadowed

(c) for average non-zero rainfall rates of ensemble images for all events
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4.8 Rainfall location: second moment of area

The location of rainfall with respect to the radar location will also impact the error structure, which is reflected in the variability330

in the PRS for different average rainfall rates. Atlas and Banks (1951) stated that distortion due to range attenuation includes

a displacement towards the radar of maximum intensity, packing contours on the near-side of the storm, suggesting that the

location of high-intensity rainfall will also have an impact on errors. The amount of rainfall lost due to attenuation effects is

likely to be higher for images with high-intensity rainfall in a more central location, due to the cumulative nature of attenuation

effects along a radar ray. As illustrated in Fig. 22, occurrence of rainfall close to the radar transmitter affects more rays and its335

attenuation affects more ‘downstream’ pixels. There is evidence of this in Fig. 9, where high-intensity rainfall occurred in the

centre of the image, resulting in very high errors.

Radar domain 

Weather radar 

High-intensity rainfall 

Non-attenuated ray 

Slightly attenuated ray

Attenuated ray 

Very attenuated ray 

Figure 22. Schematic of the different effect high-intensity rainfall has on the radar rays based on its location within the domain

To formally investigate this, we introduce the second moment of area of a rainfall (or reflectivity) image, estimated by con-

sidering the centroid of each image using the second areal moment. For rainfall field R(t) on a Cartesian grid with dimensions

(Nx,Ny), the second moment of area can be estimated as340

MR(t) =

Nx∑
x=1

Ny∑
y=1

R(x,y, t)d(x,y)2 =

Nx∑
x=1

Ny∑
y=1

R(x,y, t)
{

(x− rx)2 + (y− ry)2
}

(14)

where d(x,y) =
√

(x− rx)2 + (y− ry)2 is the distance of a pixel from the radar location (rx, ry). Both the actual and nor-

malised rainfall fields are used to see the different impact between the shape of the field, with and without considering the

actual magnitude of estimates. The normalised image moments M̃R(t) are defined as

M̃R(t) =

Nx∑
x=1

Ny∑
y=1

R(x,y, t)

Rtot(t)

{
(x− rx)2 + (y− ry)2

}
(15)345

where Rtot(t) =
∑

x

∑
yR(x,y, t) is the total rainfall in R(t).

Figure 23 shows the relationship between the second moment of area MR(t) and normalised second moment of area M̃R(t)

for event images and corresponding ensemble metrics including the average bias, RMSE, ARS, LARS and PRS. There are

significant differences between the moments and normalised moments, with positive correlations for image moments and an

inverse relationship for normalised image moments, which is particularly prominent when considering the RMSE. There is a350
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Figure 23. Second moment of area (a–e) and normalised second moment of area (f–j) for metrics including average bias, RMSE, area of

rainfall shadowed (ARS), proportion of rainfall shadowed (PRS) and largest rainfall shadow area (LARS) for ensemble images of all events

significant positive correlation between image moment and RMSE, ARS and PRS, with the relationship for the LARS is less

clear.

This suggests that for the second moment of area calculated on rainfall rates, the strong non-linear dependence on absolute

rainfall amount is overriding all other information about the field, such as rainfall location. For the normalised second moments

of area, this dependence has been removed, and so the relationship is solely based on the impact of the rainfall location. In this355

case, a smaller second moment of area (corresponding to a more central rainfall location) suggests larger rainfall shadows.

Fig. 24 shows the relationship between the second moment of area and normalised second moment of area for events, and

ensemble uncertainty for the image metrics given in Figure 23. This shows that images with a larger image moment have lower
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Figure 24. Second moment of area (a–e) and normalised second moment of area (f–j) for ensemble metric variability (standard deviation),

including average bias, RMSE, area of rainfall shadowed (ARS), proportion of rainfall shadowed (PRS) and largest rainfall shadow area

(LARS) for ensemble images
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RMSE standard deviation. The normalised image moments appear to be positively correlated with the standard deviation of

the bias and RMSE, and negatively correlated with the ARS, PRS and LARS. The variability in rainfall shadows, for both the360

ARS and PRS, appears to decrease with increasing normalised image moments.

Image moments could be a key piece of information when attempting to identify radar images with high uncertainty in

estimates, particularly when using moments calculated from normalised rainfall rates across an image. In conclusion, this

analysis suggests that second moment of area has potential in identifying high uncertainty and missing information.

4.9 Rainfall shadow frequency365

The aim of this section is to identify how often rainfall shadows occur. Due to ensemble variability, to ensure frequencies

are not overestimated, we consider the ‘best case scenario’ over the ensemble. In terms of the ensemble, for each image the

ensemble member with the lowest errors is selected. This prevents overestimation, and as rainfall fields are parametrised with

existing corrected radar rainfall images that may themselves be subject to rainfall shadows, the simulations may inherently

underestimate the frequencies and so considering the minimum likelihood of occurrence makes intuitive sense. Percentiles are370

given for the minimum LARS, PRS and ARS in Table 1.

Percentile (%) Proportion shadowed Largest shadow Actual shadow

25 0.01 0 0

50 0.03 10.1 15.2

75 0.06 20.2 45.5

90 0.09 30.3 90.9

95 0.13 50.5 136.4

Table 1. Percentiles for the empirical cumulative distribution functions (ECDF) for the minimum ensemble rainfall shadow proportions,

largest shadowed areas, and actual rainfall shadowed for all events

The empirical cumulative distribution function for the minimum LARS, PRS and ARS are estimated for simulated events,

with attenuation estimated from rainfall and reflectivity, given in Fig. 25. From the median of proportion of rainfall images

simulated, half of the images have at least 3% of significant rainfall rates shadowed. When considering the ARS in images,

we see that 25% of images have an ARS of 45km2 and 5% have a LARS of over 50km2. A missing area of significant375

rainfall of this size, particularly for small or urban catchments, constitutes a major an underestimation of flood risk, resulting

in incorrect information provided in flood warnings. This highlights the importance of gaining an improved understanding of

rainfall shadows, and provides motivation for this project and future research in this area. Gaps caused by the rainfall shadows

identified would result in under-prediction of flooding, impacting both flood warnings and flood defence designs.
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Figure 25. Empirical cumulative distribution functions (ECDF) for the minimum ensemble proportion, largest and actual area of image

containing rainfall shadows for all events

5 Discussion and conclusions380

Errors relating to several different aspects of the radar rainfall estimation process are considered, using a radar error model

outlined in detail. This model is applied to realistic simulated rainfall events in a stochastic manner, generating an ensemble

of radar images corresponding to each time step of rainfall events. A Log-Normal random noise field was imposed on rainfall

estimates to account for underlying non-specific noise. The DSD uncertainty is included by replacing the multiplicative param-

eter a in the ZR-relationship with a two-dimensional spectral random field, with field variability determined by radar sampling385

volumes. Attenuation effects are imposed by inverting standard gate-by-gate correction algorithms (Jacobi and Heistermann,

2016). To enable the direct comparison between the simulated rainfall before and after imposing the radar error model, each

radar image is corrected using a standard radar rainfall estimation process. This results in corrected rainfall field for each en-

semble member, similar to what would be obtained from real radar rainfall images, allowing us to identify when and where

significant and/or systematic errors may occur.390

This concept provides a methodology for developing a better understanding of errors relating the the radar rainfall estimation

process. By generating a ‘true’ rainfall field, and subsequently imposing errors to allow for the comparison with correct ‘best

guess’ stochastic radar rainfall estimates, allows us to address the fundamental limitation of weather radar correction schemes –

that the real rainfall field is not known for comparisons. An investigation of the spatio-temporal behaviour of the error structure

is then possible, which provides key information about the radar rainfall estimation process.395
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A relationship between rainfall shadows, high bias and uncertainty, related to the amount of rainfall (i.e. proportion and rates)

in images was found. The impact rainfall location with respect to the weather radar is considered by introducing the second

moment of area, showing more central rainfall in the radar domain results in higher errors and variability. The minimum

likelihood of rainfall shadows showed that 50% of images simulated have at least 3% of significant rainfall shadowed. In

addition, 25% of images had an ARS of over 45km2, with the minimum LARS for 5% of images exceeding an area of400

50km2. This gap would result in underestimation of potential impacts of flooding. This highlights the importance of gaining an

improved understanding of rainfall shadows, and provides motivation for this project, and future research in this area. Weather

radar alone cannot be used for rainfall estimation, as information is regularly missed.

5.1 Impact and transferability

Improved high-resolution rainfall estimates are needed for flood forecasting, by stakeholders and water managers, particularly405

in (near) real time, for nowcasting and probable ensemble forecasting. The radar error model outlined in this study produces

visually realistic radar images, capturing key properties of radar images, with many potential uses for the model framework,

some of which are outlined below.

1. Identification of radar rainfall properties which correspond to high errors and uncertainties could be extended and used

in a probabilistic manner, to better condition merged rainfall fields. Identifying areas where the spatial distribution of the410

rainfall cannot be trusted (i.e. occasions where rainfall shadows are likely, such as areas past high intensity rainfall). This

includes information on the frequency and location of rainfall shadows as a merging criterion (i.e. putting more weight

on rainfall information from other sources when rainfall shadows are likely to occur at a given location).

2. Application of the model to gridded rain gauge fields or forecasts, for comparison with corresponding weather radar

images, to better identify and understand radar rainfall errors.415

3. The importance of complex and efficient radar gauge merging methods is emphasised in this study, which do not trust

the spatial distribution of rainfall provided by weather radars alone. Additional information from other sensors is needed,

such as opportunistic sensors, citizen science data, rain gauges and microwave links. This study has provided a framework

for methods of assessing the performance of these merging techniques.

4. Determining the optimal location for weather radars or rain gauges, such as establishing rain gauge networks in areas420

where rainfall shadows are more likely, and not in densely populated areas (e.g. the city), where it may be too late for

warnings of missing information.

5. Assess how radar rainfall errors propagate into hydrological and hydrodynamic modelling, considering the impact that

the incorrect distribution of rainfall has on discharge and flood depths.
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5.2 Limitations and future work425

A powerful framework for investigating radar rainfall errors has been developed and demonstrated, with model design allowing

for a high degree of flexibility and several natural extensions. The influence of different correction methods for radar rainfall

estimation process and the impact this has on the error structure should be investigated using the methodology in this study.

Some error sources in radar rainfall estimation are not included in the radar error model, as they were beyond the scope

of this study. To improve the model, additional sources of error could be easily included (e.g. radar calibration errors using430

an additive error in dBZ and bright band effects using a vertical representation for different weather types and seasons of

events). Mountainous regions are typically subject to more errors due to beam blockage from topography, however this could

be included in the model quite easily by an additive error based on existing clutter maps from the weather radar of interest.

It would be interesting to repeat the study with different DSD structures, changing the correlation structure and marginal

distribution of this (previously Gaussian) field. A dependence between DSD parameters could be imposed, as a varying ZR-435

relationship in space and time improved rainfall accumulations at event scale (Libertino et al., 2015).

Close to the radar, measurement volumes are small, systematically increasing in size with distance from the radar. Although

as part of the radar error model, the spatial sampling aspect is considered through the estimation variance, radar measurements

are taken as instantaneous (as opposed to rain gauge measurements which are temporal aggregations by definition). Implications

of these space-time sampling properties mean that temporally we only have a snapshot of the pixel behaviour at a given440

time. Correlation structure variability in space and time was incorporated through a spatio-temporal anisotropy factor, without

explicitly account for the different data sampling between the two dimensions. The simulation environment could be modified

to account for the temporal sampling issue by simulating temporally at a higher resolution than existing radar images, and

sampling these to reproduce the snapshot effect. Methods could also be developed within an inverse modelling framework

(Grundmann et al., 2019) for obtaining field uncertainty in (near) real time.445

5.3 Concluding remarks

The overarching aim of this study is to contribute towards improvements in the radar rainfall estimation process, by gaining

an improved understanding of the frequency and location of the error structure relating to the process. With this in mind, we

explore and exploit space-time properties of rainfall and reflectivity, to gain an improved understanding of the error structure

between the two, investigating the extent of uncertainties in the radar rainfall estimation process. This study has presented450

an innovative model for investigating uncertainties in the radar rainfall estimation process; providing a flexible tool that has

many potential future applications. The radar error model, outlined in detail, generates a stochastic ensemble of radar images

corresponding to an existing rainfall field, by inverting the radar rainfall estimation process. This model incorporates many dif-

ferent error sources, including: the drop-size distribution, attenuation effects, random noise and radar sampling. This provides

a method for identifying when and where radar errors are likely to occur, and how often information about the rainfall field is455

lost, significantly impacting the spatial rainfall field. The insights from this study provide an improved understanding of the

error structure between rainfall and reflectivity, and the extent of uncertainties in the radar estimation process. A framework
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has been provided for investigating the impact of errors relating to the radar rainfall estimation process, with many potential

hydrological applications.
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Ośródka, K., Szturc, J., and Jurczyk, A.: Chain of data quality algorithms for 3-D single-polarization radar reflectivity (RADVOL-QC

system), Meteorological Applications, 21, 256–270, https://doi.org/10.1002/met.1323, 2014.545

Pegram, G. G. and Clothier, A. N.: Downscaling rainfields in space and time, using the String of Beads model in time series mode, Hydrology

and Earth System Sciences, 5, 175–186, https://doi.org/10.5194/hess-5-175-2001, 2001.

Rico-Ramirez, M. A., Liguori, S., and Schellart, A. N. A.: Quantifying radar-rainfall uncertainties in urban drainage flow modelling, Journal

of Hydrology, 528, 17–28, https://doi.org/10.1016/j.jhydrol.2015.05.057, 2015.

Savina, M., Schäppi, B., Molnar, P., Burlando, P., and Sevruk, B.: Comparison of a tipping-bucket and electronic weighing precipitation gage550

for snowfall, in: Rainfall in the Urban Context: Forecasting, Risk and Climate Change, vol. 103, pp. 45–51, Elsevier B.V., ISSN 01698095,

https://doi.org/10.1016/j.atmosres.2011.06.010, 2012.

Schleiss, M., Olsson, J., Berg, P., Niemi, T., Kokkonen, T., Thorndahl, S., Nielsen, R., Nielsen, J. E., Bozhinova, D., Pulkkinen, S., Ellerbæk

Nielsen, J., Bozhinova, D., and Pulkkinen, S.: The accuracy of weather radar in heavy rain: A comparative study for Denmark, the

Netherlands, Finland and Sweden, Hydrology and Earth System Sciences, 24, 3157–3188, https://doi.org/10.5194/hess-24-3157-2020,555

2020.

Seo, B. C., Krajewski, W. F., Quintero, F., ElSaadani, M., Goska, R., Cunha, L. K., Dolan, B., Wolff, D. B., Smith, J. A., Rutledge, S. A.,

and Petersen, W. A.: Comprehensive evaluation of the IFloodS Radar rainfall products for hydrologic applications, Journal of Hydrome-

teorology, 19, 1793–1813, https://doi.org/10.1175/JHM-D-18-0080.1, 2018.

Shehu, B. and Haberlandt, U.: Relevance of merging radar and rainfall gauge data for rainfall nowcasting in urban hydrology, Journal of560

Hydrology, 594, 2021.

Smith, J. A. and Krajewski, W. F.: A modeling study of rainfall rate-reflectivity relationships, Water Resources Research, 29, 2505–2514,

https://doi.org/10.1029/93WR00962, 1993.

Thorndahl, S., Einfalt, T., Willems, P., Nielsen, J. E., Veldhuis, M. C. T., Arnbjerg-Nielsen, K., Rasmussen, M. R., Molnar, P., Ellerbæk

Nielsen, J., Ten Veldhuis, M. C., Arnbjerg-Nielsen, K., Rasmussen, M. R., and Molnar, P.: Weather radar rainfall data in urban hydrology,565

Hydrology and Earth System Sciences, 21, 1359–1380, https://doi.org/10.5194/hess-21-1359-2017, 2017.

Uijlenhoet, R. and Berne, A.: Stochastic simulation experiment to assess radar rainfall retrieval uncertainties associated with attenuation and

its correction, Hydrology and Earth System Sciences, 12, 587–601, https://doi.org/10.5194/hess-12-587-2008, 2008.

Ventura, J. F. I. and Tabary, P.: The new French operational polarimetric radar rainfall rate product, Journal of Applied Meteorology and

Climatology, 52, 1817–1835, https://doi.org/10.1175/jamc-d-12-0179.1, 2013.570

Villarini, G. and Krajewski, W. F.: Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall,

https://doi.org/10.1007/s10712-009-9079-x, 2010.

Villarini, G., Seo, B.-C., Serinaldi, F., and Krajewski, W. F.: Spatial and temporal modeling of radar rainfall uncertainties, Atmospheric

Research, 135, 91–101, 2014.

29

https://doi.org/10.1016/j.jhydrol.2015.05.035
https://doi.org/10.1002/met.1323
https://doi.org/10.5194/hess-5-175-2001
https://doi.org/10.1016/j.jhydrol.2015.05.057
https://doi.org/10.1016/j.atmosres.2011.06.010
https://doi.org/10.5194/hess-24-3157-2020
https://doi.org/10.1175/JHM-D-18-0080.1
https://doi.org/10.1029/93WR00962
https://doi.org/10.5194/hess-21-1359-2017
https://doi.org/10.5194/hess-12-587-2008
https://doi.org/10.1175/jamc-d-12-0179.1
https://doi.org/10.1007/s10712-009-9079-x


Yan, J., Li, F., Bárdossy, A., and Tao, T.: Conditional simulation of spatial rainfall fields using random mixing: A study that implements full575

control over the stochastic process, Hydrology and Earth System Sciences, 25, 3819–3835, https://doi.org/10.5194/hess-25-3819-2021,

2021.

30

https://doi.org/10.5194/hess-25-3819-2021

