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Abstract. Weather radar is a crucial tool in rainfall estimation
::
for

::::::
rainfall

::::::::::
observation

:::
and

:::::::::
forecasting, providing high-resolution

estimates in both space and time. Despite this, radar rainfall estimates are subject to many error sources – including attenuation,

ground clutter, beam blockage and the drop-size distribution – with the true rainfall field unknown. A flexible stochastic

model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard weather radar

processing methods, imposing path-integrated attenuation effects, a stochastic drop-size distribution field, along with sampling5

and random errors. This can provide realistic weather radar images, of which we know the true rainfall field, and the corrected

‘best guess’ rainfall field which would be obtained if they were observed in the real-world case. The structure of these errors

is then investigated, with a focus on frequency and behaviour of ‘rainfall shadows’. Half of simulated weather radar images

have at least 3% of significant rainfall rates shadowed and 25% had at least 45km2 containing rainfall shadows, resulting in

underestimation of potential impacts of flooding. A model framework for investigating the behaviour of errors relating to the10

radar rainfall estimation process is demonstrated, with the flexible and efficient tool performing well at generating realistic

weather radar images visually, for a large range of event types.

1 Introduction

Precipitation is extremely difficult
::::::::::
challenging to measure accurately, due to its intermittent nature, spatio-temporal variabil-

ity, and sensitivity to environmental conditions (Savina et al., 2012). For urban hydrology weather radar plays an increasingly15

important role in quantitative precipitation estimation, due to the high spatio-temporal resolution of information needed (Thorn-

dahl et al., 2017). The small size of urban catchments and the intended hydrological applications – particularly for real-time

or near real-time – require information about precipitation fields at small temporal and spatial scales, from 1–10 minutes and

1–5km, respectively (Berne et al. 2004, Ochoa-Rodriguez et al. 2015, De Vos et al. 2017, Thorndahl et al. 2017, Shehu and

Haberlandt 2021).20

Despite the suitability of weather radar for obtaining high-resolution rainfall estimates, there are many sources of error in the

estimation process, with different sources of uncertainty reviewed in numerous studies (Michelson et al. 2005, Meischner 2005,

Villarini and Krajewski 2010, Ośródka et al. 2014, Ciach and Gebremichael 2020). Errors include radar calibration and stability

problems; contamination by clutter and anomalous propagation; occultation;
::::::::::::::
beam-broadening

:::::
effect

::::
with

:::::::::::
non-uniform

:::::
beam
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:::::
filling;

:
attenuation and assumptions made about the drop-size distribution (DSD) (Marshall and Palmer 1948, Harrison et al.25

2000). Some error sources can be corrected for, such as bias and systematic errors, ground clutter (Gabella and Notarpietro

2002, Ventura and Tabary 2013, Li et al. 2013) and attenuation (Nicol and Austin 2003, Krämer 2008, Jacobi and Heistermann

2016), resulting in significantly improved reliability. Correction procedures are often limited, due to the cumulative nature of

errors from a superposition of different sources, with complex approaches showing only modest improvements to estimates.

Information on the rainfall field is lost, irretrievable, and we do not even know how often this happens.30

There is therefore an ongoing need to account for errors in the radar rainfall estimation process (Villarini and Krajewski

2010, Seo et al. 2018) and uncertainties should be acknowledged and modelled (Ciach et al. 2007, Gires et al. 2012, Villarini

et al. 2014, Rico-Ramirez et al. 2015). The poor quantification of uncertainties was highlighted as a fundamental issue in

AghaKouchak et al. (2010a), expanded in AghaKouchak et al. (2010b). An error model described in Hasan et al. (2014) found

uncertainties were easily identifiable for unbiased ZR-relationships, incorporating radar reflectivity uncertainties in Hasan35

et al. (2016). Variograms were used to representing radar rainfall uncertainties Cecinati et al. (2017), eliminating the need for

a covariance matrix for faster and more flexible calculation of the spatial correlation of errors. Uijlenhoet and Berne (2008)

created a stochastic model of range profiles for the DSD, using a Monte Carlo framework (Berne and Uijlenhoet, 2006) to

estimate uncertainties using two attenuation correction schemes. Yan et al. (2021) imposed random and non-linear radar errors

on simulated rainfall fields, with ZR-relationship errors appearing to have little influence overall.40

Error quantification is challenging and errors propagate into future estimates for any model which requires rainfall as an

input. The fundamental limitation in radar correction
:
is
:
that the ‘true’ rainfall field is not available for comparisons. In this

study, the aim is to work backwards to obtain an estimate of the uncertainty in the radar rainfall estimation process. Using a

new model for simulating realistic space-time rainfall event fields with a high resolution (matching that of a U.K. standard C-

band weather radar) (Green et al., 2023), clustered parametrisation based on radar rainfall events extracted from the U.K. Met45

Office operated High Moorsley weather radar. These simulation outputs are treated as the ‘true’ rainfall field. Errors relating

to each step of the radar rainfall estimation process are then imposed on the simulated rainfall field, to obtain an ensemble of

spatio-temporal error fields for each event, in a stochastic manner, forming a superposition of different error sources. This is

done by inverting standard radar processing methods, allowing the identification of the frequency of occurrence and extent of

the loss of important information.50

In this study, the data and study area are first discussed, as well as the simulation methods applied to obtain realistic space-

time rainfall fields in Sect. 2. The methodology for the radar error model is then outlined in detail in Section
::::
Sect.

:
3, with

detailed explanations for each step of the model. Example event results are discussed in Section ??
::::
Sect.

::::::
4.2–4.5, with more

general results based on event images given in ??.
::::
Sect.

:::::::
4.1–4.4. A discussion and conclusions are given in Section

::::
Sect. 5,

with model limitations, potential for generalisation and future work also discussed.55

2



2 Data

An ensemble of realistic rainfall events are used, generated using the clustered rainfall model outlined in Green et al. (2023).

This model uses Fast Fourier Transform (FFT) methods to efficiently generate three dimensional rainfall event fields with a

high-resolution matching that of radar data (1km, 5min) for a 200×200km domain. Events have prescribed properties, includ-

ing the correlation structure, spatial anisotropy, spatio-temporal anisotropy, marginal distribution, non-zero rainfall proportions60

and advection. The model is used with multidimensional scaling and hierarchical clustering to parametrise rainfall event sim-

ulations, for 100 rainfall events.

A year of processed dual-polarisation C-band weather radar data , from the High Moorsley weather radar (north east

England) as part of the Met Office radar network is used . This dataset is used
:
is
:::::

used to parametrise simulations of real-

istic space-time rainfall fields.
:::
This

::
is
::::::::
obtained

::::
from

:::::
High

::::::::
Moorsley

:::::::
weather

:::::
radar

:::::::::::::::
(Met Office, 2003)

:
,
::::::
located

::::
near

::::::::
Durham,65

:::::::
England

:::
(54◦

:::::::
48’20”N,

::::
001◦28

:::::::
’32”W),

::::
with

::
a

:::::::::
wavelength

::::
and

:::::::::
frequency

::
of

::::::
5.3cm

:::
and

:::::::
5.6GHz

:::::::::::
respectively.

::::
This

::::::::
operates

:::::::
between

:
5
::::::::
elevation

::::::
angles

:::::
0.5–2

:::::::
degrees,

::::
with

:::
one

::::::
degree

:::::
beam

:::::
width,

::::::
taking

:
a
::::
scan

::
at
:::::
each

:::::::
elevation

::::::::::::
approximately

:::::
every

::
5

:::::::
minutes.

3 Radar error model

This section outlines a novel model for imposing errors in the radar rainfall estimation process on a rainfall field, focusing70

on four main error sources: random noise effects, attenuation effects, DSD error and sampling through estimation variance.

Sections 3.1–3.3 describe the error model in more detail, outlined in Fig. 1, written in Python. While the model is by no means

comprehensive, random error is includedin the model. This is designed to provide a framework for investigating the impact of

these errors, improving understanding of the estimation process.

3.1 Reprojecting to polar coordinates75

The simulated rainfall fields are given on a regular three-dimensional Cartesian grid. To apply radar processing methods

in reverse, the data must be reprojected into a polar coordinate system. Using nearest neighbour interpolation methods, the

Cartesian grid is converted into polar data

Z(t,x,y)→ Z(t,θ,r) (1)

for ray angles θ = 1,2, . . .360 with ray bins r = 1,2, . . .167 of width 600m and average elevation angle of 1 degree. This80

mirrors the radar configuration of the High Moorsley weather radar, used for parametrisation. The different elevation angles

and difference in sampling sizes of pixels are incorporated through the use of estimation variance in Sect. 3.5.

3.2 Attenuation effects

A constrained gate-by-gate approach is applied to estimate the path-integrated attenuation (PIA) for each radar ray by inverting

standard forward attenuation models (Krämer and Verworn 2008, Jacobi and Heistermann 2016). Inverting the process gives85
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Simulated rainfall field

Estimate PIA from rainfall field

Add random noise field to attenuated
rainfall field

Estimate attenuated reflectivity from
attenuated rainfall field with noise

Attenuated reflectivity image

Repeat to
generate an
ensemble

Figure 1. Schematic for imposing the radar error model on simulated rainfall fields,
:::::::
outlined

::
in

::::
more

::::
detail

::
in

::::
Sect.

::::::
3.1–3.5

an estimated attenuated reflectivity Zi rate for the ith bin of width ∆r as

Ẑi = Zi,corr −
i−1∑
j=0

k̂j k̂i = c

Zcorr,i +(2∆r− 1)

i−1∑
j=0

k̂j

d

(2)

for constants c and d. This results in a realistic radar image of attenuated reflectivity in a polar coordinate system at each time

step of the event, denoted by Zcorr(t,θ,r). Using the scheme described above,
::
for

::::::
rainfall

::::::::
intensity

::::
R(t)

::
at

::::
time

:
t we get a PIA

estimate PIA(t) of90

R̃(t) =

R(t)−PIAR(t)(t), if R(t)≥ PIAR(t)(t)

0, otherwise.
(3)

(4)

where PIA(t) = f{R(t)} is a function based on the estimation algorithm outlined in Jacobi and Heistermann (2016).

3.3 Random noise effects

When considering empirical variograms for weather radar images, Pegram and Clothier (2001) found 10% of the variability95

in images corresponded to nugget effects, highlighting the need for random noise effects in radar pixel simulations. This noise

is also evident in the marginal distributions of radar images, with the full year and an example ‘dry’ day image for the High

Moorsley weather radar given in Fig. 2, showing a large number of values in the range −32–0dBZ. Although rainfall rates
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of less than 0.01mmh−1 are hardly noticeable in terms of rainfall accumulations, this high density of low reflectivity rates in

radar images may have a significant effect on attenuation estimates along the radar rays. This noise may be attributed to the100

measuring apparatus, non-meteorological echoes, or most likely a combination of various different sources. Errors are treated

as random noise, representing a combination of errors from unknown sources, clearly evident in real radar images.

20 0 20 40 60
Reflectivity (dBZ)

0.00
0.02
0.04
0.06

De
ns

ity
Example dry image
unz

Full year of images

Figure 2. Histograms of an example dry radar image (blue) and all radar pixels above −32dBZ
::::::
(orange)

:
for the High Moorsley weather

radar for the year 2019, where unz is the reflectivity rate corresponding to the non-zero rainfall threshold of 0.1mmh−1

The random noise field is added to rainfall values to prevent
::::::::
numerical instabilities, with the marginal distribution from

Fig. 2 converted to rainfall rates in Fig. 3. A log-normal marginal distribution would allow
::::
When

::::::::::
considering

:::
the

:::::::::
logarithm

::
of

:::::::
weather

::::
radar

:::::
noise

::::
(i.e.

:::
dry

:::
day

:::::::
images

:::
and

::::::
values

::
of

::::
dBZ

::::::::::::
corresponding

::
to

:::::::
rainfall

::::
rates

::::
less

::::
than

::::::::::
0.1mmh−1),

:::::
these

:::
are105

:::::::::
sufficiently

::::::::
Gaussian

::
to

:::::
satisfy

:::
the

::::::::::
assumption

::
of

:
a
:::::::::::
Log-Normal

:::::::
marginal

::::::::::
distribution

:::
for

::::::
random

:::::
noise

::::::
effects.

::
A
:::::::::::
Log-Normal

:::::::
marginal

::::::::::
distribution

::::::
allows

:
for a simple and easy transformation when simulating the field using Gaussian random field

theory. Empirical variograms of these values were estimated to identify an appropriate correlation structure, which has a very

short correlation range of around 5km, with no clear anisotropy effects
:
.
::::
The

:::::::
optimal

:::::
spatial

:::::::::::::
transformation

:::
for

::::::::::
minimising

::::
least

::::::
squares

::::::::
between

:::
the

:::::::
marginal

:::::::::
variogram

::::::
values

::
of

:::
the

::::
two

::::::
spatial

:::::::::
dimensions

::
is
:::::
used

::
to

:::::::
estimate

::::
field

:::::::::
anisotropy

:::::
from110

::::::::
empirical

::::::::
variogram

::::::
fields,

::::
with

::::::::
estimates

:::::::::
suggesting

::::
that

:::::::
isotropy

::
of

:::::::
random

:::::
noise

:::::
fields

::
is

:
a
:::::
valid

:::::::::
assumption

:::
in

:::
this

::::
case.

The three-dimensional noise field denoted by ε(t,x,y) is assumed to be log-normal
::::::::::
Log-Normal, with a marginal distribution

of

ε∼ LN(µε,Σ
2
ε) (5)

where µε =−5.3 and σε = 1.7. A Gaussian random field is simulated with an Exponential correlation structure of ρε(h) =115

exp{−h/rε} for a short range with rε = 5 and a nugget effect of nε = 0.35. This is transformed using an inverse Gaussian

score transformation, then exponentiated resulting in a random noise field with the desired marginal distribution and correlation

structure. An example field is included in Fig. 3, from which we can see that the variability is slightly larger than in existing

images. This is however selected to preserve the proportion of −32dBZ reflectivity rates in images, with any values less than

−32dBZ treated as −32dBZ.120
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Figure 3. Histograms of low rainfall rates (and logarithms) corresponding to
::::::
empirical

:
random noise (i.e. in the range −32< Z ≤ 10,)

::::::
obtained

:
from High Moorsley weather radar for the year 2019

::::
(blue), as well as an example simulated noise field

::::::
(orange)

3.4 Drop-size distribution errors

Attenuated rainfall rates R̃(t) can then be added to the three-dimensional noise field ε(t,x,y), which can then be converted

into a reflectivity field. A ZR-relationship is typically used, of the form Z = 10log10(aR
b) for reflectivity Z (dBZ), rainfall

R (mmh−1) and constants a and b, which typically take the values a= 200 and b= 1.6 (Harrison et al., 2000). A constant

value for a and b is based on the assumption that the DSD varies spatially and temporally in a way characteristic of a particular125

rainfall or weather type. Despite this, a fixed ZR-relationship results in a severe underestimation of peak rainfall intensities,

due to the failure to account for natural variations in the DSD with intensity (Schleiss et al., 2020). Lee et al. (2007) indicated

that the overall DSD variability cannot be adequately explained by a single parameter. In Libertino et al. (2015), a varying

ZR-relationship in space and time improved rainfall accumulations at event scale, when comparing to a fixed relationship.

A large amount of scatter around the average power-law relationship is related to the various microphysical processes that are130

responsible for the DSD variability. To account for this variability, in an attempt to generate more realistic reflectivity images,

we assume that a=A(x,y) is a two-dimensional field varying in space. As the simulated rainfall events all have a fairly short

duration (6 hours or less), a constant DSD in time is initially used. This assumes that A is fairly constant over the time period

considered, although the model is flexible and the dimensions of A can be easily extended to include time.

Parameters in the ZR-relationship typically take values in the ranges a ∈ (30,1000) and b ∈ (0.8,2) (Battan and Theiss135

1973, Smith and Krajewski 1993), and so the parameter b is still treated as constant, but sampled from a Gaussian distribution
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with a low variance, centred around a value of µb = 1.6. This gives attenuated reflectivity estimates of

Z̃(t) = 10log10

{
A
[
R̃(t)+ ε(t)

]b}
(6)

for

A(x,y)∼N2(µa,{1+ g(x,y)}Σa) b∼N(µb,σ
2
b ) (7)140

for correlation structure ρa = σa exp{−h/ra} where µa = 220, σa = 2, ra = 30, µb = 1.6, σb = 0.02. The function g(x,y) =

ΣE(x,y) is the estimation variance based on pixel location (x,y), based on the proportion of the rainfall volume that the radar

can see for a given distance, which is discussed further in Sect. 3.5. Attenuated reflectivity fields are rounded to one decimal

place, and limited by a minimum value of −32dBZ, as is the case for actual reflectivity data.

3.5 Radar sampling145

Due to the nature of weather radar sampling, polar observations close to the weather radar location
::::::
receiver

:
sample from a

much smaller volume than those further away(see ,
:::
as

:::
can

::
be

:::::
seen

::
for

:::
an

:::::::
example

:::::
pixel

::
in Fig. 4). As observations are made

further from the radar, effects .
:::::::
Effects of curvature of the earthand the cloud height also affect the sampling volume of the

radar. Bright ,
:::::
cloud

::::::
height

::::
and

:::::
bright

:
band effects also impact the sampling volume, as

:::
and

::::::::::
furthermore

:
radar observations

above the freezing level are often unavailable due to the high reflectivity of melting precipitation causing strong returns at the150

bright band level (Hooper and Kippax 1950, Kitchen et al. 1994, Hall et al. 2015).

Ground

Cloud
base

Bright
band

Cloud
top

Weather
radar

Radar
beam

Figure 4. Schematic of a radar ray sampling volume for an example pixel, denoted as a vertical columns

Estimation variance principles are included in the DSD error to account for these sampling errors. The simulated rainfall field

is on a regular grid (1km resolution pixels). This is assumed to represent the total rainfall in the vertical column of space above

this kilometre square, where rainfall is falling on the ground. Making assumptions about the vertical behaviour of the DSD

of rainfall , this is incorporated into the model through the variance of the multiplicative parameter in the ZR-relationship,155

dependent on the DSD and freezing level height.
::
To

:::::::
address

::::
this,

::::::::
sampling

:::::
errors

:::
are

::::::::
included

::
as
::::

part
:::
of

:::
the

:::::
DSD

::::::
model,

:::::::
designed

::
to

:::::::
increase

::::::::::
uncertainty

::
in

:::
the

::::
DSD

::::::
where

:::
the

::::::
volume

:::
of

::::::
rainfall

:::::::
sampled

:::
by

:::
the

::::
radar

:::::
beam

::
is

:::::
lower.

::::::
Areas

:::::
where

::
it

7



:
is
:::::::::
unrealistic

:::
for

:::
the

::::
radar

:::::
beam

::
to

:::
be

::::::::
sampling

::::::
rainfall

::::
(e.g.

:::::
above

:::
the

:::::
bright

:::::
band

::::
level,

:::::::
outside

:::
the

::::
base

:::
and

:::
top

::
of

:::
the

::::::
cloud)

::
are

::::::::
removed

::::
with

:::::::
flexible

:::::
model

:::::::::
parameters

::::::
which

:::
can

:::
be

:::::::
adjusted.

:::
In

:::
this

:::::
case,

:::
the

:::::::::::
configuration

::
of

:::::
High

::::::::
Moorsley

:::::::
weather

::::
radar

::
is

::::
used

::::
(see

::::
Sect.

:::
2).160

Representing
:::
The

:::::
radar

::::::::
sampling

:::::
error

::
is

::::::
defined

:::::
using

:::::::::
estimation

::::::::
variance

:::::::::
principles,

::
by

:::::::::::
representing the change in un-

certainty based on the volume of rainfall sampled by
:::::::
between

:::
the

:::::
actual

::::
and

:::::::
sampled

:::::::
volume.

:::::::::
Assuming

:
a
:::::
pixel

::
is

:
a
:::::::
vertical

::::::
column

:::::::
denoted

::
by

:::
V ,

:::::::::
dependent

::
on

:::
the

:::::
radar

:::::::::::
configuration

:::
and

:::::::
distance

::
of

:::
the

:::::
pixel

::::
from the radar apparatus beam in a given

pixel (at different distances from the radar location), the estimation variance is defined as
::::::
weather

:::::
radar,

::::
parts

:::
of

:::
this

:::::::
vertical

::::::
column

:::::
will

::
be

:::::::
sampled

:::
by

:::
the

:::::
radar,

::::::
denoted

:::
by

::
ν

:::
(see

::::
Fig.

:::
6).

:::
The

:::::::::
estimation

:::::::
variance

:::
σE::::

can
::
be

::::::
defined

:::
as165

σE
2 = V ar

c∫
0

Z2
:
γ̄(xV

:
,yν)−

:::
γ̄(ν

:
,uν

:
)

c∫
hx,y

Z−
:
γ̄(xV

:
,y,uV

:
)du (8)

where hx,y is the lower elevation of the radar scan at (x,y). Simplifying to consider the two-dimensional case, heights are

discretised from the ground to the cloud top and clipping at the freezing level (Hooper and Kippax, 1950), giving

σ2
E = γ̄(V )−

nr∑
i

γ̄(vi)

for distance from the radar h, vertical
:̄
γ
::
is

:::
the

:::::
mean

:::::::::
variogram,

::::
and

::
V

:::
and

::
ν
:::
are

:::
the

::::
total

::::
and

:::::::
sampled

:::::::
volumes

:::::::::::
respectively.170

::
By

::::::::::
discretising

:::
the

:::::::
vertical

:::::
pixel

:::
into

:::::
small

:::::::
blocks,

:::
we

:::
can

::::::::
estimate

:::
the

::::::::
empirical

:::::::::
variograms

:::
in

:::
Eq.

::
8,

::::
with

:::
an

:::::::
example

:::
of

:::::::::
discretised

:::::
blocks

:::::::::::
contributing

::
to

::::
each

::::
term

::
in

::::
Fig.

::
5,

:::::
based

::
on

::
a

::::::::
variogram

::::::
model

:::
for

:::
the

::::::
vertical

::::::::::
distribution

::
of

:::
the

:::::
DSD.

V

(b)

v

(a)

(a) Contributes to
variogram in first term
of Eq. 8.

(b) Contributes to
variogram in second
term of Eq. 8.

(c) Contributes to
variogram in third term
of Eq. 8.(c)

Figure 5.
:::::::
Example

::
of

:::::::
variogram

::::::::::
contributions

:::
for

:
a
::::::::
discretised

::::::
volume

::
V ,

::::
given

::::::
volume

::
ν

:
is
:::::::
sampled,

:::::::::
highlighting

::
an

:::::::
example

::
of

::::::::
discretised

:::::
blocks

:::::::::
contributing

::
to

:::::::
empirical

::::::::
variogram

::::::::
estimation

::
for

::::
each

::
of

:::
the

::::
terms

::
in

:::
Eq.

:
8

:::
We

:::::::
consider

::
a
:::::::
vertical column of rainfallV , with radar ray sampling volumes vi for radar ray i= 1,2, . . .nr, where γ̄

represents the mean variogram, for nr radar elevations. For distances of the discretised volumes the estimation variance is
:
,

::::::::
assuming

:::
that

:::
the

:::::
cloud

::::
base,

:::::
bright

:::::
band

:::
and

:::::
cloud

:::
top

::
are

:::::
1km,

::::
4km

:::
and

:::::
10km

:::
and

:::
an

::::::::::
Exponential

::::::::
variogram

::::::
model

::
for

::::::
below175

::
the

::::::
bright

::::
band

:::::
level.

::::::::::
Discretising

:::
the

::::::
vertical

:::::::
column

::
of

::::::
rainfall

::::
into

:::::
blocks

:::
of

:::::
height

::::
10m

::::
(see

:::
Fig.

:::
6),

:::
the

::::::::
empirical

::::::::
distances

8



::
for

::::
each

::::::::::
discretised

::::
block

:::
are

:
calculated using the variogram modelcorresponding to the assumed distribution. Parametrisation

is based on
::::::
analyses

:::
of vertical weather radar data

::::::::::::::::
(Berne et al., 2005), considering the vertical raindrop volume distribution

for a range of rainfall rates and heights. The variance of sampling volumes at different ranges supported the concept, with

simulations compared to vertical radar images in Berne et al. (2005) for validation.180

4 Results: specific events

Discretised
vertical pixel

column

v

Sampled
volume by
radar rays

V

Figure 6.
:::::::
Example

::
of

::::::
vertical

:::::::
structure

::
of

:
a
::::::
rainfall

::::
pixel,

::::
with

::::::::
discretised

:::::
blocks

::::::::::
representing

::
the

::::::
volume

:::
V ,

:::
with

:::
the

::::::
volume

::::::
sampled

:::
by

::
the

::::
radar

:::::
beam

:
ν
:::::::::
highlighted

::
in

:::::
yellow

4
::::::
Results

In this section, the performance of the model is considered by looking at example fields for each step of the simulation

process.
:::
We

:::::::
consider

::::
100

::::::
rainfall

::::::
events

::::::::
simulated

:::::
using

:::
the

::::::::
methods

:::::::
outlined

::
in

::::::::::::::::
Green et al. (2023),

:::::::::::
parametrised

:::
by

:::::
radar

::::::
rainfall

:::::
events

:::::
from

:::::
High

::::::::
Moorsley

:::::::
weather

:::::
radar

:::
(see

:::::
Sect.

:::
2).

:::
For

:::::
each

:::::
event,

:::
the

::::::
model

:::
was

::::
run

:::::::
n= 100

:::::
times

::
to

::::::
obtain185

::
an

::::::::
ensemble

:::
of

:::::::
weather

::::
radar

:::::::
images.

:
To enable direct comparisons, each radar image is corrected using a standard radar

rainfall estimation process, resulting in a corrected rainfall field
:::::::
corrected

::::::
rainfall

:
for each ensemble member, similar to what

would be obtained from a radar rainfall images.
::::
This

:::::::
includes

:::
an

::::::::::
attenuation

::::::::
correction

:::::::::::::::::::::::::::
(Jacobi and Heistermann, 2016),

::
a

:::::::::::::
ZR-relationship

:::::::::::::::::::
(Harrison et al., 2017)

:::
and

::::::::::
reprojecting

::
to

::
a

::::::::
Cartesian

::::
grid,

::
to

:::::
allow

:::
for

:::::
direct

:::::::::::
comparisons

::::
with

:::
the

:::::::
original

::::::::
simulated

::::::
rainfall

::::
field

:::
R.190

Defining the difference between the simulated ‘true’ rainfall field and the rainfall field
:::
(R)

:::
and

:::
the

::::::::
corrected

:::::::
rainfall

::::
field

:
(
:::::::
Rcorr,i) after applying the radar error model as the error, we consider three different events

:::::::
specific

:::::
events

:::
R,

:::::::::
individual

::::
event

::::
time

:::::
steps

::::
R(t)

::::::::::
throughout

:::
the

::::::::
ensemble

::::
(i.e.

:::::::::::
image-based)

::::
and

::::::::
behaviour

:::
of

::
all

::::::
events. To investigate the capacity of

the radar error model to capture uncertaintyacross a rainfall event, we consider the overall behaviour and variability of pixels

throughout the stochastic ensemble of radar images. For a rainfall event or image denoted by R̂, the bias and root-mean square195

error (RMSE) are considered
::::
error

::::::
metrics

:::::::
outlined

::::::
below.
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1.
:::
The

:::::
mean

::::
bias

:::::::
between

::::::::
corrected

::::::::
ensemble

::::::::
members

:::
and

:::::::
original

::::::::
simulated

::::::
rainfall

:

BIAS(R
:
) =

1

n

n∑
i=1

(
R
:
−Rcorr,i

)
RMSE() =

√√√√ 1

n

n∑
i=1

(
R̂−Rcorr,i

)2

(9)

for corrected rainfall field Rcorr,i of ensemble member i, where i= 1, . . . ,n for n= 100.
::::::::
ensemble

:::::::
members

::::::::::::
i= 1, . . . ,100.

200

2.
:::
The

:::::::::::::::::::
root-mean-square-error

::::::::
(RMSE)

:::::
across

:::
the

::::::::
ensemble

:

RMSE(R) =

√√√√ 1

n

n∑
i=1

(R−Rcorr,i)
2
.

:::::::::::::::::::::::::::::::

(10)

3.
:::
The

:::::
pixel

::::::::
variability

::::::::::
throughout

::
the

:::::::::
ensemble,

:::::
using

:::
the

:::::::
standard

::::::::
deviation

S.D.(
::::

R
: corr) =

√∑n
i=1

(
Rcorr,i − R̄corr,i

)2
n

::::::::::::::::::::::::::::::

(11)

4. The pixel variability, proportional error and RMSE limits (minimum and maximum over ensemble) are also calculated,205

and the proportional error taken as the ratio between the simulated and corrected
:::::
RMSE

::::::
values

:::::
across

:::
the

::::::::
ensemble

:

RMSEmin(R) = min
i=1,...,n

{√
(R−Rcorr,i)

2
.

}
, RMSEmax(R) = max

i=1,...,n

{√
(R−Rcorr,i)

2

}
.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(12)

5.
:::
The

:::::::
average

::::
error

::::::
across

:::
the

::::::::
ensemble,

::
as

::
a
:::::::::
percentage

::
of

:::
the

:::::::
original

::::::::
simulated

:
rainfall field for all non-zero simulated

rainfall pixels . For illustrative purposes a single time step towards the middle of the event is included, with a link to

event videos included in each figure.210

pR =
1

n

n∑
i=1

(
1− Rcorr,i

R

)
× 100%

::::::::::::::::::::::::::::

(13)

:::::
where

::::::
R> 0.

:::::::::
Additional

::::::
metrics

::::::
defined

::
to

:::::::
identify

:::::
cases

:::::
where

:::::::::
significant

:::::::
amounts

::
of

::::::
rainfall

:::
are

:::::::
missing

::
in

::::::::
corrected

::::::
rainfall

:::::
fields.

:
Crane

(1979) referred to distortions in storm structures, as a result of attenuation, as shadows. We formally define a rainfall shadow,

taken as pixels
::
In

:::
this

:::::
study

::::
we

:::::
define

:::::::
rainfall

:::::::
shadows

:::
as

:::::
areas

:::::
where

::::::::::
information

::::::
about

:::
the

::::::
rainfall

:::::
field

::
is

:::
lost

:::::
from

::
a215

::::::::
simulated

:::::::
weather

::::
radar

:::::::
image,

::::
after

:::::::::
correction

:::::::
methods

::::
have

:::::
been

:::::::
applied.

::
A

::::::
formal

::::::::
definition

::
of

::
a
::::::
rainfall

:::::::
shadow

::
in

::::
this

:::
case

::
is
:::::
taken

::
to

:::
be

:
a
::::
pixel

:
where the simulated rainfall is significant (i.e. R> 1mmh−1), but the corrected rainfall much lower

(less than 10%) of
::::
than the original simulated rate (i.e. Rcorr/R≤ 0.1).

:::::::::::::::::::
Rcorr/R≤ 0.1|R> 1).
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4.1 Example fields

:::
We

:::
first

:::::::
consider

::::::::
example

:::::
fields

::
for

:::::
each

::::
stage

::
of

:::
the

:::::
error

:::::
model

::
in

:::::
Sect.

:::
4.1

:::
and

::::
then

::::
three

::::::
events

:::::
which

:::::
show

::::
high

::::
bias,

::::
and220

:::
low

:::
and

:::::
high

::::::::
variability

::
in
:::::
Sect.

:::::::
4.2–4.4,

:::::::::
quantified

:::::
based

::
on

:::
the

:::::::
metrics

:::::
above

::
at

:::
an

::::
event

::::::::
level.The

:::::::::
behaviour

::
of

:::::::::
individual

::::
radar

:::::::
images

::
is

::::::::::
considered,

::::::
looking

:::
at

:::
the

:::::::
average,

:::::::::
minimum

::::
and

::::::::
maximum

::::::::::
behaviours

::::
over

:::
the

:::::::::
ensemble,

:::::::::
including

:::
the

:::::::::
variability.

::::::::
Attempts

:::
are

:::::
made

::
to

::::
find

::::::
metrics

::::
and

::::::::
properties

:::
of

::::::
rainfall

::::::
images

:::::
with

:::
the

:::
aim

:::
of

:::::::::
identifying

::::::::
instances

::::::
where

::::
there

::
is

:
a
::::
very

::::
high

:::::
level

::
of

:::::::::
uncertainty

::
or

:::::
error

::::::
arising

::::
from

:::
the

::::::
rainfall

:::::::::
estimation

:::::::
process.

::::
The

:::::
impact

:::
of

:::
the

::::::
rainfall

:::::::
location

::::
with

::::::
respect

::
to

:::
the

::::
radar

::
is
::::::::::
considered,

::
as

::::
well

::
as

::::::::::
identifying

:::
how

:::::
often

:::::::::
significant

::::::::::
information

::
on

:::
the

:::::::
rainfall

::::
field

::
is

:::
lost.

::::
For225

::::::::
individual

:::::
image

::::::
based

:::::
errors,

:::
we

::::::::
introduce

:::::
three

:::::
image

::::::
metrics

:::::::
relating

::
to

::::::
rainfall

::::::::
shadows

::::
given

::::::
below.

:

1.
::::
ARS:

::::
The

:::::
actual

::::
area

:::::
(km2)

:::
of

:::
the

::::
radar

::::::
image

:::
that

:::::::
contains

::::::
rainfall

::::::::
shadows.

:

2.
::::::
LARS:

:::
The

::::::
largest

:::::
single

::::
area

:::::
(km2)

:::
of

::::::
rainfall

:::::::
shadows

::
in

::
a

::::
radar

::::::
image.

:

3.
::::
PRS:

::::
The

:::::::::
proportion

::
of

:::::::::
significant

::::::
rainfall

::::
(i.e.

::::::::::::
R> 1mmh−1)

:::
that

::
is
:::::::::
shadowed.

:

4.1
::::::::
Example

:::::
fields230

For an example time step of a simulated event, each stage of the radar error model process is given in Fig. 7. The final radar

image appears visually
::::
(Fig.

:::
7f)

:::::::
appears realistic, with clear areas of rainfall, similar to raw radar images obtained from the

High Moorsley weather radar. A significant proportion of the signal is attenuated towards the edge of the domain, particularly

in the top-right of the image.

4.2 Event A: High bias235

The event shown in Fig. 8
:
a
:
has an area of moderate intensity rainfall in the centre of the image with a large extent, resulting

in high bias. The simulated radar image for an ensemble member associated with the event looks realistic, with the reflectivity

and corrected rainfall rates
:::
(see

::::
Fig.

:::::
8b–c) showing significant rainfall amounts missing throughout. The average bias, RMSE

and pixel variability corresponding to the event in Fig.
:
8
:::
are

:::::
given

::
in

::::
Fig. 9. The average bias and RMSE are very high

:::
(see

:::
Fig.

:::::
9a–b), taking values over 5mmh−1.240

Pixel variability is very low

:::::
Figure

:::
9c

:::::
shows

:::::
very

:::
low

:::::
pixel

:::::::::
variability for most of the image , except centre of top right minimum RMSE is greater

than 5mmh−1 in
:::::
which

::
is
::::::::
reflected

::
in

:::
the

:::::
range

:::
of

::::::
RMSE

:::::
values

::::::::::
throughout

:::
the

::::::::
ensemble

:::::
given

::
in
::::

Fig.
:::::
9d–e,

:::::
with a large

area of the domain
::
in

:::
the

::::::
centre

::
of

:::
the

::::::
image

:::::::
showing

::::
bias

:::
and

:::::::
RMSE

::::::
greater

::::
than

::::::::
5mmh−1, suggesting that the rainfall is

consistently underestimated throughout the entire ensemble. A large area of moderate-intensity rainfall on top of the radar is245

overcorrected, mimicking effects resulting from full attenuation of the radar signal by intervening rainfall. In this case, the

correction techniques could not improve the image significantly, and so information on a large portion of the rainfall field has

been lost, particularly when forward attenuation correction algorithms are implemented.
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Figure 7. Step-by-step error model fields, including the
::
(a) simulated rainfall field R(t),

::
(b) attenuation PIA,

::
(c) attenuated rainfall R̃(t),

::
(d)

:
random noise field ε(t),

::
(e)

:
attenuated rainfall with random noise R̃(t)+ ε(t), and

::
(f) attenuated reflectivity Z̃(t) for a single time step

of an example simulated event

This result is reiterated when looking at the rainfall shadows in Fig. 10
:
b, where around a quarter of the image is shadowed,

for 100% of ensemble members. This event has very high average bias, with pixel variability varying drastically throughout the250

image. Large areas of rainfall are missing, and the differing variability throughout and spatial distribution of the error structure

suggests that a mean field bias or multiplicative correction would not improve estimates significantly. The information on the

rainfall structure are rates would be lost in this case.
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Figure 8.
::
(a)

:
Simulated rainfall fieldand

:
,
::
(b)

:
example reflectivity and

::
(c) corrected rainfall field for simulated event A (video link)
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Figure 9.
::
(a)

:
Average bias,

::
(b)

:::::::
average RMSE,

:
c)
:
pixel standard deviation

::::::::
variability

:::::
(S.D.),

::
d)

:
maximum RMSE,

::
e) minimum RMSE and

::
(f) average proportional error for simulated event A (video link)

4.3
:::::
Event

::
B:

:::::
Low

:::::::::
variability

4.4 Event B: Low variability255

Figure 11
:
a shows a rainfall event with a small extent of light rainfall, with mostly mist and no rain

:::
dry

:::::::::
conditions throughout the

image, resulting in low variability
:::::::::
throughout

:::
the

::::::::
simulated

::::::::
ensemble. There is a small amount of light rainfall on the centre-

left of the radar domain, with the corrected rainfall image
::
in

::::
Fig.

:::
11c

:
exhibiting lower rainfall rates here

::::
than

:::
the

:::::::
original
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(a) Corrected rainfall less than 10%
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Figure 10.
::
(a)

::::::::
Percentage

::
of

::::::::
corrected

:::::
rainfall

::::
less

:::
than

::::
10%

::
of
:::::::

original
:::::::
simulated

:::::
field,

:::
and

:::
(b)

:::::::
frequency

::
of
::::::::

shadowed
:::::
pixels

::::
over

:::
the

:::::::
ensemble

::
for

::::::::
simulated

::::
event

::
A

:
(
::::
video

:::
link

:
)
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Figure 11. Percentage of corrected
::
(a)

:::::::
Simulated

:
rainfall less than 10% of original simulated field,

::
(b)

:::::::
example

::::::::
reflectivity

:
and frequency of

shadowed pixels over the ensemble
::
(c)

:::::::
corrected

::::::
rainfall

:::
field

:
for simulated event A

:
B (video link

::::
video

:::
link)

::::::::
simulated

::::::
rainfall. The radar image

:
in
::::
Fig.

:::
11 appears realistic, with a small amount of signal damping towards the left of the

image, at a range beyond the light rainfall .
::::::
rainfall

::::
seen

::
in

:::
Fig.

::::
11a.

:
260

Simulated rainfall field and example reflectivity and corrected rainfall field for simulated event B (video link)

The corresponding bias and RMSE for this event are given in Fig. 12, as well as the pixel variability, maximum and minimum

RMSE over the ensemble and average proportional error. Over the ensemble, the average bias
:::
(see

::::
Fig.

::::
12a) is close to zero

except for the low-intensity rainfall areas (at most 0.5mmh−1), with low average, minimum and maximum RMSE .
:
in

::::
Fig.

::::
12b,
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(a) Bias (b) RMSE (average) (c) Pixel variability
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Figure 12.
::
(a)

::::::
Average

:::::
bias,

::
(b)

:::::::
average

::::::
RMSE,

::
c)

::::
pixel

::::::::
variability

::::::
(S.D.),

::
d)

::::::::
maximum

::::::
RMSE,

::
e)
::::::::

minimum
::::::
RMSE

:::
and

::
(f)

:::::::
average

:::::::::
proportional

::::
error

::
for

::::::::
simulated

::::
event

::
B

:
(
::::
video

:::
link

:
)
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Average bias, RMSE, pixel standard deviation, maximum RMSE, minimum RMSE and average proportional error for simulated event B

(video link)
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Figure 13.
::
(a) Percentage of corrected rainfall less than 10% of original simulated field, and

:::
(b) frequency of shadowed pixels over the

ensemble for simulated event B (video link)

:
d
:::
and

::
e.
:

The pixel variability is slightly higher in the rainfall area
:::
(see

::::
Fig.

::::
12c), with pixels radially further away

:
at

::
a

:::::
larger265

:::::::
distance

::::
from

:::
the

:::::::::
transmitter in this area showing lower pixel variability (less than 0.02mmh−1), with the remaining variability

appearing uniform. In Fig. 13
:
b, the rainfall is shadowed in 100% of

::
the

:
rainfall ensemble (i.e. all ensemble members) in the

area of light-intensity rainfall identified in Fig. 11. The frequency of shadows over the ensemble taking mostly values of either

zero or one. This event has very low variability between ensemble members, likely due to (mostly) non-zero rainfall amounts

in the images.270

4.4 Event C: High variability

Figure 14 shows an event with a small area of heavy rainfall rates, which results in high variability in event errors. Most of the

radar domain shows zero rainfall rates, except a very small area of high-intensity rainfall (greater than 100mmh−1) towards the

top of the domain. The example radar image
::::
(see

:::
Fig.

::::
14b)

:
is again realistic, showing mostly noise. Radial lines at top right past

a small amount of high-intensity rainfall suggest that attenuation effects have not been sufficiently corrected. The
::
In

:::
Fig.

::::
14c275

::
the

:
corrected rainfall image overestimates

::
has

:
areas of high-intensity rainfall

:::::
which

:::
are

::::::::::::
overestimated, due to cumulative errors

introduced as part of forward attenuation correction procedures. Although there is not a large area of high-intensity rainfall,

the rainfall field spatial distribution has still been significantly impacted by the errors caused by attenuation.

From Fig. 15
::
a–b, these radial lines show positive average bias and a higher RMSE than the rest of the image which is close

to zero, however none of these exceed 0.2mmh−1. Errors are not noticeable from the maximum RMSE field, but have much280

higher minimum RMSE than the rest of the image .
:::
(see

::::
Fig.

::::::
15d–e).

:
In this case, it appears that the attenuated high-intensity

rainfall has been over-corrected, with the area showing an average proportional error greater than one. Areas radially past this

:
at
::
a
:::::
larger

:::::::
distance

:::::
from

:::
the

:::::::::
transmitter are underestimated and although most of the pixels past this are light rainfall or mist,

the rays have been significantly impacted, showing a clear gap resulting from corresponding rainfall in the reflectivity images.

Average bias, RMSE, pixel standard deviation, maximum RMSE, minimum RMSE and average proportional error for285

simulated event C (video link)
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The shadowed pixels in Fig. 16 shows radial lines in areas where the corrected rainfall is less than 10% of the simulated

rainfall, most of these pixels do not have significant rainfall rates so are not classed as shadowed, with only a handful of pixels

showing shadows and none for 100% of the ensemble, resulting in high variability within the ensemble.

From the videos of event errors, this high-intensity rainfall moves across the image, affecting different rays, with some290

pixels showing rainfall shadows past the high-intensity rainfall. This is not consistent throughout the ensemble, with most

pixels showing shadows in less than 100% of the ensemble members. This small area of high-intensity rainfall has resulted

in high variability across the ensemble, which is impacted significantly by the over-estimation of high-intensity rainfall rates,

with the DSD error also contributing towards the variability for such a high rainfall rate.

4.5
:::::::
Specific

::::::
events:

:
Summary295

In cases where the absolute bias is low, rainfall shadows may still exist, suggesting average bias is not a good
:
a
::::
poor

:
metric to

use when identifying event errors. Even with a low absolute bias, the rainfall could be overestimated for pixels closer to the

radar, and underestimated past these pixels (which is very common along radar rays where attenuation has been overestimated).

In these cases, the spatial distribution of rainfall is often incorrect, which could have detrimental effects when using the rainfall

fields for any quantitative modelling.300

Typically events with high bias correspond to events with large rainfall shadows, with shadow frequencies close to either

zero or one, suggesting that in cases where there is high bias, the model uncertainty is low. Simulated rainfall events which

exhibited high ensemble variability were as a result of potential interactions between small areas of high-intensity rainfall and

DSD errors, which corresponded to higher variability in shadows throughout the ensemble. Videos of all simulated events (and

corresponding errors) are available here.305
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Figure 14.
::
(a)

:
Simulated rainfall fieldand

:
,
::
(b)

:
example reflectivity and

::
(c) corrected rainfall field for simulated event C

:
,
:::
with

::::
high

:::::::
intensity

:::::
rainfall

:
(
::::::
average

::::::::
throughout

::::
event

::::
over

:::::::::
10mmh−1)

::::::::
highlighted

::
in

:::
red

:
(video link)
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Figure 15.
::
(a)

::::::
Average

:::::
bias,

::
(b)

:::::::
average

::::::
RMSE,

::
c)

::::
pixel

::::::::
variability

::::::
(S.D.),

::
d)

::::::::
maximum

::::::
RMSE,

::
e)
::::::::

minimum
::::::
RMSE

:::
and

::
(f)

:::::::
average

:::::::::
proportional

::::
error

:::
for

:::::::
simulated

:::::
event

::
C,

::::
with

:::
high

:::::::
intensity

::::::
rainfall

:::::::
(average

::::::::
throughout

:::::
event

:::
over

:::::::::
10mmh−1)

:::::::::
highlighted

::
in

:::
red

:
(
::::
video

:::
link)
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Figure 16.
::
(a) Percentage of corrected rainfall less than 10% of original simulated field, and

:::
(b) frequency of shadowed pixels over the

ensemble for simulated event C,
::::
with

:::
high

:::::::
intensity

::::::
rainfall (

:::::
average

:::::::::
throughout

::::
event

::::
over

::::::::
10mmh−1)

:::::::::
highlighted

::
in

::
red

:
(video link)

5 Results: Individual image-based errors

4.1
::::::::

Individual
::::::::::::
image-based

::::::
errors:

:::::::
Average

:::::::::
ensemble

:::::::::
behaviour

The behaviour of individual radar images is considered, looking at the average, minimum and maximum behaviours over the

ensemble, including the variability. In this section, attempts are made to find metrics and properties of rainfall images with the
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aim of identifying instances where there is a very high level of uncertainty or error arising from the rainfall estimation process.310

The impact of the rainfall location with respect to the radar is considered, as well identifying how often significant information

on the rainfall field is lost. For individual image based errors, we introduce three image metrics relating to rainfall shadows

given below.

1. ARS: The actual area (km2) of the radar image that contains rainfall shadows.

2. LARS: The largest single area (km2) of rainfall shadows in a radar image.315

3. PRS: The proportion of significant rainfall (i.e. R> 1mmh−1) that is shadowed.

4.2 Average ensemble behaviour

The relationship between the average rainfall rate and proportion of rainfall in an images with the image RMSE is shown in Fig.

17
:
a, showing that events with high average rainfall rates and large heavy rainfall proportions have the highest RMSE. Images

showing fairly low proportions (i.e. 5–10%) of heavy rainfall still exhibiting fairly high RMSE. Figure 17also
:
b
:
shows the320

relationship between the mean and standard deviation of non-zero rainfall rates with the image RMSE, showing higher RMSE

for events with high average and standard deviation in non-zero rainfall rates. This may be due to the large errors resulting

in large gradients between pixels, where a large rainfall rate along a ray damps the signal so that subsequent observations are

much lower, increasing pixel variability in image.

Average rainfall rate and proportion of heavy rainfall (left) and average non-zero rainfall and standard deviation of non-zero325

rainfall (right), coloured according to the image RMSE for event images

Average non-zero rainfall rate and proportion of non-zero rainfall and average bias for ensemble images of all events
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Figure 17.
::
(a)

::::::
Average

::::::
rainfall

:::
rate

:::
and

::::::::
proportion

::
of

::::::::
significant

:::::
rainfall

:::
and

:::
(b)

::::::
average

:::
and

::::::
standard

:::::::
deviation

::
of

:::::::
non-zero

::::::
rainfall,

:::::::
coloured

:::::::
according

::
to

:::
the

::::
image

::::::
RMSE

::
for

:::::
event

:::::
images

18



Figure 18 shows the average rainfall rate
::::
(see

:::
Fig.

::::::
18a–e) and proportion of non-zero rainfall

::::
(see

:::
Fig.

::::::
18f–j) in event images,

for the average bias, RMSE, ARSand PRS
:
,
::::
PRS

:::
and

::::::
LARS. For larger rainfall rates and proportions of rainfall, the bias

increases, with low proportions of low rainfall rates exhibiting negative average bias. This is also the case for the average non-330

zero rainfall rates, however the relationship between the proportion of non-zero rainfall and RMSE is less distinct, highlighting

the significant impact of very small areas of intense rainfall rates on the image RMSE. Figure 18 also shows that there are

some low average rainfall rates and proportions of non-zero rainfall which correspond to high areas of rainfall shadowed. This

may be attributed to noise, however it does suggest again that events do not need to include intense large-scale rainfall areas to

result in significant rainfall shadows. The proportion of rainfall shadowed also appears to increase exponentially as the average335

non-zero rainfall rate increases, which is not the case with the proportion of rainfall in images.

The relationships in Fig. 18 are heavily skewed by a high density of images with low average rainfall rates and proportions.

For a clearer image of the behaviour for event images, we consider images with an average rainfall rate of at least 0.1mmh−1in

:
,
:::::::::
0.5mmh−1

:::
and

::::::::
1mmh−1

:
Fig. 19. This shows a much clearer relationship between the corrected rainfall field and the rainfall

shadows, with strong correlations between the average bias and the average rainfall rate .
:::
(see

::::
Fig.

::::
19a,

:
f
:::
and

::
k).

:
The relationship340

becoming less clear for higher rainfall thresholds for conditional average, with the strongest correlation between the non-zero

rainfall average and the RMSE .
:::
(see

::::
Fig.

:::::
19b).

The

::::
From

::::
Fig.

::::
19c,

:::
19h

::::
and

::::
19d,

:::
the ARS in images may increase exponentially with increasing average rainfall rates, however

this may be skewed with the small number of images with very high ARS (larger than 1000km2). For the thresholded rainfall345

averages of 0, 0.1, 0.5 and 1, up until an average rainfall rate of 0.15, 0.6, 1.5 and 2mmh−1, the ARS is consistently low, with

low variability
::::
rates,

::::
most

:::::
rates

:::::::::
correspond

::
to

::
a
:::
low

:::::
ARS,

:::::::
however

:::::::
appears

::
to

:::::::
increase

::::::::::::
exponentially,

::::::::::
particularly

::
in

::::
Fig.

::::
19c.

:::::
There

:::
are

:::::
some

::::::
images

::::
with

::::
low

:::::
ARS

:::::
which

:::::
have

::::
high

::::::::::
thresholded

::::::
rainfall

:::::
rates,

::::::
which

::::
may

::
be

::
a
:::::
result

:::
of

:::::
small

::::
areas

:::
of
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Figure 18.
::::::
Average

::::::
rainfall

:::
rate

:::::
(a–e)

:::
and

::::::::
proportion

::
of

:::::::
non-zero

::::::
rainfall

::::
(f–j)

::
for

::::::
metrics

:::::::
including

:::::::
average

:::
bias,

::::::
RMSE,

::::
area

::
of

::::::
rainfall

:::::::
shadowed

::::::
(ARS),

::::::::
proportion

::
of

:::::
rainfall

::::::::
shadowed

:::::
(PRS)

:::
and

:::::
largest

::::::
rainfall

::::::
shadow

:::
area

::::::
(LARS)

:::
for

:::::::
ensemble

::::::
images

::
of

::
all

:::::
events
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Figure 19.
::::::
Average

:::::::::
thresholded

::::::
rainfall

:::
rate

:::
for

::::::::::::::
R(t)> 0.1mmh−1

:::::
(a–e),

::::::::::::::
R(t)> 0.5mmh−1

::::
(f–j)

:::
and

:::::::::::::
R(t)> 1mmh−1

::::
(k–o)

:::
for

::::::
metrics

:::::::
including

::::::
average

::::
bias,

::::::
RMSE,

:::
area

:::
of

:::::
rainfall

::::::::
shadowed

::::::
(ARS),

::::::::
proportion

::
of

::::::
rainfall

::::::::
shadowed

:::::
(PRS)

:::
and

:::::
largest

::::::
rainfall

::::::
shadow

::::
area

::::::
(LARS)

::
for

::::::::
ensemble

:::::
images

::
of

::
all

:::::
events

:::::::::::
high-intensity

:::::::
rainfall,

:::::
where

:::::
there

::
is

::
no

::::::::
resulting

:::::::
shadows

:::
as

::::
there

::
is
:::
no

::::
other

:::::
areas

::
of

:::::::::
significant

:::::::
rainfall

::::
rates

::
in

:::::
R(t). The

relationship between the proportion of rainfall in Fig. 19 is more complex ,
:::
(see

::::
Fig.

::::
19d,

:
i
::::
and

:::
n), with two distinct types of350

image behaviour.

Average rainfall (with thresholds 0, 0.1, 0.5 and 1mmh−1) and average bias, RMSE, and shadow area, proportion and largest

shadow for event images with an average rainfall rate of at least 0.1mmh−1

While a correlation is evident between the conditional average rainfall rates and the PRS, there is clearly a large number

of images with low average rainfall rates and large PRS. These high PRS with low average rainfall rates are most likely355

corresponding to images with a very low proportion of rainfall rates large enough to be classed as shadows. If just one rainfall

pixel is shadowed, there would be a large increase in the PRS in this case, highlighting the impact that shadows have in images

with low rainfall extents, with fairly low average rainfall rates.

The
::::
From

::::
Fig.

:::
19e,

:::
19j

::::
and

:::
19o

:::
the

:
LARS appear to have a similar relationship to the ARS, however these are again skewed

by very high ARS and so the relationship is less clear. Considering the overall average behaviour of the ensemble does not take360

full advantage of the model framework, and different ensemble member properties, as important variation information is lost,

which may increase understanding of the uncertainty associated with the radar rainfall estimation process.
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Figure 20.
:::::::
Standard

:::::::
deviation

::
of

::
the

::::::::
ensemble

:::
bias

::
(a)

:::
and

::::::
RMSE

::
(b)

:::
for

::::::
average

:::::::
non-zero

:::::
rainfall

::::
rates

::
of

:::::::
ensemble

::::::
images

::
for

:::
all

:::::
events

4.2
::::::::
Individual

::::::::::::
image-based

::::::
errors: Ensemble variability

The variability between ensemble members for each event image is considered, using th
:::
the

:
ensemble standard deviation to

identify areas were the event errors have a high level of uncertainty in image properties. Figure 20
:
a
:
shows the relationship365

between the average non-zero rainfall rate and the standard deviation of the images biasand RMSE
:::::
image

::::
bias, showing rainfall

images with an average non-zero rainfall rate less than 0.5mmh−1, there is no clear relationship between the average rainfall

and variability in the bias of estimates. For images with an average non-zero rainfall rate above 0.5mmh−1, there appears to

be a strong positive correlation between the two, suggesting that past this image threshold, the uncertainty in the image bias is

directly proportional to the average non-zero rainfall rate.370

The relationship between the average non-zero rainfall rate and the image RMSE variability
:
in

::::
Fig.

::::
20b is very different,

appearing inversely proportional to the variability in image RMSE. This may be attributed to the fact that for higher rainfall

rates, there are more rainfall shadows. In areas where there are rainfall shadows, the variability between ensemble members

decreases significantly due to the effects of the radar ray signal being fully damped. There is a moderate relationship between

the variability PRS and the average non-zero rainfall, however this is less distinct.375

The standard deviation of the ARS, PRS, and LARS are given in Fig. 21. From this
:::
Fig.

:::
21a

:
we can see that the uncertainty in

the ARS increases with increasing average rainfall rate, with similar behaviour for the LARS in images
:::
(see

::::
Fig.

::::
21c), however

there are a lot of imageS
::::::
images

:
with no ARS skewing the relationship. Again the relationship between the average non-zero

rainfall rate and the variability of the PRS is not clear , as is the case with the average PRS.
::::
(see

:::
Fig.

:::::
21b).

4.3 Rainfall location: second moment of area380

The location of rainfall with respect to the radar location will also impact the error structure, which is reflected in the variability

in the PRS for different average rainfall rates. Atlas and Banks (1951) stated that distortion due to range attenuation includes

a displacement towards the radar of maximum intensity, packing contours on the near-side of the storm, suggesting that the

location of high-intensity rainfall will also have an impact on errors. The amount of rainfall lost due to attenuation effects is
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likely to be higher for images with high-intensity rainfall in a more central location, due to the cumulative nature of attenuation385

effects along a radar ray.

As illustrated in Fig. 22, the closer to radar the rainfall is, the more rays it will impact, and the earlier on in a ray it damps

the signal, affecting more radar bins
:::::::::
occurrence

::
of

:::::::
rainfall

::::
close

:::
to

:::
the

::::
radar

::::::::::
transmitter

::::::
affects

::::
more

::::
rays

::::
and

::
its

::::::::::
attenuation

:::::
affects

:::::
more

:::::::::::
‘downstream’

::::::
pixels. There is evidence of this in Fig. 9, where high-intensity rainfall occurred in the centre of the

image, resulting in very high errors.390

To formally investigate this, we introduce the second moment of area of a rainfall (or reflectivity) image, estimated by con-

sidering the centroid of each image using the second areal moment. For rainfall field R(t) on a Cartesian grid with dimensions

(Nx,Ny), the second moment of area can be estimated as

MR(t) =

Nx∑
x=1

Ny∑
y=1

R(x,y, t)d(x,y)2 =

Nx∑
x=1

Ny∑
y=1

R(x,y, t)
{
(x− rx)

2 +(y− ry)
2
}

(14)

where d(x,y) =
√

(x− rx)2 +(y− ry)2 is the distance of a pixel from the radar location (rx, ry). Both the actual and nor-395

malised rainfall fields are used to see the different impact between the shape of the field, with and without considering the

actual magnitude of estimates.
:::
The

:::::::::
normalised

::::::
image

::::::::
moments

::::::
M̃R(t) :::

are
::::::
defined

::
as

:

M̃R(t) =

Nx∑
x=1

Ny∑
y=1

R(x,y, t)

Rtot(t)

{
(x− rx)

2 +(y− ry)
2
}

::::::::::::::::::::::::::::::::::::::::::

(15)

:::::
where

:::::::::::::::::::::::
Rtot(t) =

∑
x

∑
yR(x,y, t)

::
is

:::
the

::::
total

::::::
rainfall

::
in

:::::
R(t).

Fig.400

:::::
Figure

:
23 shows the relationship between the second moment of area

::::::
MR(t) and normalised second moment of area

::::::
M̃R(t)

for event images , and the corresponding ensemble
:::
and

::::::::::::
corresponding

::::::::
ensemble

:::::::
metrics

::::::::
including

:::
the

:
average bias, RMSE,
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(c) Variability of largest shadowed area
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Figure 21. Standard deviation of the ensemble bias
:::
area

::
of

::::::
rainfall

:::::::
shadowed

:::
(a),

::::::::
proportion

::
of

::::::
rainfall

:::::::
shadowed

:::
(b) and RMSE

::::
largest

::::
area

:
of
::::::

rainfall
::::::::
shadowed

::
(c)

:
for

::::::
average

:::::::
non-zero

:::::
rainfall

::::
rates

::
of ensemble images of

::
for

:
all events

Standard deviation of the ensemble area, proportion of rainfall, and largest area shadowed, for event images
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Figure 22. Schematic of the different effect high-intensity rainfall has on the radar rays based on its location within the domain
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Figure 23.
::::::
Second

::::::
moment

::
of

::::
area

::::
(a–e)

:::
and

:::::::::
normalised

:::::
second

:::::::
moment

::
of

:::
area

::::
(f–j)

:::
for

::::::
metrics

:::::::
including

::::::
average

::::
bias,

::::::
RMSE,

::::
area

::
of

:::::
rainfall

::::::::
shadowed

:::::
(ARS),

::::::::
proportion

::
of
::::::
rainfall

::::::::
shadowed

::::
(PRS)

::::
and

:::::
largest

:::::
rainfall

::::::
shadow

::::
area

::::::
(LARS)

:::
for

:::::::
ensemble

:::::
images

::
of

:::
all

::::
events

ARS, LARS and PRS. There are significant differences between the moments and normalised moments, with positive corre-

lations for image moments and an inverse relationship for normalised image moments, which is particularly prominent when

considering the RMSE. There is a significant positive correlation between image moment and RMSE, ARS and PRS, with the405

relationship for the LARS is less clear.

(Normalised) second moment of area for the average bias, RMSE, area, proportion and largest area of shadowed rainfall for

event images

This suggests that for the second moment of area calculated on rainfall rates, the strong non-linear dependence on absolute

rainfall amount is overriding all other information about the field, such as rainfall location. For the normalised second moments410

of area, this dependence has been removed, and so the relationship is solely based on the impact of the rainfall location. In this

case, a smaller second moment of area (corresponding to a more central rainfall location) suggests larger rainfall shadows.

Fig. 24 shows the relationship between the second moment of area and normalised second moment of area for events, and the

corresponding ensemble uncertainty in terms of the standard deviation for the bias, ARS, LARS and PRS
:::::::
ensemble

::::::::::
uncertainty

::
for

:::
the

::::::
image

::::::
metrics

:::::
given

:::
in

::::::
Figure

::
23. This shows that images with a larger image moment have lower variability in the415
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RMSE
:::::
RMSE

::::::::
standard

:::::::
deviation. The normalised image moments appear to be positively correlated with the average

:::::::
standard

:::::::
deviation

:::
of

:::
the bias and RMSE, and negatively correlated with the ARS, PRS and LARS. The variability in rainfall shadows,

for both the ARS and PRS, appears to decrease with increasing normalised image moments.

Image moments could be a key piece of information when attempting to identify radar images with high uncertainty in

estimates, particularly when using moments calculated from normalised rainfall rates across an image. In conclusion, this420

analysis suggests that second moment of area has potential in identifying high uncertainty and missing information.

4.4 Rainfall shadow frequency

The aim of this section is to identify how often rainfall shadows occur. Due to ensemble variability, to ensure frequencies

are not overestimated, we consider the ‘best case scenario’ over the ensemble. In terms of the ensemble, for each image the

ensemble member with the lowest errors is selected. This prevents overestimation, and as rainfall fields are parametrised with425

existing corrected radar rainfall images that may themselves be subject to rainfall shadows, the simulations may inherently

underestimate the frequencies and so considering the minimum likelihood of occurrence makes intuitive sense. Percentiles are

given for the minimum LARS, PRS and ARS in Table 1.

The empirical cumulative distribution function for the minimum LARS, PRS and ARS are estimated for simulated events,

with attenuation estimated from rainfall and reflectivity, given in Fig. 25.430

Empirical cumulative distribution functions (ECDF) for the minimum ensemble proportion, largest and actual area of image

containing rainfall shadows for all events

From the median of proportion of rainfall images simulated, half of the images have at least 3% of significant rainfall rates

shadowed. When considering the ARS in images, we see that 25% of images have an ARS of 45km2 and 5% have a LARS of
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Figure 24.
:::::
Second

:::::::
moment

:
of
::::
area (Normalised

:::
a–e)

::
and

:::::::::
normalised second moment of area

:::
(f–j) for the

:::::::
ensemble

:::::
metric

::::::::
variability

:
(standard

deviationof
:
),

:::::::
including

::::::
average

:
bias, RMSE, area

:
of
::::::
rainfall

::::::::
shadowed

:::::
(ARS), proportion and largest area of

:::::
rainfall

:
shadowed

:::::
(PRS)

:::
and

:::::
largest rainfall

:::::
shadow

::::
area

::::::
(LARS) for event

:::::::
ensemble

:
images
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Percentile (%) Proportion shadowed Largest shadow Actual shadow

25 0.01 0 0

50 0.03 10.1 15.2

75 0.06 20.2 45.5

90 0.09 30.3 90.9

95 0.13 50.5 136.4

Table 1. Percentiles for the
:::::::
empirical

::::::::
cumulative

:::::::::
distribution

:::::::
functions

::
(ECDF

:
)
:
for the minimum ensemble rainfall shadow proportions,

largest shadowed areas, and actual rainfall shadowed for all events

0 20 40 60 80 100
Minimum proportion of image shadowed (%)

0.5

1.0

EC
DF

0 200 400 600 800 1000
Minimum largest area of image shadowed (km2)

0.5

1.0

EC
DF

0 200 400 600 800 1000 1200 1400
Minimum actual area of image shadowed (km2)

0.5

1.0

EC
DF

Figure 25.
:::::::
Empirical

::::::::
cumulative

:::::::::
distribution

::::::::
functions

::::::
(ECDF)

:::
for

:::
the

:::::::
minimum

::::::::
ensemble

::::::::
proportion,

::::::
largest

:::
and

:::::
actual

::::
area

::
of

:::::
image

::::::::
containing

:::::
rainfall

:::::::
shadows

::
for

:::
all

:::::
events

over 50km2. A missing area of significant rainfall of this size, particularly for small or urban catchments, constitutes a major an435

underestimation of flood risk, resulting in incorrect information provided in flood warnings. This highlights the importance of

gaining an improved understanding of rainfall shadows, and provides motivation for this project and future research in this area.

Gaps caused by the rainfall shadows identified would result in under-prediction of flooding, impacting both flood warnings and

flood defence designs.
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5 Discussion and conclusions440

Errors relating to several different aspects of the radar rainfall estimation process are considered, using a radar error model

outlined in detail. This model is applied to realistic simulated rainfall events in a stochastic manner, generating an ensemble

of radar images corresponding to each time step of rainfall events. A Log-Normal random noise field was imposed on rainfall

estimates to account for underlying non-specific noise. The DSD uncertainty is included by replacing the multiplicative param-

eter a in the ZR-relationship with a two-dimensional spectral random field, with field variability determined by radar sampling445

volumes. Attenuation effects are imposed by inverting standard gate-by-gate correction algorithms (Jacobi and Heistermann,

2016). To enable the direct comparison between the simulated rainfall before and after imposing the radar error model, each

radar image is corrected using a standard radar rainfall estimation process. This results in corrected rainfall field for each en-

semble member, similar to what would be obtained from real radar rainfall images, allowing us to identify when and where

significant and/or systematic errors may occur.450

This concept provides a methodology for developing a better understanding of errors relating the the radar rainfall estimation

process. By generating a ‘true’ rainfall field, and subsequently imposing errors to allow for the comparison with correct ‘best

guess’ stochastic radar rainfall estimates, allows us to address the fundamental limitation of weather radar correction schemes –

that the real rainfall field is not known for comparisons. An investigation of the spatio-temporal behaviour of the error structure

is then possible, which provides key information about the radar rainfall estimation process.455

A relationship between rainfall shadows, high bias and uncertainty, related to the amount of rainfall (i.e. proportion and rates)

in images was found. The impact rainfall location with respect to the weather radar is considered by introducing the second

moment of area, showing more central rainfall in the radar domain results in higher errors and variability. The minimum

likelihood of rainfall shadows showed that 50% of images simulated have at least 3% of significant rainfall shadowed. In

addition, 25% of images had an ARS of over 45km2, with the minimum LARS for 5% of images exceeding an area of460

50km2. This gap would result in underestimation of potential impacts of flooding. This highlights the importance of gaining an

improved understanding of rainfall shadows, and provides motivation for this project, and future research in this area. Weather

radar alone cannot be used for rainfall estimation, as information is regularly missed.

5.1 Impact and transferability

Improved high-resolution rainfall estimates are needed for flood forecasting, by stakeholders and water managers, particularly465

in (near) real time, for nowcasting and probable ensemble forecasting. The radar error model outlined in this study produces

visually realistic radar images, capturing key properties of radar images, with many potential uses for the model framework,

some of which are outlined below.

1. Identification of radar rainfall properties which correspond to high errors and uncertainties could be extended and used

in a probabilistic manner, to better condition merged rainfall fields. Identifying areas where the spatial distribution of the470

rainfall cannot be trusted (i.e. occasions where rainfall shadows are likely, such as areas past high intensity rainfall). This
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includes information on the frequency and location of rainfall shadows as a merging criterion (i.e. putting more weight

on rainfall information from other sources when rainfall shadows are likely to occur at a given location).

2. Application of the model to gridded rain gauge fields or forecasts, for comparison with corresponding weather radar

images, to better identify and understand radar rainfall errors.475

3. The importance of complex and efficient radar gauge merging methods is emphasised in this study, which do not trust

the spatial distribution of rainfall provided by weather radars alone. Additional information from other sensors is needed,

such as opportunistic sensors, citizen science data, rain gauges and microwave links. This study has provided a framework

for methods of assessing the performance of these merging techniques.

4. Determining the optimal location for weather radars or rain gauges, such as establishing rain gauge networks in areas480

where rainfall shadows are more likely, and not in densely populated areas (e.g. the city), where it may be too late for

warnings of missing information.

5. Assess how radar rainfall errors propagate into hydrological and hydrodynamic modelling, considering the impact that

the incorrect distribution of rainfall has on discharge and flood depths.

5.2 Limitations and future work485

A powerful framework for investigating radar rainfall errors has been developed and demonstrated, with model design allowing

for a high degree of flexibility and several natural extensions. The influence of different correction methods for radar rainfall

estimation process and the impact this has on the error structure should be investigated using the methodology in this study.

Some error sources in radar rainfall estimation are not included in the radar error model, as they were beyond the scope of

this study. To improve the model, additional sources of error could be easily included (e.g. radar calibration errors using an490

additive error in DBZ
::::
dBZ and bright band effects using a vertical representation for different weather types and seasons of

events). Mountainous regions are typically subject to more errors due to beam blockage from topography, however this could be

included in the model quite easily by an additive error based on existing clutter maps from the weather radar of interest. It would

be interesting to repeat the study with different DSD structures, changing the correlation structure and marginal distribution of

this (previously Gaussian) field. A dependence between DSD parameters could be imposed, as a varying ZR-relationship in495

space and time improved rainfall accumulations at event scale (Libertino et al., 2015).

Close to the radar, measurement volumes are small, systematically increasing in size with distance from the radar. Although

as part of the radar error model, the spatial sampling aspect is considered through the estimation variance, radar measure-

ments are taken as instantaneously
:::::::::::
instantaneous (as opposed to rain gauge measurements which are temporal aggregations

by definition). Implications of these space-time sampling properties mean that temporally we only have a snapshot of the500

pixel behaviour at a given time. Correlation structure variability in space and time was incorporated through a spatio-temporal

anisotropy factor, without explicitly account for the different data sampling between the two dimensions. The simulation en-

vironment could be modified to account for the temporal sampling issue by simulating temporally at a higher resolution than
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existing radar images, and sampling these to reproduce the snapshot effect. Methods could also be developed within an inverse

modelling framework (Grundmann et al., 2019) for obtaining field uncertainty in (near) real time.505

5.3 Concluding remarks

The overarching aim of this study is to contribute towards improvements in the radar rainfall estimation process, by gaining

an improved understanding of the frequency and location of the error structure relating to the process. With this in mind, we

explore and exploit space-time properties of rainfall and reflectivity, to gain an improved understanding of the error structure

between the two, investigating the extent of uncertainties in the radar rainfall estimation process. This study has presented510

an innovative model for investigating uncertainties in the radar rainfall estimation process; providing a flexible tool that has

many potential future applications. The radar error model, outlined in detail, generates a stochastic ensemble of radar images

corresponding to an existing rainfall field, by inverting the radar rainfall estimation process. This model incorporates many dif-

ferent error sources, including: the drop-size distribution, attenuation effects, random noise and radar sampling. This provides

a method for identifying when and where radar errors are likely to occur, and how often information about the rainfall field is515

lost, significantly impacting the spatial rainfall field. The insights from this study provide an improved understanding of the

error structure between rainfall and reflectivity, and the extent of uncertainties in the radar estimation process. A framework

has been provided for investigating the impact of errors relating to the radar rainfall estimation process, with many potential

hydrological applications.
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