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Abstract. Civil engineers design infrastructures exposed to hydrometeorological hazards, such as hydroelectric dams, using

the estimation of probable maximum precipitation (PMP). The World Meteorological Organization (WMO) defines PMP as the

maximum amount of water that can physically accumulate over a given time period and region, depending on the season and

without considering long-term climate trends. Current methods for calculating PMP have many flaws: some variables used are

not directly observable and require a series of approximations to be used; uncertainty is not always taken into account and can5

sometimes be complex to determine; climate change, which exacerbates extreme precipitation events, is difficult to incorporate

into the calculations and subjective choices increases estimation variability. The goal of this work is to propose a statistical and

objective method for estimating PMP that meets the WMO definition and allows for uncertainty estimation and climate change

incorporation. This novel approach leverages the Pearson Type I distribution, a generalization of the Beta distribution over an

arbitrary interval. The proposed method is applied to estimate the PMP at two meteorological stations in Québec, Canada.10

1 Introduction

1.1 Context

Dams play a crucial role in regulating streamflow and generating hydroelectricity, providing essential water management

and renewable energy resources. Over-sizing these infrastructures during construction or renovation can lead to unnecessary

costs. Conversely, under-sizing them can pose risks to dam safety, the environment, and surrounding populations, and may15

result in excessive costs. In the province of Québec (Canada) alone, there are over 6,000 dams over one meter in height

spread across the region (CEHQ, 2023). According to regulations derived from the Dam Safety Act, civil engineers must

design these structures using an estimation of the local extreme flood conditions. Depending on the risk in case of breakage,

various flood estimations are used, such as the millennial, decamillennial, or probable maximum flood (PMF). The latter is

the greatest theoretically possible flood on a specific watershed and is computed based, among other factors, on the probable20

maximum precipitation (PMP). According to the World Meteorological Organization (WMO, 2009), the PMP corresponds to

the maximum precipitation accumulation over a fixed duration in a given region.
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1.2 moisture maximization approach for PMP estimation

In its 2009 manual, the WMO details several PMP estimation approaches, with hydrometeorological methods combining algo-

rithms of storm selection, transposition, and maximization being the most popular in Canada. Regarding storm selection, some25

authors use all rain events where the precipitation height exceeds a given threshold (Beauchamp et al., 2013), while others

utilize all observed precipitation data over a given period (Ben Alaya et al., 2018). This selection process is usually carried out

by meteorologists and depends on physical factors (CEHQ and SNC-Lavalin, 2004; DTN and MGS Engineering, 2020; Envi-

ronmental Water Resources Group Ltd., 2020). Since the number of selected storms is small and varies from one calculation

to another and among different meteorologists, this selection process introduces significant variability in the estimation of the30

PMP.

To increase the number of storms used in PMP estimation, a common practice is to include storms from neighboring areas

that are likely to also affect the region of interest. Over the past decades, meteorologists have developed various techniques

considering the orography and other features of the areas to realistically transpose storms (WMO, 2009). This storm transpo-

sition can be incorporated into the storm selection process of PMP estimation methods. While it increases the sample size for35

PMP estimation, it also introduces additional sources of variability.

The moisture maximization approach estimates the PMP using the relationship between the amount of precipitation and the

humidity of the air. Let Yi be the precipitation of storm 1≤ i≤ n among the n selected storms. The PMP estimation is based

on moisture maximization (WMO, 2009) as follows:

PMP = max
i∈{1,...,n}

{
Yi×

PW max

PW i

}
; (1)40

where PWi corresponds to the precipitable water of storm i, and PWmax to the maximum precipitable water of any storm in

the considered region. The quantity Yi× PWmax
PWi

is often referred to as the maximized precipitation of event i if the maximal

precipitable water were available at the moment of the storm. The PMP then corresponds to the maximum of the maxi-

mized precipitation. The ratio PWmax
PWi

is referred to as the maximization ratio and is sometimes arbitrarily set to a numerical

value between 1.5 and 2.5 to avoid the overestimation of the PMP (Schreiner and Riedel, 1978; Hansen, 1988; WMO, 2009;45

Beauchamp et al., 2013). The use of this threshold is subjective and lacks physical or mathematical justification (Rouhani and

Leconte, 2016).

The moisture maximization expressed in Eq. (1) can also be rewritten as follows, given a slightly different interpretation:

PMP = max
i∈{1,...,n}

{
Pi
PWi

×PWmax

}
. (2)

In this last expression, the ratio Pi
PWi

corresponds to the ratio of precipitation to precipitable water and is referred to as the50

precipitation efficiency of storm i. The PMP occurs when the maximum precipitation efficiency coincides with the maximum

precipitable water. Ben Alaya et al. (2018) utilize this definition to model the dependence between extreme values of precip-

itation efficiency and precipitable water. They demonstrate that the comonotonicity imposed by Eq. 2 leads to overestimation

of the PMP in North America.
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In practice, the precipitable water PWi at the moment of storm i and the maximum amount of precipitation for the considered55

region, PWmax, are unknown and must be estimated for using the moisture maximization approach. The amount of precipitable

water can be estimated using the specific humidity of the air column above the area (WMO, 2009). However, for the majority

of meteorological stations, specific humidity is neither observed nor recorded. The recommended estimation of precipitable

water by the WMO (2009) uses the dew point, which is usually recorded, and requires pseudo-adiabatic conditions (United

States Weather Bureau, 1960; Miller, 1963). Viswanadham (1981) observed that the relation between surface dew point and60

precipitable water is greater when the latitude is over 25° than in lower latitude zones. A study conducted by Chen and

Bradley (2006) in the Chicago region indicates that the pseudo-adiabatic conditions hypothesis could lead to overestimation of

precipitable water, and Rouhani and Leconte (2020) noted that PMP estimates vary greatly depending on how the precipitable

water was approximated. The uncertainty of these estimations is often neglected in PMP estimation. It is not uncommon for

the uncertainty of PWi to lead to a precipitation efficiency larger than 1, which is physically impossible.65

1.3 Empirical approach for PMP estimation

The Hershfield method (Hershfield, 1961a, b, 1965) is an alternative to moisture maximization for PMP estimation. The method

relies on a series of m precipitation annual maxima. The PMP estimates is as follows:

PMP = x̄+Ks (3)

where x̄ and s correspond respectively to the mean and the standard deviation of the series of annual maxima andK corresponds70

to the frequency factor for estimating PMP at that location. Hershfield (1961a) proposed a method to estimate this factor. This

approach is widely employed for its simplicity and ease of use but can only estimate PMP over smaller watersheds (WMO,

2009). It also has the advantage of not requiring additional hydrometeorological data such as specific humidity or dew point.

Only precipitation series from which annual maxima are extracted are required.

This method is often classified as a statistical technique, but in this paper, it is considered empirical, as the link between75

the PMP and the empirical moments is empirical. It should be noted that the PMP durations considered by Hershfield (1965)

and available in WMO (2009) are all less than or equal to 24 hours, which is inadequate for calculating longer-duration PMP.

The relevance of the procedure can also be questioned : Eq. 3 simply defines PMP as an extreme quantile of the distribution

of annual maximum precipitation. Moreover, Koutsoyiannis (1999) demonstrates that the values estimated by the Hershfield

method correspond on average to return periods of 60,000 years from a fitted Generalized Extreme Value (GEV) distribution80

of annual maximum rainfall series.

1.4 PMP estimation using simulated data

The methods of estimation of the PMP presented by the WMO (2009) only consider precipitation data observed at hydrome-

teorological stations. Methodologies adapted for regional simulations have been developed for regions in Canada (Beauchamp

et al., 2013; Rousseau et al., 2014; Clavet-Gaumont et al., 2017; Rouhani and Leconte, 2018, 2020), North America (Kunkel85

et al., 2013; Ben Alaya et al., 2018, 2020a, b) and other parts of the world (Sarkar and Maity, 2020; Visser et al., 2022).
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The use of these climate simulations not only allows for the consideration of a greater number of extreme rainfall events but

also enables the estimation of futures PMP. Indeed, the WMO (2009) defines the PMP as stationary values and CC isn’t taken

into account in the calculations. However, it is widely acknowledged that CC has a direct impact on extreme precipitation events

and should therefore be considered in their estimation. Using projected climate simulations, Kunkel et al. (2013) demonstrate90

a global increase of water vapor concentration in the atmosphere, without a sufficient evolution in values of upward vertical

motion or horizontal wind speed, factors that could counterbalance the rise in air humidity. This increase implies larger future

values of PWmax, and consequently, an increase in PMP. Several papers conclude that PMP will generally increase in future

climate (Beauchamp et al., 2013; Rousseau et al., 2014; Clavet-Gaumont et al., 2017; Rouhani and Leconte, 2018, 2020;

Ben Alaya et al., 2018, 2020a, b; Sarkar and Maity, 2020; Visser et al., 2022).95

1.5 Objectives of the paper

The PMP estimations using the approaches described in the previous paragraphs are very sensitive to arbitrary choices such as

the storm selection procedure, fixed maximization ratio, and frequency factor specification, and are provided without uncer-

tainty. The objective of the present paper is to develop a formal statistical model for PMP estimation based on actual recorded

precipitation from which (1) uncertainty is readily quantifiable and (2) subjective choices are removed to increase the repro-100

ducibility of the estimation. The remainder of the paper is organized as follows: Section 2 describes the data to which the

proposed method is applied and the current PMP estimations at these locations. Section 3 presents the proposed statistical

model for estimating the PMP, and Section 4 provides a simulation study assessing the model’s performance in PMP estima-

tion. The PMP estimations on the real dataset are presented and discussed in Section 5. Finally, the proposed methodology is

discussed and compared with other approaches in Section 6, and the conclusion is provided in Section 7. The data and code for105

reproducing all figures and results are available at the following public repository: https://github.com/JuliaExtremes/PMP.jl.

2 Data

2.1 Observations

The proposed method for estimating the PMP is demonstrated using data from two meteorological stations in Québec (Canada)

located 26 km apart: the Montreal Pierre-Elliott-Trudeau International Airport and St-Hubert Airport stations. The data are110

available from the Environment and Climate Change Canada (ECCC) website. Daily precipitation in mm and dew point in

Celsius were extracted between May 1 and October 31 for each year to focus on liquid rainfall. Figure 1 shows the histogram

of non-zero daily rainfall for each station, and Table 1 compiles several precipitation statistics for both stations.

2.2 PMP estimates

As a point of comparison, the PMP estimates for both stations are calculated using the usual approaches: moisture maximiza-115

tion and the Hershfield method. For the moisture maximization approach, daily precipitation amounts that exceeded the 90th
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Figure 1. Histogram of the non-zero summer precipitation in mm for (a) Montréal (QC) and (b) St-Hubert (QC).

Montréal St-Hubert

Period 1953–2024 1949–2024

Number of days with precipitation 5321 5303

Mean of non-zero precipitation 6.9 mm 7.4 mm

Maximum precipitation 81.9 mm 106.5 mm

Mean of precipitation annual maxima 44.9 mm 49.9 mm

Standard deviation of precipitation annual maxima 14.3 mm 18.0 mm

Table 1. Summer (May to October) daily precipitation statistics for the Montréal and St-Hubert stations.

percentile for each year are selected. The precipitable water is estimated using the maximum persistent dew point over twelve

hours, as described by WMO (2009). Corresponding PMP estimates for both stations are provided in Table 2. The PMP esti-

mates are 282 mm and 436 mm for Montréal and St-Hubert respectively. Note that it is also possible to estimate the PMP using

instead the 100-year return level of the precipitable water instead of the sample maxima (e.g. Ben Alaya et al., 2018), but with120

our data, the estimated PMP were similar: 284 mm and 427 mm for Montréal and St-Hubert respectively.

For the Hershfield approach, the frequency factor ofK = 15 is employed as proposed by Hershfield (1961a). The adjustment

based on the number of data points, as suggested by WMO (2009), is not considered. Hershfield’s PMP estimates are 261 mm

for Montréal and 322 mm for St-Hubert, and are also provided in Table 2.
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Approach Montréal St-Hubert

Moisture maximization 282 mm 436 mm

Hershfield methods using K = 15 261 mm 322 mm

Table 2. Estimated PMP at Montréal and St-Hubert using the standard approaches.

3 Methodology125

In this section, a statistical model is developed for PMP estimation based on the definition expressed in Eq. (1). Statistical

inference methods for this proposed model are also described.

3.1 Statistical model

From Eq. (1), let Ỹi denotes the maximized daily precipitation of day i:

Ỹi =
Yi
EPi

×EPmax. (4)130

Factoring for the actual precipitation of day i gives the following expression:

Yi =
EPi
EPmax

× Ỹi. (5)

Since every maximized precipitation is less than or equal to the PMP, as the PMP corresponds to the maximum of these

maximized precipitations, it is possible to formulate the actual daily precipitation as follows:

Yi =
EPi
EPmax

× riPMP , (6)135

with 0< ri ≤ 1 corresponding to the fraction of the maximized precipitation of day i to the PMP.

The ratio 0< EPi
EPmax

× ri ≤ 1 can be modeled with the Beta distribution. Actual precipitation Yi, which corresponds to this

last ratio to the PMP, can be modeled with the Beta distribution rescaled on the interval (0,PMP). The Beta distribution on

the interval (a,b) for a < b is referred to as the Pearson Type I distribution (Johnson et al., 1995, Chap. 24).

Therefore, we propose to model the actual precipitation of day i with the Pearson Type I distribution as follows:140

Yi ∼ PearsonType1(0,ψ,α,β); (7)

where the Beta parameters α > 0 and β > 0 govern the ratio EPi
EPmax

× ri and where ψ > 0 corresponds to the PMP. The lower

bound is set at 0 because only non-zero precipitation events are considered.

With this modelling, the PMP constitutes a distribution parameter to be estimated with the data. Uncertainty can then be

provided using the usual statistical methods, as described in the next section.145
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3.2 Parameter estimation

3.2.1 Method of moments

The first four central moments, namely the mean m, the variance v, the skewness s, and the kurtosis k, of the Pearson Type I

distribution PearsonTypeI(0,ψ,α,β) are given by the following expressions (adapted from Johnson et al., 1995, Chap. 24):

m=
αψ

α+β
; (8)150

v =
αβψ2

(α+β)2(α+β+ 1)
; (9)

s=
2(β−α)

√
α+β+ 1

(α+β+ 2)
√
αβ

; (10)

k =
6(α3−α2(2β− 1) +β2(β+ 1)− 2αβ(β+ 2)

αβ(α+β+ 2)(α+β+ 3)
+ 3. (11)

The skewness and kurtosis depend only on the shape parameters α and β, and not on the upper bound ψ. It is possible to invert

these equations to factorize for the distribution parameters (adapted from Johnson et al., 1995, Chap. 24):155

α=−
s(k+ 3)+

(
−s(k+3)−

√
s2(k+3)2−4(2k−3s2−6)(4k−3s2)

2(2k−3s2−6)

)
(10k− 12s2− 18)

√
(s(k+ 3))2− 4(2k− 3s2− 6)(4k− 3s2)

+ 1; (12)

β =−
s(k+ 3)−

(
−s(k+3)+

√
s2(k+3)2−4(2k−3s2−6)(4k−3s2)

2(2k−3s2−6)

)
(10k− 12s2− 18)

√
(s(k+ 3))2− 4(2k− 3s2− 6)(4k− 3s2)

+ 1; (13)

ψ = a+
√
v

(√
s2(k+ 3)2− 4(2k− 3s2− 6)(4k− 3s2)

(2k− 3s2− 6)

)
. (14)

To estimate the parameters of the Pearson Type I distribution using the method of moments from a random sample, the

empirical moments of the sample–sample mean, sample variance, sample skewness, and sample kurtosis– are plugged into160

Eqs. (12)–(14) to obtain the parameter estimates. The uncertainty of the parameter estimates can be assessed through non-

parametric bootstrap (Efron, 1979).

3.2.2 Maximum likelihood

The density of precipitation Yi distributed as the PearsonType1(0,ψ,α,β) is given as follows (Johnson et al., 1995):

f(Yi|ψ,α,β)(yi) =
Γ(α+β)
Γ(α)Γ(β)

(yi)α−1(ψ− yi)β−1

ψα+β−1
, 0< yi < ψ. (15)165

Assuming that the n non-zero daily summer precipitation are independent, the likelihood can be written as follows:

f(Y |ψ,α,β)(y) =
n∏

i=1

f(Yi|ψ,α,β)(yi), (16)

where Y = (Yi, . . . ,Yn) denotes the vector of the n non-zero precipitations.
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Maximizing the likelihood expressed in Eq. (16) is a non-regular problem (Wang, 2005). When β > 1, a local maximum

exists, and parameter estimates can be obtained. Additionally, parameter uncertainty can be estimated using the Fisher informa-170

tion matrix. However, when β ≤ 1, the local maximum does not exist, and the estimation procedure fails. In this case, several

solutions have been proposed, but they are not relevant to the present paper since, for precipitation, the parameter β is strictly

greater than 1.

The Pearson Type I distribution is continuous, as expressed in Eq. (15). However, precipitation measurements are discrete.

For our data, the precipitation measurement resolution is 0.1 mm, and no precipitation less than 0.2 mm can be measured.175

This discretization of precipitation measurements has a larger impact on small amounts. Discrepancies appear between the

continuous distribution and the discrete measurements, which places mass on points of measurement. One approach to tackle

this problem is to censor the likelihood function for small precipitation amounts below a given threshold u > 0 (e.g., Naveau

et al., 2016) as follows:

f c(Y |ψ,α,β)(y) =
∏

{i:yi≤u}
I u
ψ
(α,β)

∏

{i:yi>u}

Γ(α+β)
Γ(α)Γ(β)

(yi)α−1(ψ− yi)β−1

ψα+β−1
, (17)180

where Iy(α,β) denotes the regularized incomplete beta function of parameter (α,β) evaluated at y. Precipitation smaller than

u still counts in the likelihood, but their actual values are not considered. Parameter estimates can be obtained by using this

censored likelihood.

Another approach would be to set the lower bound of the Pearson Type I distribution to (0.2− ϵ) where ϵ > 0. This would

maintain some mass at the measurement points but could sufficiently de-emphasize the issue, allowing the continuous like-185

lihood to serve as a good approximation of the discrete measurements. One of these methods could be used if parameter

estimation by maximum likelihood is affected by the discretization of precipitation measurements.

3.2.3 Bayesian method

Estimation of the Pearson Type I distribution can also be performed under the Bayesian paradigm. The benefit of using the

Bayesian method lies in its ability to describe uncertainty. Unlike the non-parametric bootstrap and the asymptotic Gaussian190

convergence of maximum likelihood estimates, Bayesian inference directly provides parameter uncertainty based on the data

at hand, without relying on asymptotic arguments.

Bayesian methods require a prior distribution for the model parameters. For the Pearson Type I distribution expressed in

Eqs. (15) and (16), an improper non-informative prior distribution for the upper bound ψ > 0 and the shape parameters α > 0

and β > 0 can be defined as follows:195

f(ψ,α,β)(ψ,α,β)∝ 1
ψ

1
α

1
β

for ψ > 0, α > 0 and β > 0. (18)

The same prior distribution can be used with the censored likelihood expressed in Eq. (17) or with a positive lower bound.

If prior information on the upper bound (the PMP) is available, an improper semi-informative prior can be used as follows:

f(ψ,α,β)(ψ,α,β)∝ fψ(ψ)
1
α

1
β

for α > 0 and β > 0, (19)
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where the prior information on ψ is modelled with the proper density fψ . If β ≤ 1, the problem is non-regular and the infor-200

mative prior proposed by Hall and Wang (2005) can be used to solve this issue.

The posterior distribution of the parameters is not available in analytical form for either of the proposed prior distributions.

A sample from the posterior distribution can be obtained, for example, using a Gibbs sampling scheme, and inference can be

performed using the generated sample.

3.3 Identifiability issues205

When 0< α < 1 and β ≥ 1, i.e., when the density is convex, non-identifiability issue occurs between β and ψ. Indeed, these pa-

rameters can compensate for each other. For example, letZ1 ∼ PearsonType1
(
10, 1

10 ,
99
10

)
andZ2 ∼ PearsonType1

(
100, 1

10 ,
999
10

)

be two random variables with very different upper bounds–10 for Z1 and 100 for Z2–but whose moments are similar, as shown

in Table 3. Both variables have the same mean and approximately the same variance. Although there are slight differences

in skewness and kurtosis, these differences are not large enough to overcome the sampling uncertainty of these higher-order210

moments estimates.

Variable mean variance skewness kurtosis

Z1 0.1 0.09 5.44 40.58

Z2 0.1 0.10 6.22 57.45

Table 3. Moments for the variables Z1 and Z2.

This non-identifiability issue is even more critical for parameter estimation using the model likelihood (both maximum like-

lihood and Bayesian methods). For example, consider the variable Z1 again and generate a large random sample of size 5000.

The log-likelihood of the model evaluated at the true parameter vector
(
10, 1

10 ,
99
10

)
is 35678.3. The log-likelihood evaluated at

another parameter vector
(
100, 1

10 ,
999
10

)
is 35678.0, which is practically the same, even though the parameters are quite differ-215

ent. The impact of this non-identifiability issue is assessed for parameter estimation with the method of moments, maximum

likelihood, and Bayesian method with a simulation study provided in the following section.

4 Simulation study

In this section, a simulation study is conducted to assess the performance of parameter estimation methods for two different

distribution behaviors: concave and convex density. The Pearson Type I distribution with parameters (0,50,2,2) is used for the220

concave distribution, while the Pearson Type I distribution with parameters (0,50, 1
10 ,6) is used for the convex distribution.

For each of these distributions, 100 random samples of various sizes were generated, and parameter estimation was performed

on each sample.
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Figure 2. Mean and 95% empirical confidence interval for the ψ estimates of the 100 samples of the PearsonType1(0,50,2,2) distribution

obtained with (a) the method of moments, (b) the maximum likelihood and (c) the Bayesian methods using Gibbs sampling.

4.1 Pearson Type I with concave density

For each of the 100 random samples, with sizes ranging from 100 to 8000, parameters were estimated using the method of225

moments, maximum likelihood, and Bayesian methods. Figure 2 displays the mean of the 100 parameter estimates for the

upper bound ψ as a function of the sample size, as well as the 95% empirical confidence interval. For the Bayesian method,

both a Gibbs sampling scheme and the No-U-Turn Sampler (NUTS) algorithm were implemented, yielding similar results.

The three estimation procedures perform very well in estimating the upper bound, which is the parameter of interest in this

paper. The mean estimate hovers around the true value of 50, and the confidence intervals include the true value. Estimation230

remains accurate even for relatively small sample sizes of 2000, which corresponds to approximately 20 years of precipitation

data. However, the methods based on likelihood yield more precise results than the method of moments.

4.2 Pearson Type I with convex density

Figure 1 shows the mean and the 95% empirical confidence intervals for the samples generated from the Pearson Type I

distribution with a convex density. For the method of moments, the estimation of the upper bound is close to the true value of235

50. The confidence intervals, wider compared to those associated with the concave density, include the true value. However,

estimation variability is very large. It is very sensitive to the sample. For example, for moderate sample sizes around 4000, the

upper bound estimate average is around 50, but for some samples, the estimate exceeds 100, which is two times larger than the

true value. For other samples, the estimate is smaller than 25, which is half the true value.
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Figure 3. Mean and 95% empirical confidence interval for the ψ estimates of the 100 samples of the PearsonType1(0,50,1/10,6) distri-

bution obtained with (a) the method of moments, (b) the maximum likelihood and (c) the Bayesian methods using Gibbs sampling.

Upper bound estimates using the maximum likelihood and Bayesian methods are not useful, as shown in Figure 1. The non-240

identifiability issue arises because the shape parameter β compensates for the larger upper bound. While an informative prior

for the upper bound could be introduced to control this issue, it would need to be highly informative. However, this approach

was not pursued because using such a restrictive prior defeats the purpose of removing subjectivity in PMP estimation.

The sensitivity to the sample and the non-identifiability issue are resolved with very large sample sizes as shown in Figure 4.

The estimates are well stabilize around a sample size of 40,000. For precipitation in Canada, it corresponds to approximately245

400 years of data.

4.3 Key findings from the simulation study

For the Pearson Type I distribution with a concave density, parameter estimates are precise with all three estimation methods

considered. For a convex density, the non-identifiability issue in the likelihood is too severe to obtain usable upper bound

estimates for common sample sizes using the maximum likelihood and Bayesian methods. However, these two methods could250

be used with very large sample sizes.

Although the method of moments is sensitive to the data, it provides realistic estimates of the upper bound, even for common

sample sizes. This method should be favored for parameter estimation of non-concave Pearson Type I distributions.
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Figure 4. Mean and 95% empirical confidence interval for the ψ estimates of the 100 very large samples of the

PearsonType1(0,50,1/10,6) distribution obtained with (a) the method of moments, (b) the maximum likelihood and (c) the Bayesian

methods using Gibbs sampling.

5 Probable maximum precipitation estimation

The Pearson Type I distribution is fitted to the non-zero precipitation data recorded at Montréal and St-Hubert, with the upper255

bound estimate assumed to represent the PMP. As shown in Figure 1, the non-zero precipitation density appears to be convex,

so the model is fitted using the method of moments.

5.1 PMP estimation for Montréal

The Pearson Type I distribution has been fitted to the 5321 non-zero daily summer precipitation with the method of moments.

The parameter estimates are as follows:260

ψ̂ = 270.0 (141.6 , 938.9)

α̂= 0.4577 (0.3881 , 0.5349)

β̂ = 18.81 (9.014 , 71.99)

The values in parentheses correspond to the 95% confidence intervals estimated by non-parametric bootstrap using 10,000

samples. Figure 5 shows the upper bound estimate for each bootstrap sample. The uncertainties of the second shape parameter265

β and the upper bound ψ are very large, which is expected given the simulation study results for a convex density. Note that

using the maximum likelihood and Bayesian methods does not yield valid estimates due to identifiability issues.
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Figure 5. PMP estimates (in mm) obtained by non-parametric bootstrap at Montréal (QC) and St-Hubert (QC).

The PMP estimate given by the fitted Pearson Type I distribution is consistent with the estimate obtained using the moisture

maximization method based on Eq. (1). The former estimates the PMP at 270 mm, while the latter estimates it at 284 mm.

Unlike the proposed method, the moisture maximization method does not provide uncertainty estimation.270

5.2 PMP estimation for St-Hubert

For St-Hubert, the Pearson Type I distribution has been fitted to the 5303 non-zero daily summer precipitation events, and the

parameter estimates obtained with the method of moments are as follows:

ψ̂ = 416.5 (165.0 , 9006)

α̂= 1.463 (0.4381 , 1.566)275

β̂ = 34.75 (15.98 , 645.9)

where the values in parentheses correspond to the 95% confidence intervals estimated by non-parametric bootstrap using

10,000 samples. Uncertainties in the upper bound and the second shape parameter are exceedingly high, indicating that the

non-identifiability issue is more pronounced for these data. Figure 5 shows the upper bound estimates for each bootstrap

sample. The PMP estimate given by the fitted Pearson Type I distribution, 417 mm, is consistent with the estimates obtained280

using the moisture maximization method, 436 mm. As with the Montréal data, maximum likelihood and Bayesian methods do

not yield valid parameter estimates.

It should be noted that the estimate for the first shape parameter α with the method of moments is larger than 1, which is

inconsistent with the convex form of the distribution. However, the confidence interval includes values smaller than 1.
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6 Discussion285

6.1 Pros and cons of the proposed approach

The proposed statistical approach to estimate the PMP translates the usual definition of the PMP into a statistical distribution

for the recorded precipitation. The PMP constitutes one of the three parameters, and the remaining two concern the shape of the

distribution. By estimating the parameters using standard statistical approaches, such as the moment, maximum likelihood, and

Bayesian methods, it is possible to adequately describe the uncertainty, particularly for the PMP parameter. Additionally, the290

proposed approach uses all the precipitation recorded at the station rather than only a subset from the stations and neighbouring

stations. This reduces the subjectivity present in standard approaches.

Another benefit that we did not exploit in this paper concerns non-stationarity. With the Pearson Type I distribution, it is

relatively straightforward to model non-stationary parameters to incorporate climate changes and seasonality. For example,

precipitation Ytsi of year t, season s, and event i can be modelled as a function of the year and the event i as follows:295

Ytsi ∼ PearsonType1(0,ψts,αts,βts);

where the year t and the season s could constitute a covariate.

The major drawback of the proposed approach lies in the non-identifiability issue when the data distribution is convex, as

is the case for precipitation. Maximum likelihood and Bayesian methods become very unstable, and this issue also affects

the method of moments, although to a lesser extent. Regularized maximum likelihood or informative priors could be used to300

address the non-identifiability, but the constraints that have to be added to control it are quite narrow. We felt that this added

too much subjectivity to the proposed approach and that it would lose its benefits compared to the standard PMP estimation

approaches.

In the simulation study, it is shown that the non-identifiability issue vanished with very large sample sizes. Figure ?? shows

that the maximum likelihood estimation is stable from a sample size of 45,000. If we consider that 100 storms occurs during a305

year, such sample size would correspond to 450 years of observation. Of course, no meteorological record is that long, but it

could be possible to have such a sample size of synthetic storms generated with a storm generator.

Another alternative to increase the sample size would be to include information from nearby stations. This could be achieved

within the Bayesian framework described in Section 3.2.3 by replacing the parameter prior distribution with a spatial prior.

However, the dependence between stations would need to be modeled in the likelihood, as a single storm can generate precipi-310

tation across multiple stations. Accounting for this dependence would decrease the effective sample size of the pooled stations,

and we believe that this effective sample size might not reach the level where the estimates are stable. However, we could be

wrong.

PMP estimation, whether with the proposed method in this paper or with more standard approaches, is very sensitive to

the data due to non-identifiability. For the two nearby meteorological stations considered, i.e., the Montréal Pierre-Elliott-315

Trudeau International Airport and the St-Hubert Airport stations located 26 km apart, the PMP estimates are very different.

However, these two stations do not experience significantly different climates and storms. Furthermore, in several estimates
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provided by engineering consulting firms, storms from even more distant stations are combined to estimate the PMP, a practice

known as storm transposition. Moreover, the extreme-value analysis of the precipitation at these two stations, presented later

in Section 6.3, yields consistent return level estimates. Therefore, the difference in the PMP for these two stations is more a320

numerical problem related to the PMP definition than a genuine difference in the PMP.

6.2 Reparametrisation

To reduce the impact of model non-identifiability, we also developed a new parametrization for the Pearson Type I distribution,

replacing the shape parameters with a location parameter µ > 0 and a concentration parameter ν > 0:

µ=
αψ

α+β
and ν = α+β.325

We therefore have α= µν
ψ and β = ν

ψ (ψ−µ). However, even with this parametrization, non-identifiability remained an issue

for maximum likelihood and Bayesian inference.

6.3 Comparison with extreme value analysis

For the purpose of comparison, an extreme value analysis have been performed on the precipitation data of Montréal and

St-Hubert. The Peaks-Over-Threshold (POT, Davison and Smith, 1990) extreme-value model has been fitted by maximum330

likelihood to the Montréal data, with the threshold of 30 mm chosen using the mean residual life plot method as described

by Coles (2001, Chap. 4). The estimated parameters of the generalized Pareto distribution modelling the excesses above the

threshold are as follows:

σ̂ = 9.95 (7.96 , 12.45)

ξ̂ = 0.0421 (−0.1288 , 0.2131)335

where the values in parentheses correspond to the 95% confidence intervals estimated using the Fisher information matrix. The

model fits the data very well, as shown by the return level plot in Figure 6a. Note that the shape parameter estimate is positive,

indicating an unbounded heavy-tailed distribution, which is typical for precipitation but inconsistent with the PMP existence

assumption. Nevertheless, a short-tailed distribution cannot be excluded, as the shape parameter confidence interval includes

negative values. As an indication, the 10,000-year return level estimated with the POT model is 156 mm (58 mm, 255 mm),340

and the PMP value of 270 mm corresponds to a return period longer than 10 million years.

The POT model has also been fitted to the St-Hubert data. Parameter estimates are as follows:

σ̂ = 13.1594 (10.5917 , 16.3494)

ξ̂ = 0.0259 (−0.1335 , 0.1854);

and Figure 6b shows the model fit to the data. Again, the model fits the data very well, and the shape estimate is posi-345

tive, indicating a heavy-tailed distribution. Using the fitted POT model, the 10,000-year return level estimate is 170 mm
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(b) St-Hubert data

Figure 6. Return level plot of the fitted Peaks-Over-Threshold model for (a) the Montréal data and (b) the St-Hubert data.

(80 mm, 259 mm), which is consistent with the corresponding estimate of 156 mm for Montréal, located 26 km apart. The

PMP estimate of 416 mm corresponds to a return period longer than 1 billion years.

6.4 Recommendations

Although translating the definition of the PMP into a statistical model is interesting, and despite the possibility of including non-350

stationarity and estimating uncertainty, we do not recommend using the Pearson Type I distribution to estimate the PMP. The

non-identifiability makes the model too sensitive to the data, and the PMP estimate becomes too volatile. This problem is also

present in the standard moisture maximization method. Therefore, we align with the conclusions of the National Academies of

Sciences, Engineering, and Medicine (2024), which recommends an extreme value analysis instead. Additionally, the extreme-

value theory allows for a genuine estimation of the uncertainty of extreme values, even when extrapolating to return periods355

that exceed the range of the data. Furthermore, it is easily generalizable to non-stationary cases, allowing the integration of the

effects of climate change.

More generally, the fact that PMP estimates using either moisture maximization, Hershfield’s method, or the Pearson Type

I method are so sensitive to the data is a critical concern from an engineering standpoint. Specifically, for the Pearson Type

I method with a convex density, depending on the data, the PMP estimate can range from half to more than twice the true360

value. In the former case, using the estimate would result in under-dimensioning the infrastructure, putting the public at risk.

In the latter case, using it would result in over-dimensioning the infrastructure, thereby increasing costs and environmental

impacts. Although uncertainty estimates are not available with the moisture maximization and Hershfield’s methods, the fact

that the corresponding PMP estimates for Montréal and St-Hubert were so different is an important indication of the methods’
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Approach Montréal St-Hubert

Moisture maximization 282 mm 436 mm

Moisture maximization using PW100 284 mm 427 mm

Hershfield method using K = 15 261 mm 322 mm

Pearson Type I 270 mm 417 mm

10,000-year return level (POT) 156 mm 170 mm

Table 4. Estimated PMP at Montréal and St-Hubert using the standard approaches and the Pearson Type I distribution. The second line

corresponds the PMP estimation using the 100-year return level of the precipitable water instead of the empirical maximum as proposed by

Ben Alaya et al. (2018).

sensitivity. Table 4 compiles all the PMP estimates for Montréal and St-Hubert, along with the 10,000-year return levels365

estimated with the POT model.

In the case of this article, we have seen that the POT model fits the data from both stations very well and that the estimates of

the 10,000-year precipitation were consistent. Moreover, the extreme value analysis indicates an unbounded and heavy-tailed

distribution of precipitation, which is consistent with numerous results in the literature (e.g. Papalexiou and Koutsoyiannis,

2013). Therefore, it is better to design infrastructure by setting an appropriate level of risk and evaluating the uncertainty of the370

estimate.

7 Conclusions

In this study, we developed a new statistical model for estimating the PMP based on its definition. The model involves modelling

daily precipitation with the Pearson Type I distribution, where the upper bound corresponds to the PMP. As a proper statistical

model, parameter and uncertainty estimations can be derived using well-known statistical methods.375

Our analysis demonstrates that while the proposed statistical approach offers potential benefits—such as translating the PMP

definition into a statistical model, incorporating non-stationarity, and providing uncertainty estimates—significant drawbacks

limit its practical application. The major challenge lies in the non-identifiability issue, which renders the model highly sensitive

to data and leads to volatile PMP estimates. This issue persists despite attempts at reparametrization and the use of regularized

maximum likelihood or informative priors, which introduce subjectivity that undermines the model’s advantages.380

Given the inherent challenges and limitations of the Pearson Type I distribution for precipitation modelling, we recommend

using extreme value analysis for PMP estimation. This approach aligns with the findings of the National Academies of Sciences,

Engineering, and Medicine (2024), which advocate for extreme value analysis due to its robustness and applicability, even in

the context of non-stationary conditions brought about by climate change. With our data, the 10,000-year return level estimates

of daily precipitation at the two considered locations were consistent, in contrast to the PMP estimates for those two locations.385

Moreover, the extreme value analysis indicated a heavy-tailed distribution, consistent with existing literature, which invalidates

the concept of PMP.

17

https://doi.org/10.5194/egusphere-2024-2594
Preprint. Discussion started: 22 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Future work may involve estimating the PMP of storms instead of daily precipitation. In this paper, we estimated the daily

PMP, but precipitation accumulation over several days could also be of interest. However, accumulation over several days

would decrease the sample size and exacerbate the non-identifiability issue. Future work may also focus on PMP estimation390

based on a large sample of synthetic storms provided by a storm generator.

In conclusion, while innovative statistical methods offer promising avenues for PMP estimation, traditional extreme value

analysis remains, in our opinion, the most practical and reliable approach for assessing precipitation extremes and guiding

infrastructure design.

Code and data availability. The data and code for reproducing the results are provided in the public repository: https://github.com/JuliaExtremes/395

PMP.jl.

Author contributions. Authors’ Contribution statement using CRediT with degree of contribution:

Anne Martin: Formal Analysis (lead), Investigation (lead), Methodology (lead), Software (equal), Validation (equal), Visualization (equal),

Writing – Original Draft Preparation (equal).

Élyse Fournier: Conceptualization (equal), Funding Acquisition (equal), Investigation (supporting), Methodology (supporting), Supervi-400

sion (supporting), Writing – Original Draft Preparation (supporting).

Jonathan Jalbert: Conceptualization (equal), Funding Acquisition (equal), Investigation (supporting), Methodology (supporting), Software

(equal), Validation (equal), Visualization (equal), Supervision (lead), Writing – Original Draft Preparation (equal).

For more information, please see the taxonomy website.

Competing interests. The is no competing interest to declare.405

Acknowledgements. This work was supported by Natural Sciences and Engineering Research Council of Canada, Hydro-Québec, MITACS

Acceleration program and the ARRIMÉ research alliance. We would like to thank Gabriel Gobeil (Environment and Climate Change Canada)

for his valuable assistance, as well as Julie Carreau and Jean-Luc Martel for their insights.

18

https://doi.org/10.5194/egusphere-2024-2594
Preprint. Discussion started: 22 August 2024
c© Author(s) 2024. CC BY 4.0 License.



References

Beauchamp, J., Leconte, R., Trudel, M., and Brissette, F.: Estimation of the summer-fall PMP and PMF of a northern watershed under a410

changed climate, Water Resources Research, 49, https://doi.org/10.1002/wrcr.20336, 2013.

Ben Alaya, M. A., Zwiers, F., and Zhang, X.: Probable maximum precipitation: its estimation and uncertainty quantification using bivariate

extreme value analysis, Journal of Hydrometeorology, 19, 679–694, https://doi.org/10.1175/JHM-D-17-0110.1, 2018.

Ben Alaya, M. A., Zwiers, F. W., and Zhang, X.: A bivariate approach to estimating the probability of very extreme precipitation events,

Weather and Climate Extremes, 30, 100 290, https://doi.org/10.1016/j.wace.2020.100290, 2020a.415

Ben Alaya, M. A., Zwiers, F. W., and Zhang, X.: Probable maximum precipitation in a warming climate over North America in CanRCM4

and CRCM5, Climatic Change, 158, 611–629, https://doi.org/10.1007/s10584-019-02591-7, 2020b.

CEHQ: Répertoire des barrages, https://www.cehq.gouv.qc.ca/barrages/default.asp, 2023.

CEHQ and SNC-Lavalin: Estimation de conditions hydrométéorologiques conduisant aux crues maximales probables (CMP) au Québec :

Rapport final, Tech. Rep. 014713-1000-40RT-001-00, Ministère de l’Environnement et de la Lutte contre les changements climatiques,420

2004.

Chen, L.-C. and Bradley, A. A.: Adequacy of using surface humidity to estimate atmospheric moisture availability for probable maximum

precipitation, Water Resources Research, 42, https://doi.org/10.1029/2005WR004469, 2006.

Clavet-Gaumont, J., Huard, D., Frigon, A., Koenig, K., Slota, P., Rousseau, A., Klein, I., Thiémonge, N., Houdré, F., Perdikaris, J., Turcotte,

R., Lafleur, J., and Larouche, B.: Probable maximum flood in a changing climate: An overview for Canadian basins, Journal of Hydrology:425

Regional Studies, pp. 11–25, 2017.

Coles, S.: An introduction to statistical modeling of extreme values, Springer, 2001.

Davison, A. C. and Smith, R. L.: Models for exceedances over high thresholds, Journal of the royal statistical society: Series B (Statistical

methodology), 52, 393–425, 1990.

DTN and MGS Engineering: Probable maximum precipitation guidelines for British Columbia, technical report Bulletin 2020-3-PMP, British430

Columbia Ministry of Forests, Lands, Natural Resources Operations, and Rural Development, 2020.

Efron, B.: Bootstrap methods: Another look at the jackknife, The Annals of Statistics, 7, 1–26, 1979.

Environmental Water Resources Group Ltd.: Assessment of potential impact of climate change on probable maximum precipitation applica-

ble to nuclear facilities in Canada, Final Report R723.1, Canadian Nuclear Safety Commission (CNSC), British Columbia, 2020.

Hall, P. and Wang, J. Z.: Bayesian likelihood methods for estimating the end point of a distribution, Journal of the Royal Statistical Society.435

Series B (Statistical Methodology), 67, 717–729, 2005.

Hansen, E. M.: Probable maximum precipitation estimates-United States between the Continental Divide and the 103rd meridian, Tech. Rep.

55A, United States Office of Hydrology., Hydrometeorological Branch; United States Army., Corps of Engineers, Washington D.C., 1988.

Hershfield, D. M.: Estimating the probable maximum precipitation, Journal of the Hydraulics division, 1961a.

Hershfield, D. M.: Rainfall frequency atlas of the United States, Tech. rep., United States Weather Bureau, 1961b.440

Hershfield, D. M.: Method for estimating probable maximum rainfall, Journal American Water Works Association, 57, 965–972,

https://doi.org/10.1002/j.1551-8833.1965.tb01486.x, 1965.

Johnson, N. L., Kotz, S., and Balakrishnan, N.: Continuous Univariate Distributions, vol. 2, Wiley, 2 edn., 1995.

Koutsoyiannis, D.: A probabilistic view of hershfield’s method for estimating probable maximum precipitation, Water Resources Research,

35, 1313–1322, https://doi.org/10.1029/1999WR900002, 1999.445

19

https://doi.org/10.5194/egusphere-2024-2594
Preprint. Discussion started: 22 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Kunkel, K. E., Karl, T. R., Easterling, D. R., Redmond, K., Young, J., Yin, X., and Hennon, P.: Probable maximum precipitation and climate

change, Geophysical Research Letters, 40, 1402–1408, https://doi.org/10.1002/grl.50334, 2013.

Miller, J. F.: Probable maximum precipitation and rainfall-frequency data for Alaska for areas to 400 square miles, durations to 24 hours and

return periods from 1 to 100 years, Technical paper 47, Weather Bureau, United States Deparment of Commerce Washington, D.C., 1963.

National Academies of Sciences, Engineering, and Medicine: Modernizing Probable Maximum Precipitation estimation, Washington D.C.,450

the national academies press edn., https://doi.org/10.17226/27460, 2024.

Naveau, P., Huser, R., Ribereau, P., and Hannart, A.: Modeling jointly low, moderate, and heavy rainfall intensities without a threshold

selection, Water Resources Research, 52, 2753–2769, 2016.

Papalexiou, S. M. and Koutsoyiannis, D.: Battle of extreme value distributions: A global survey on extreme daily rainfall, Water Resources

Research, 49, 187–201, 2013.455

Rouhani, H. and Leconte, R.: A novel method to estimate the maximization ratio of the Probable Maximum Precipitation (PMP) using

regional climate model output, Water Resources Research, 52, 7347–7365, https://doi.org/10.1002/2016WR018603, 2016.

Rouhani, H. and Leconte, R.: A methodological framework to assess PMP and PMF in snow-dominated watersheds under

changing climate conditions – A case study of three watersheds in Québec (Canada), Journal of Hydrology, 561, 796–809,

https://doi.org/10.1016/j.jhydrol.2018.04.047, 2018.460

Rouhani, H. and Leconte, R.: Uncertainties of precipitable water calculations for PMP estimates in current and future climates, Journal of

Hydrologic Engineering, 25, 04019 066, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001877, 2020.

Rousseau, A. N., Klein, I. M., Freudiger, D., Gagnon, P., Frigon, A., and Ratté-Fortin, C.: Development of a methodology to evaluate probable

maximum precipitation (PMP) under changing climate conditions: Application to southern Quebec, Canada, Journal of Hydrology, 519,

3094–3109, https://doi.org/10.1016/j.jhydrol.2014.10.053, 2014.465

Sarkar, S. and Maity, R.: Increase in probable maximum precipitation in a changing climate over India, Journal of Hydrology, 585, 124 806,

https://doi.org/10.1016/j.jhydrol.2020.124806, 2020.

Schreiner, L.-C. and Riedel, J. T.: Probable maximum precipitation estimates, United States east of the 105th meridian, Tech. Rep. 51, United

States, Office of Hydrology., Hydrometeorological Branch,;United States, Army., Corps of Engineers, Washington D.C., 1978.

United States Weather Bureau: Generalized estimates of probable maximum precipitation for the United States west of the 105th meridian470

for areas to 400 squares miles and durations to 24 hours, Technical paper 38, Weather Bureau, United States Deparment of Commerce

Washington, D.C., 1960.

Visser, J. B., Kim, S., Wasko, C., Nathan, R., and Sharma, A.: The impact of climate change on operational probable maximum precipitation

estimates, Water Resources Research, 58, e2022WR032 247, https://doi.org/10.1029/2022WR032247, 2022.

Viswanadham, Y.: The relationship between total precipitable water and surface dew point, Journal of Applied Meteorology and Climatology,475

20, 3–8, https://doi.org/10.1175/1520-0450(1981)020<0003:TRBTPW>2.0.CO;2, 1981.

Wang, J. Z.: A note on estimation in the four-parameter Beta distribution, Communications in Statistics – Simulation and Computation, 34,

495–501, 2005.

WMO: Manual on estimation of Probable Maximum Precipitation (PMP), World Meteorological Organization (WMO), Geneva, 2009.

20

https://doi.org/10.5194/egusphere-2024-2594
Preprint. Discussion started: 22 August 2024
c© Author(s) 2024. CC BY 4.0 License.


