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Abstract.

Civil engineers design infrastructure exposed to hydrometeorological hazards, such as hydroelectric dams, using proba-

ble maximum precipitation (PMP) estimates. The World Meteorological Organization (WMO) defines PMP as the maximum

amount of water that can physically accumulate over a given time period and region, depending on the season and without

considering long-term climate trends. Current PMP estimation methods have several flaws: some required variables are not5

directly observable and rely on a series of approximations; uncertainty is not always accounted for and can be complex to

quantify; climate change, which exacerbates extreme precipitation events, is difficult to incorporate; and subjective choices

increase estimation variability. In this paper, we derive a statistical model from the WMO’s PMP definition and use it for

estimation. This novel approach leverages the Pearson Type I distribution, a generalization of the Beta distribution over an

arbitrary interval, allowing for uncertainty quantification and the incorporation of climate change effects. Several estimation10

procedures are considered, including the method of moments, maximum likelihood, and Bayesian estimation. However, statis-

tical PMP estimation remains challenging because a short-tailed model is applied to typically heavy-tailed precipitation data.

The performance of the proposed approach is assessed through a simulation study and applied to actual precipitation data from

two nearby stations in Canada. Finally, we provide and discuss recommendations for best practices in PMP estimation.

1 Introduction15

1.1 Context

Dams play a crucial role in regulating streamflow and generating hydroelectricity, providing essential water management

and renewable energy resources. Over-sizing these infrastructures during construction or renovation can lead to unnecessary

costs. Conversely, under-sizing them can pose risks to dam safety, the environment, and surrounding populations, and may

result in excessive costs. In the province of Québec (Canada) alone, there are over 6,000 dams over one meter in height20

spread across the region (CEHQ, 2023). According to regulations derived from the Dam Safety Act, civil engineers must

design these structures using an estimation of the local extreme flood conditions. Depending on the risk in case of breakage,

various flood estimations are used, such as the millennial, decamillennial, or probable maximum flood (PMF). The latter is

the greatest theoretically possible flood on a specific watershed and is computed based, among other factors, on the probable

maximum precipitation (PMP). According to the World Meteorological Organization (WMO, 2009), the PMP corresponds25
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to the maximum precipitation accumulation over a fixed duration in a given region. Several PMP estimation techniques have

been developed, including moisture maximization, the empirical Hershfield approach, and approaches based on extreme value

theory. In general, PMP estimation is challenging and sensitive to the data. On the one hand, uncertainty and climate change

effects are difficult to incorporate into non-statistical methods, and commonly used moisture maximization approaches involve

several subjective judgments. On the other hand, statistical PMP estimation is challenging because its definition assumes a30

bounded tail, whereas precipitation data suggests an unbounded tail (see, e.g., Martins and Stedinger, 2000). The following

sections summarize the different approaches to PMP estimation.

1.2 Estimation based on moisture maximization

In its 2009 manual, the WMO details several PMP estimation approaches, with hydrometeorological methods combining algo-

rithms of storm selection, transposition, and maximization being the most popular in Canada. In regions where snow cover is35

important enough for the PMF to result from a combination of the PMP and snowmelt, the WMO typically recommends esti-

mating both spring and summer-fall PMPs. Regarding storm selection, some authors use all rain events where the precipitation

height exceeds a given threshold (Beauchamp et al., 2013), while others utilize all observed precipitation data over a given

period (Ben Alaya et al., 2018). This selection process is usually carried out by meteorologists and depends on physical factors

(CEHQ and SNC-Lavalin, 2004; DTN and MGS Engineering, 2020; Environmental Water Resources Group Ltd., 2020). Since40

the number of selected storms is small and varies from one calculation to another and among different meteorologists, this

selection process introduces significant variability in the estimation of the PMP.

To increase the number of storms used in PMP estimation, a common practice is to include storms from neighboring areas

that are likely to also affect the region of interest. Over the past decades, meteorologists have developed various techniques

considering the orography and other features of the areas to realistically transpose storms (WMO, 2009). This storm transpo-45

sition can be incorporated into the storm selection process of PMP estimation methods. While it increases the sample size for

PMP estimation, it also introduces additional sources of variability and subjectivity.

The moisture maximization approach estimates the PMP using the relationship between the amount of precipitation and the

humidity of the air. Let Yi be the precipitation of storm 1≤ i≤ n among the n selected storms. The PMP estimation is based

on moisture maximization (WMO, 2009) as follows:50

PMP = max
i∈{1,...,n}

{
Yi×

PWmax

PW i

}
; (1)

where PWi corresponds to the precipitable water of storm i, and PWmax to the maximum precipitable water. The quantity

Yi× PWmax

PWi
is often referred to as the maximized precipitation of event i if the maximal precipitable water were available at

the moment of the storm. The PMP then corresponds to the maximum of the maximized precipitation. The ratio PWmax

PWi
is

referred to as the maximization ratio and is sometimes arbitrarily set to a numerical value between 1.5 and 2.5 to avoid the55

overestimation of the PMP (Schreiner and Riedel, 1978; Hansen, 1988; WMO, 2009; Beauchamp et al., 2013). The use of this

threshold is subjective and lacks physical or mathematical justification (Rouhani and Leconte, 2016).

2



The moisture maximization expressed in Eq. (1) can also be rewritten as follows, given a slightly different interpretation:

PMP = max
i∈{1,...,n}

{
Yi
PWi

×PWmax

}
. (2)

In this last expression, the ratio Yi
PWi

corresponds to the ratio of precipitation to precipitable water and is referred to as the60

precipitation efficiency of storm i. The PMP occurs when the maximum precipitation efficiency coincides with the maximum

precipitable water. Ben Alaya et al. (2018) utilize this definition to model the dependence between extreme values of precip-

itation efficiency and precipitable water. They demonstrate that the comonotonicity imposed by Eq. 2 leads to overestimation

of the PMP in North America.

In practice, the precipitable water PWi at the moment of storm i and the maximum amount of precipitation for the considered65

region, PWmax, are unknown and must be estimated for using the moisture maximization approach. The amount of precipitable

water can be estimated using the specific humidity of the air column above the area (WMO, 2009). However, for the majority

of meteorological stations, specific humidity is neither observed nor recorded. The recommended estimation of precipitable

water by the WMO (2009) uses the dew point, which is usually recorded, and requires pseudo-adiabatic conditions (United

States Weather Bureau, 1960; Miller, 1963). Viswanadham (1981) observed that the relation between surface dew point and70

precipitable water is greater when the latitude is over 25° than in lower latitude zones. A study conducted by Chen and

Bradley (2006) in the Chicago region indicates that the pseudo-adiabatic conditions hypothesis could lead to overestimation of

precipitable water, and Rouhani and Leconte (2020) noted that PMP estimates vary greatly depending on how the precipitable

water was approximated. The uncertainty of these estimations is often neglected in PMP estimation. It is not uncommon for

the uncertainty of PWi to lead to a precipitation efficiency larger than 1, which is physically impossible.75

1.3 Estimation based on Hershfield’s empirical approach

The Hershfield empirical method (Hershfield, 1961a, b, 1965) is an alternative to moisture maximization for PMP estimation.

The method relies on a series of m precipitation annual maxima. The PMP estimates is as follows:

PMP = x̄+Ks (3)

where x̄ and s correspond respectively to the mean and the standard deviation of the series of annual maxima andK corresponds80

to the frequency factor for estimating PMP at that location. Hershfield (1961a) proposed a method to estimate this factor. This

approach is widely employed for its simplicity and ease of use but can only estimate PMP over smaller watersheds (WMO,

2009). It also has the advantage of not requiring additional hydrometeorological data such as specific humidity or dew point.

Only precipitation series from which annual maxima are extracted are required.

This method is often classified as a statistical technique, but in this paper, it is considered empirical due to the nature of the85

link between the PMP and the sample moments. It should be noted that the PMP durations considered by Hershfield (1965)

and available in WMO (2009) are all less than or equal to 24 hours, which is inadequate for calculating longer-duration PMP.
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1.4 Estimation based on Extreme value theory

The relevance of the Hershfield procedure can also be questioned. Eq. 3 defines the PMP as an extreme quantile of the distribu-

tion, estimated using only the mean and standard deviation. This approach relies on the bulk of the distribution to extrapolate90

into the tail, which is inherently hazardous. Extreme value theory (EVT, see e.g. Coles, 2001) is a branch of statistics that fo-

cuses on extreme values. It provides asymptotic parametric distributions (the Generalized Extreme value and the Generalized

Pareto distributions) and rigorous frameworks (block maxima and peaks-over-threshold) for extrapolating beyond the range of

observations.

As a statistical approach, it is easier to incorporate non-stationarity induced by climate change and to provide uncertainty in95

the estimates. However, extreme value analysis suggests that the precipitation distribution is unbounded, which is inconsistent

with the PMP definition. To reconcile the PMP definition with extreme value theory, some authors propose using a very

large return period as the PMP estimate. For example, Koutsoyiannis (1999) shows that PMP estimates obtained through the

Hershfield method correspond, on average, to return periods of 60,000 years when estimated using EVT. National Academies

of Sciences, Engineering, and Medicine (2024) also suggest using a quantile of an extreme-value distribution corresponding to100

an extremely low annual probability of being exceeded.

1.5 Estimation using simulated data

The methods of estimation of the PMP presented by the WMO (2009) only consider precipitation data observed at hydrome-

teorological stations. Methodologies adapted for regional simulations have been developed for regions in Canada (Beauchamp

et al., 2013; Rousseau et al., 2014; Clavet-Gaumont et al., 2017; Rouhani and Leconte, 2018, 2020), North America (Kunkel105

et al., 2013; Ben Alaya et al., 2018, 2020a, b) and other parts of the world (Sarkar and Maity, 2020; Visser et al., 2022).

The use of these climate simulations not only allows for the consideration of a greater number of extreme rainfall events but

also enables the estimation of futures PMP. Indeed, the WMO (2009) defines the PMP as stationary values and CC isn’t taken

into account in the calculations. However, it is widely acknowledged that CC has a direct impact on extreme precipitation events

and should therefore be considered in their estimation. Using projected climate simulations, Kunkel et al. (2013) demonstrate110

a global increase of water vapor concentration in the atmosphere, without a sufficient evolution in values of upward vertical

motion or horizontal wind speed, factors that could counterbalance the rise in air humidity. This increase implies larger future

values of PWmax, and consequently, an increase in PMP. Several papers conclude that PMP will generally increase in future

climate (Beauchamp et al., 2013; Rousseau et al., 2014; Clavet-Gaumont et al., 2017; Rouhani and Leconte, 2018, 2020;

Ben Alaya et al., 2018, 2020a, b; Sarkar and Maity, 2020; Visser et al., 2022).115

1.6 Objectives of the paper

PMP estimations using the non-statistical approaches described in the previous sections are highly sensitive to arbitrary choices

and are generally provided without accounting for uncertainty. Statistical approaches, on the other hand, facilitate the inclu-

sion of non-stationarity and the quantification of uncertainty. However, reconciling the PMP definition as the upper bound of
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Montréal St-Hubert

Period 1953–2024 1949–2024

Number of days with precipitation 5321 5303

Mean of non-zero precipitation 6.9 mm 7.4 mm

Maximum precipitation 81.9 mm 106.5 mm

Mean of precipitation annual maxima 44.9 mm 49.9 mm

Standard deviation of precipitation annual maxima 14.3 mm 18.0 mm

Series autocorrelation (lag of one day) 0.0092 0.0095

Table 1. Summer (May to October) daily precipitation statistics for the Montréal and St-Hubert stations.

an unbounded distribution remains particularly challenging. The objective of this paper is to develop a statistical model for120

PMP estimation based on the WMO definition, which assumes an upper bound. As a statistical approach, it offers two key

advantages: (1) uncertainty is quantifiable, and (2) most subjective choices are eliminated, enhancing the reproducibility of the

estimation.

The remainder of the paper is organized as follows: Section 2 describes the data used for the proposed method and the

current PMP estimations at the selected locations. Section 3 presents the proposed statistical model for estimating the PMP,125

and Section 4 provides a simulation study to assess the model’s performance in PMP estimation. The PMP estimations for

real datasets are presented and discussed in Section 5. Our recommendation on PMP estimation is provided in Section 6, and

Section 7 concludes the paper. The data and code for reproducing all figures and results are available at the following public

repository: https://github.com/JuliaExtremes/PMP.jl.

2 Data130

2.1 Observations

The proposed method for estimating the PMP is demonstrated using data from two meteorological stations in Québec, Canada,

located 26 km apart: the Montréal Pierre-Elliott-Trudeau International Airport station (1953–2024) and the St-Hubert Airport

station (1949–2024). The data are available from the Environment and Climate Change Canada (ECCC) website. Daily pre-

cipitation (in mm) and dew point (in Celsius) were extracted from May 1 to October 31 each year to focus on liquid rainfall135

and minimize the effect of seasonality. While it may still be present, it appears negligible compared to the natural variability of

precipitation and precipitable water, as illustrated in Figure 1 for the Montréal data. Descriptive statistics of recorded precip-

itation at these two stations are provided in Table 1. Figure 2 shows the histogram of non-zero daily rainfall for each station.

Typically, for precipitation at the considered locations, autocorrelation exists in daily non-zero series but is very weak (0.0092

for Montréal and 0.0095 for St-Hubert) and short-range.140
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Figure 1. Time series of (a) daily precipitation and (b) precipitable water for the top 10% of storms recorded at the Montréal station.
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Figure 2. Histogram of the non-zero summer precipitation in mm for (a) Montréal (QC) and (b) St-Hubert (QC).
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Approach Montréal St-Hubert

Moisture maximization 282 mm 436 mm

Hershfield methods using K = 15 261 mm 322 mm

Extreme value analysis 185 mm 200 mm

Table 2. Estimated PMP at Montréal and St-Hubert using the standard approaches.

2.2 PMP estimates

As a point of comparison, summer–fall PMP estimates for both stations are calculated using the moisture maximization method,

Hershfield’s approach, and the 60,000-year return level estimated with EVT. For the moisture maximization method, daily

precipitation amounts from the top 10% of storms for each year are selected, as proposed by Clavet-Gaumont et al. (2017).

A sensitivity analysis was performed on the storm selection percentage (10%, 1%, or 0.1%), but the PMP estimates remained145

unchanged because the maximized events were the same for both locations. Since precipitable water was not directly observed,

it was estimated using the dew point over twelve hours, as described by WMO (2009), which may have affected the quality

of the PMP estimates. The corresponding PMP estimates for both stations are provided in Table 2. The PMP estimates are

282 mm and 436 mm for Montréal and St-Hubert, respectively, corresponding to maximization ratios of 4.4 and 4.9. Some

authors suggest limiting this ratio to a value between 1.5 and 2.5 to constrain PMP estimation. Setting the maximization ratio150

to 2.0 would yield PMP estimates of 128 mm and 178 mm for Montreal and St-Hubert. While this would improve the moisture

maximization results, it merely conceals the methodology’s flaws, particularly its high variability, rather than addressing them.

Note that for this approach, it is also possible to estimate the PMP using the 100-year return level of precipitable water

instead of the sample maxima (e.g. Ben Alaya et al., 2018), but with our data, the estimated PMP values were similar: 284 mm

and 427 mm for Montréal and St-Hubert, respectively.155

For the Hershfield’s approach, the frequency factor of K = 15 is employed as proposed by Hershfield (1961a). The ad-

justment based on the number of data points, as suggested by WMO (2009), is unnecessary. Hershfield’s PMP estimates are

261 mm for Montréal and 322 mm for St-Hubert, and are also provided in Table 2.

The 60,000-year return level was estimated using the Peaks-Over-Threshold model (see, e.g., Coles, 2001; Davison and

Smith, 1990). The estimated return levels are 185 mm and 200 mm for the Montréal and St-Hubert data respectively.160

3 Methodology

In this section, a statistical model is developed for PMP estimation based on the definition expressed in Eq. (1). Statistical

inference methods for this proposed model are also described.
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3.1 Statistical model

Starting with the principles underlying moisture maximization (WMO, 2009), we develop a sensible statistical model that165

assumes an upper bound for precipitation. From Eq. (1), let Ỹi denote the maximized daily precipitation on day i:

Ỹi =
Yi
PW i

×PWmax. (4)

Factoring for the actual precipitation of day i gives the following expression:

Yi =
PW i

PWmax
× Ỹi, (5)

where PWmax is the maximum of precipitable water. Hence, 0< PWi

PWmax
≤ 1. Since the PMP corresponds to the maximum170

of the maximized precipitations Ỹi, the maximized precipitation can be viewed as a fraction of the PMP, i.e., Ỹi = riPMP ,

where 0< ri ≤ 1. It is then possible to express the actual daily precipitation as follows:

Yi =
PW i

PWmax
× riPMP . (6)

The ratio PWi

PWmax
×ri lies in (0,1] since each of the multiplicative factors is within (0,1]. This ratio can naturally be modeled

using the Beta distribution, a flexible distribution for a random variable taking values in the unit interval. Actual precipitation175

Yi, which corresponds to this ratio multiplied by the PMP, can be modeled using the Beta distribution rescaled to the interval

(0,PMP ). The Beta distribution on the interval (a,b) for a < b is referred to as the Pearson Type I distribution (Johnson et al.,

1995, Chap. 24).

Therefore, we propose to model the actual precipitation of day i with the Pearson Type I distribution as follows:

Yi ∼ PearsonType1(0,ψ,α,β); (7)180

where the Beta parameters α > 0 and β > 0 govern the ratio PW i

PWmax
× ri and where ψ > 0 corresponds to the PMP. The lower

bound is set at 0 because only non-zero precipitation events are considered. When 0< α < 1 and β ≥ 1, the Pearson Type I

density is monotonically decreasing and convex, resembling the precipitation histogram shown in Figure 2. With this proposed

statistical model, the PMP constitutes a distribution parameter to be estimated with the data. Uncertainty can then be provided

using the usual statistical methods, as described in the next section.185

3.2 Parameter estimation

Three methods are considered for estimating the parameters of the proposed model: the method of moments, maximum likeli-

hood estimation, and the Bayesian method.
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3.2.1 Method of moments

The first four central moments, namely the mean m, the variance v, the skewness s, and the kurtosis k, of the Pearson Type I190

distribution PearsonTypeI(0,ψ,α,β) are given by the following expressions (adapted from Johnson et al., 1995, Chap. 24):

m=
αψ

α+β
; (8)

v =
αβψ2

(α+β)2(α+β+1)
; (9)

s=
2(β−α)

√
α+β+1

(α+β+2)
√
αβ

; (10)

k =
6(α3 −α2(2β− 1)+β2(β+1)− 2αβ(β+2)

αβ(α+β+2)(α+β+3)
+3. (11)195

The skewness and kurtosis depend only on the shape parameters α and β, and not on the upper bound ψ. It is possible to invert

these equations to factorize for the distribution parameters (adapted from Johnson et al., 1995, Chap. 24):

α=−
s(k+3)+

(
−s(k+3)−

√
s2(k+3)2−4(2k−3s2−6)(4k−3s2)

2(2k−3s2−6)

)
(10k− 12s2 − 18)√

(s(k+3))2 − 4(2k− 3s2 − 6)(4k− 3s2)
+ 1; (12)

β =−
s(k+3)−

(
−s(k+3)+

√
s2(k+3)2−4(2k−3s2−6)(4k−3s2)

2(2k−3s2−6)

)
(10k− 12s2 − 18)√

(s(k+3))2 − 4(2k− 3s2 − 6)(4k− 3s2)
+ 1; (13)

ψ = a+
√
v

(√
s2(k+3)2 − 4(2k− 3s2 − 6)(4k− 3s2)

(2k− 3s2 − 6)

)
. (14)200

To estimate the parameters of the Pearson Type I distribution using the method of moments from a random sample, the

empirical moments of the sample–sample mean, sample variance, sample skewness, and sample kurtosis– are plugged into

Eqs. (12)–(14) to obtain the parameter estimates. The uncertainty of the parameter estimates can be assessed through non-

parametric bootstrap (Efron, 1979).

3.2.2 Maximum likelihood205

The density of precipitation Yi distributed as the PearsonType1(0,ψ,α,β) is given as follows (Johnson et al., 1995):

f(Yi|ψ,α,β)(yi) =
Γ(α+β)

Γ(α)Γ(β)

(yi)
α−1(ψ− yi)

β−1

ψα+β−1
, 0< yi < ψ. (15)

Assuming that the n non-zero daily summer precipitation are independent, the likelihood can be written as follows:

f(Y |ψ,α,β)(y) =

n∏
i=1

f(Yi|ψ,α,β)(yi), (16)

where Y = (Yi, . . . ,Yn) denotes the vector of the n non-zero precipitations.210
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Maximizing the likelihood expressed in Eq. (16) is a non-regular problem (Wang, 2005). When β > 1, a local maximum

exists, allowing parameter estimates to be obtained. Additionally, parameter uncertainty can be estimated using the Fisher

information matrix. However, when β ≤ 1, no local maximum exists, causing the estimation procedure to fail. Several solutions

have been proposed for this issue, but they are not relevant to the present paper since, for precipitation, the parameter β is

expected to be greater than 1, as precipitation density is monotonically decreasing.215

The Pearson Type I distribution is continuous, as expressed in Eq. (15). However, precipitation measurements are discrete.

For our data, the precipitation measurement resolution is 0.1 mm, and no precipitation less than 0.2 mm can be measured.

This discretization of precipitation measurements has a larger impact on small amounts. Discrepancies appear between the

continuous distribution and the discrete measurements, which places mass on points of measurement. One approach to tackle

this problem if needed is to censor the likelihood function for small precipitation amounts below a given threshold u > 0 (e.g.,220

Naveau et al., 2016) as follows:

f c(Y |ψ,α,β)(y) =
∏

{i:yi≤u}

I u
ψ
(α,β)

∏
{i:yi>u}

Γ(α+β)

Γ(α)Γ(β)

(yi)
α−1(ψ− yi)

β−1

ψα+β−1
, (17)

where Iy(α,β) denotes the regularized incomplete beta function of parameter (α,β) evaluated at y. Precipitation smaller than

u still counts in the likelihood, but their actual values are not considered. Parameter estimates can be obtained by using this

censored likelihood.225

Another approach would be to set the lower bound of the Pearson Type I distribution to (0.2− ϵ) where ϵ > 0. This would

maintain some mass at the measurement points but could sufficiently de-emphasize the issue, allowing the continuous like-

lihood to serve as a good approximation of the discrete measurements. One of these methods could be used if parameter

estimation by maximum likelihood is affected by the discretization of precipitation measurements.

However, in our framework, approximating discrete precipitation measurements with a continuous model does not affect the230

fit. Therefore, we did not use either of the two methods.

3.2.3 Bayesian method

Estimation of the Pearson Type I distribution can also be performed under the Bayesian paradigm. The benefit of using the

Bayesian method lies in its ability to describe uncertainty. Unlike the non-parametric bootstrap and the asymptotic Gaussian

convergence of maximum likelihood estimates, Bayesian inference directly provides parameter uncertainty based on the data235

at hand, without relying on asymptotic arguments.

Bayesian methods require a prior distribution for the model parameters. For the Pearson Type I distribution expressed in

Eqs. (15) and (16), an improper non-informative prior distribution for the upper bound ψ > 0 and the shape parameters α > 0

and β > 0 can be defined as follows:

f(ψ,α,β)(ψ,α,β)∝
1

ψ

1

α

1

β
for ψ > 0, α > 0 and β > 0. (18)240

The same prior distribution can be used with the censored likelihood expressed in Eq. (17) or with a positive lower bound.
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If prior information on the upper bound (the PMP) is available, an improper semi-informative prior can be used as follows:

f(ψ,α,β)(ψ,α,β)∝ fψ(ψ)
1

α

1

β
for α > 0 and β > 0, (19)

where the prior information on ψ is modelled with the proper density fψ . If β ≤ 1, the problem is non-regular and the infor-

mative prior proposed by Hall and Wang (2005) can be used to solve this issue.245

The posterior distribution of the parameters is not available in analytical form for either of the proposed prior distributions.

A sample from the posterior distribution can be obtained, for example, using a Gibbs sampling scheme, and inference can be

performed using the generated sample.

3.3 Identifiability issues

When 0< α < 1 and β ≥ 1, i.e., when the density is convex, non-identifiability issue occurs between β and ψ. Indeed, these pa-250

rameters can compensate for each other. For example, letZ1 ∼ PearsonType1
(
10, 1

10 ,
99
10

)
andZ2 ∼ PearsonType1

(
100, 1

10 ,
999
10

)
be two random variables with very different upper bounds–10 for Z1 and 100 for Z2–but whose moments are similar, as shown

in Table 3. Both variables have the same mean and approximately the same variance. Although there are slight differences

in skewness and kurtosis, these differences are not large enough to overcome the sampling uncertainty of these higher-order

moments estimates.255

Variable mean variance skewness kurtosis

Z1 0.1 0.09 5.44 40.58

Z2 0.1 0.10 6.22 57.45

Table 3. Moments for the variables Z1 and Z2.

This non-identifiability issue is even more critical for parameter estimation using the model likelihood (both maximum like-

lihood and Bayesian methods). For example, consider the variable Z1 again and generate a large random sample of size 5000.

The log-likelihood of the model evaluated at the true parameter vector
(
10, 1

10 ,
99
10

)
is 35678.3. The log-likelihood evaluated at

another parameter vector
(
100, 1

10 ,
999
10

)
is 35678.0, which is practically the same, even though the parameters are quite differ-

ent. The impact of this non-identifiability issue is assessed for parameter estimation with the method of moments, maximum260

likelihood, and Bayesian method with a simulation study provided in the following section.

4 Simulation study

In this section, a simulation study is conducted to assess the performance of parameter estimation methods for two different

distribution behaviors: concave and convex density. The Pearson Type I distribution with parameters (0,50,2,2) is used for the

concave distribution, while the Pearson Type I distribution with parameters (0,50, 1
10 ,6) is used for the convex distribution.265
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Figure 3. Mean and 95% empirical confidence interval for the ψ estimates of the 100 samples of the PearsonType1(0,50,2,2) distribution

obtained with (a) the method of moments, (b) the maximum likelihood and (c) the Bayesian methods using Gibbs sampling.

For each of these distributions, 100 random samples of various sizes were generated, and parameter estimation was performed

on each sample.

4.1 Pearson Type I with concave density

For each of the 100 random samples, with sizes ranging from 100 to 8000, parameters were estimated using the method of

moments, maximum likelihood, and Bayesian methods. Figure 3 displays the mean of the 100 parameter estimates for the270

upper bound ψ as a function of the sample size, as well as the 95% empirical confidence interval. For the Bayesian method,

both a Gibbs sampling scheme and the No-U-Turn Sampler (NUTS) algorithm were implemented, yielding similar results.

The three estimation procedures perform very well in estimating the upper bound, which is the parameter of interest in this

paper. The mean estimate hovers around the true value of 50, and the confidence intervals include the true value. Estimation

remains accurate even for relatively small sample sizes of 2000, which corresponds to approximately 20 years of precipitation275

data. However, the methods based on likelihood yield more precise results than the method of moments.

4.2 Pearson Type I with convex density

Figure 2 shows the mean and the 95% empirical confidence intervals for the samples generated from the Pearson Type I

distribution with a convex density. For the method of moments, the estimation of the upper bound is close to the true value of

50. The confidence intervals, wider compared to those associated with the concave density, include the true value. However,280

estimation variability is very large. It is very sensitive to the sample. For example, for moderate sample sizes around 4000, the
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Figure 4. Mean and 95% empirical confidence interval for the ψ estimates of the 100 samples of the PearsonType1(0,50,1/10,6) distri-

bution obtained with (a) the method of moments, (b) the maximum likelihood and (c) the Bayesian methods using Gibbs sampling.

upper bound estimate average is around 50, but for some samples, the estimate exceeds 100, which is two times larger than the

true value. For other samples, the estimate is smaller than 25, which is half the true value.

Upper bound estimates using the maximum likelihood and Bayesian methods are not useful, as shown in Figure 2. The non-

identifiability issue arises because the shape parameter β compensates for the larger upper bound. While an informative prior285

for the upper bound could be introduced to control this issue, it would need to be highly informative. However, this approach

was not pursued because using such a restrictive prior defeats the purpose of removing subjectivity in PMP estimation.

The sensitivity to the sample and the non-identifiability issue are resolved with very large sample sizes as shown in Figure 5.

The estimates are well stabilize around a sample size of 40,000. For precipitation in Canada, it corresponds to approximately

400 years of data.290

4.3 Key findings from the simulation study

For the Pearson Type I distribution with a concave density, parameter estimates are precise with all three estimation methods

considered. For a convex density, the non-identifiability issue in the likelihood is too severe to obtain usable upper bound

estimates for common sample sizes using the maximum likelihood and Bayesian methods. However, these two methods could

be used with very large sample sizes.295

Although the method of moments is sensitive to the data, it provides realistic estimates of the upper bound, even for common

sample sizes. This method should be favored for parameter estimation of non-concave Pearson Type I distributions.
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Figure 5. Mean and 95% empirical confidence interval for the ψ estimates of the 100 very large samples of the

PearsonType1(0,50,1/10,6) distribution obtained with (a) the method of moments, (b) the maximum likelihood and (c) the Bayesian

methods using Gibbs sampling.

5 Probable maximum precipitation estimation

The Pearson Type I distribution is fitted to the non-zero precipitation data recorded at Montréal and St-Hubert, with the upper

bound estimate assumed to represent the PMP. As shown in Figure 2, the non-zero precipitation density appears to be convex,300

so the model is fitted using the method of moments.

5.1 PMP estimation for Montréal

The Pearson Type I distribution has been fitted to the 5321 non-zero daily summer precipitation with the method of moments.

The parameter estimates are as follows:

ψ̂ = 270.0 (141.6 , 938.9)305

α̂= 0.4577 (0.3881 , 0.5349)

β̂ = 18.81 (9.014 , 71.99)

The values in parentheses correspond to the 95% confidence intervals estimated by non-parametric bootstrap using 10,000

samples. Figure 6 shows the upper bound estimate for each bootstrap sample. The uncertainties of the second shape parameter

β and the upper bound ψ are very large, which is expected given the simulation study results for a convex density. Note that310

using the maximum likelihood and Bayesian methods does not yield valid estimates due to identifiability issues.
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Figure 6. PMP estimates (in mm) obtained by non-parametric bootstrap at Montréal (QC) and St-Hubert (QC).

Figure 7a shows the Pearson Type I distribution fitted to the Montréal data. The model fits the data very well. The PMP

estimate obtained from the fitted Pearson Type I distribution is consistent with the estimate derived using the moisture maxi-

mization method based on Eq. (1). The former estimates the PMP at 270 mm, while the latter estimates it at 284 mm. Unlike

the proposed method, the moisture maximization method does not provide an uncertainty estimation.315
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Figure 7. QQ-plots of the fitted Pearson Type I model for (a) the Montréal data and (b) the St-Hubert data.
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5.2 PMP estimation for St-Hubert

For St-Hubert, the Pearson Type I distribution has been fitted to the 5303 non-zero daily summer precipitation events, and the

parameter estimates obtained with the method of moments are as follows:

ψ̂ = 416.5 (165.0 , 9006)

α̂= 1.463 (0.4381 , 1.566)320

β̂ = 34.75 (15.98 , 645.9)

where the values in parentheses correspond to the 95% confidence intervals estimated by non-parametric bootstrap using

10,000 samples. Uncertainties in the upper bound and the second shape parameter are exceedingly high, indicating that the

non-identifiability issue is more pronounced for these data. Figure 6 shows the upper bound estimates for each bootstrap

sample.325

Figure 7b shows that the model does not fit the St-Hubert data well. The PMP estimate given by the fitted Pearson Type

I distribution (417 mm) is consistent with the estimate obtained using the moisture maximization method (436 mm). This

highlights the importance of using a statistical method, which allows for an assessment of estimation quality.

As with the Montréal data, maximum likelihood and Bayesian methods do not yield valid parameter estimates. It should be

noted that the estimate for the first shape parameter α with the method of moments is larger than 1, which is inconsistent with330

the convex form of the distribution. However, the confidence interval includes values smaller than 1.

6 Discussion

6.1 Pros and cons of the proposed approach

The proposed statistical approach to estimate the PMP translates the usual definition of the PMP into a statistical distribution

for the recorded precipitation. The PMP constitutes one of the three parameters, and the remaining two concern the shape of the335

distribution. By estimating the parameters using standard statistical approaches, such as the moment, maximum likelihood, and

Bayesian methods, it is possible to adequately describe the uncertainty, particularly for the PMP parameter. Additionally, the

proposed approach uses all the precipitation recorded at the station rather than only a subset from the stations and neighbouring

stations. This reduces the subjectivity present in standard approaches.

The major drawback of the proposed approach lies in the non-identifiability issue when the data distribution is convex, as340

is the case for precipitation. Maximum likelihood and Bayesian methods become very unstable, and this issue also affects

the method of moments, although to a lesser extent. Regularized maximum likelihood or informative priors could be used to

address the non-identifiability, but the constraints that have to be added to control it are quite narrow. We felt that this added

too much subjectivity to the proposed approach and that it would lose its benefits compared to the standard PMP estimation

approaches.345
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In the simulation study, it is shown that the non-identifiability issue vanished with very large sample sizes. Figure 5b shows

that the maximum likelihood estimation is stable from a sample size of 45,000. If we consider that 100 storms occurs during

a year, such sample size would correspond to 450 years of observation. Of course, no meteorological record is that long,

but it could be possible to have such a sample size of synthetic storms generated with a storm generator. However, such

data augmentation should be carefully implemented to avoid overconfidence. For instance, if 40,000 daily precipitation data350

points generated from a weather generator are used to estimate the model, do these 40,000 data points contain 400 times more

information than a actual recorded series of size 100? At this point, this is beyond the scope of the present paper, but it could

be an interesting avenue for future investigation.

Another alternative to increase the sample size would be to include information from nearby stations. This could be achieved

within the Bayesian framework described in Section 3.2.3 by replacing the parameter prior distribution with a spatial prior.355

However, the dependence between stations would need to be modeled in the likelihood, as a single storm can generate precipi-

tation across multiple stations. Accounting for this dependence would decrease the effective sample size of the pooled stations,

and we believe that this effective sample size might not reach the level where the estimates are stable. However, we could be

wrong.

PMP estimation, whether with the proposed method in this paper or with more standard approaches, is very sensitive to360

the data due to non-identifiability. For the two nearby meteorological stations considered, i.e., the Montréal Pierre-Elliott-

Trudeau International Airport and the St-Hubert Airport stations located 26 km apart, the PMP estimates are very different.

However, these two stations do not experience significantly different climates and storms. Furthermore, in several estimates

provided by engineering consulting firms, storms from even more distant stations are combined to estimate the PMP, a practice

known as storm transposition. Moreover, the extreme-value analysis of the precipitation at these two stations, presented later365

in Section 6.2, yields consistent return level estimates. Therefore, the difference in the PMP for these two stations is more a

numerical problem related to the PMP definition than a genuine difference in the PMP.

Another drawback is fitting the proposed short-tailed statistical model to heavy-tailed precipitation data as shown in the

following section. This inconsistency could explain why the model does not fit the St-Hubert data well, as shown in Figure 7b.

6.2 Comparison with extreme value analysis370

For the purpose of comparison, an extreme value analysis have been performed on the precipitation data of Montréal and

St-Hubert. The Peaks-Over-Threshold (POT, Davison and Smith, 1990) extreme-value model has been fitted by maximum

likelihood to the Montréal data, with the threshold of 30 mm chosen using the mean residual life plot method as described

by Coles (2001, Chap. 4). The estimated parameters of the generalized Pareto distribution modelling the excesses above the

threshold are as follows:375

σ̂ = 9.95 (7.96 , 12.45)

ξ̂ = 0.0421 (−0.1288 , 0.2131)
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Figure 8. Return level plot of the fitted Peaks-Over-Threshold model for (a) the Montréal data and (b) the St-Hubert data.

where the values in parentheses correspond to the 95% confidence intervals estimated using the Fisher information matrix. The

model fits the data very well, as shown by the return level plot in Figure 8a. Note that the shape parameter estimate is positive,

indicating an unbounded heavy-tailed distribution, which is typical for precipitation but inconsistent with the PMP existence380

assumption. Nevertheless, a short-tailed distribution cannot be excluded, as the shape parameter confidence interval includes

negative values. As an indication, the 10,000-year return level estimated with the POT model is 156 mm (58 mm, 255 mm),

and the PMP value of 270mm corresponds to a return period longer than 10 million years.

The POT model has also been fitted to the St-Hubert data. Parameter estimates are as follows:

σ̂ = 13.1594 (10.5917 , 16.3494)385

ξ̂ = 0.0259 (−0.1335 , 0.1854);

and Figure 8b shows the model fit to the data. Again, the model fits the data very well, and the shape estimate is posi-

tive, indicating a heavy-tailed distribution. Using the fitted POT model, the 10,000-year return level estimate is 170 mm

(80 mm, 259 mm), which is consistent with the corresponding estimate of 156 mm for Montréal, located 26 km apart. The

PMP estimate of 416mm corresponds to a return period longer than 1 billion years.390

6.3 Possible modifications of the statistical model

To reduce the impact of model non-identifiability, we also developed a new parametrization for the Pearson Type I distribution,

replacing the shape parameters with a location parameter µ > 0 and a concentration parameter ν > 0:

µ=
αψ

α+β
and ν = α+β.
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We therefore have α= µν
ψ and β = ν

ψ (ψ−µ). However, even with this parametrization, non-identifiability remained an issue395

for maximum likelihood and Bayesian inference.

Another approach to imposing a short-tailed model compliant with the PMP concept would be to consider the reverse-

Weibull distribution. The reverse-Weibull is obtained by imposing a negative shape parameter on an extreme value distribution.

While this choice results in a short-tailed distribution, it is difficult to justify this constraint beyond the fact that it produces

an upper bound. Moreover, we are concerned that using an extreme value distribution in an inappropriate context, such as by400

imposing a negative shape parameter when the data suggests a positive one, could give practitioners a false sense of security.

They might believe they are operating within the extreme value framework when they are not.

6.4 Non-stationarity

For the observed data considered, there is no evidence of a trend in either the precipitable water or precipitation, as shown in

Figure 1. Non-stationarity might be present in long series of simulated data from a climate model. In such cases, the proposed405

statistical model could easily be extended to account for non-stationarity, and also for seasonality if needed. Eq. 6 could be

generalized to incorporate seasonality and non-stationarity by allowing either or both the PMP and the shape parameters to

evolve over time. For example, precipitation Ytsi of year t, season s, and event i can be modeled as a function of the year and

the event i as follows:

Ytsi ∼ PearsonType1(0,ψts,αts,βts);410

where the year t and season s could serve as covariates.

6.5 Recommendations

Although translating the definition of the PMP into a statistical model is interesting, and despite the possibility of including non-

stationarity and estimating uncertainty, we do not recommend using the Pearson Type I distribution to estimate the PMP. The

non-identifiability makes the model too sensitive to the data, and the PMP estimate becomes too volatile. This problem is also415

present in the standard moisture maximization method. Therefore, we align with the conclusions of the National Academies of

Sciences, Engineering, and Medicine (2024), which recommends an extreme value analysis instead. Additionally, the extreme-

value theory allows for a genuine estimation of the uncertainty of extreme values, even when extrapolating to return periods

that exceed the range of the data. Furthermore, it is easily generalizable to non-stationary cases, allowing the integration of the

effects of climate change.420

More generally, the fact that PMP estimates using either moisture maximization, Hershfield’s method, or the Pearson Type

I method are so sensitive to the data is a critical concern from an engineering standpoint. Specifically, for the Pearson Type

I method with a convex density, depending on the data, the PMP estimate can range from half to more than twice the true

value. In the former case, using the estimate would result in under-dimensioning the infrastructure, putting the public at risk.

In the latter case, using it would result in over-dimensioning the infrastructure, thereby increasing costs and environmental425

impacts. Although uncertainty estimates are not available with the moisture maximization and Hershfield’s methods, the fact
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that the corresponding PMP estimates for Montréal and St-Hubert were so different is an important indication of the methods’

sensitivity.

In the case of this article, we have seen that the POT model fits the data from both stations very well and that the estimates of

the 60,000-year precipitation were consistent. Moreover, the extreme value analysis indicates an unbounded and heavy-tailed430

distribution of precipitation, which is consistent with numerous results in the literature (e.g. Papalexiou and Koutsoyiannis,

2013). Therefore, it is better to design infrastructure by setting an appropriate level of risk and evaluating the uncertainty of the

estimate.

7 Conclusions

In this study, we developed a new statistical model for estimating the PMP based on its definition. The model involves modelling435

daily precipitation with the Pearson Type I distribution, where the upper bound corresponds to the PMP. As a proper statistical

model, parameter and uncertainty estimations can be derived using well-known statistical methods.

Our analysis demonstrates that while the proposed statistical approach offers potential benefits—such as translating the PMP

definition into a statistical model, incorporating non-stationarity, and providing uncertainty estimates—significant drawbacks

limit its practical application. The major challenge lies in the non-identifiability issue, which renders the model highly sensitive440

to data and leads to volatile PMP estimates. This issue persists despite attempts at reparametrization and the use of regularized

maximum likelihood or informative priors, which introduce subjectivity that undermines the model’s advantages.

Given the inherent challenges and limitations of the Pearson Type I distribution for precipitation modelling, we recommend

using extreme value analysis for PMP estimation. This approach aligns with the findings of the National Academies of Sciences,

Engineering, and Medicine (2024), which advocate for extreme value analysis due to its robustness and applicability, even in445

the context of non-stationary conditions brought about by climate change. With our data, the 60,000-year return level estimates

of daily precipitation at the two considered locations were consistent, in contrast to the PMP estimates for those two locations.

Moreover, the extreme value analysis indicated a heavy-tailed distribution, consistent with existing literature, which invalidates

the concept of PMP.

Future work may involve estimating the PMP of storms instead of daily precipitation. In this paper, we estimated the daily450

PMP, but precipitation accumulation over several days could also be of interest. However, accumulation over several days

would decrease the sample size and exacerbate the non-identifiability issue. Future work may also focus on PMP estimation

based on a large sample of synthetic storms provided by a storm generator.

In conclusion, while innovative statistical methods offer promising avenues for PMP estimation, traditional extreme value

analysis remains, in our opinion, the most practical and reliable approach for assessing precipitation extremes and guiding455

infrastructure design.
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