

Helmholtz Centre for Environmental Research – UFZ Permoserstr.15 · 04318 Leipzig · Germany

Dr. Giulia Vico Editor Natural Hazards and Earth System Sciences

Mansi Nagpal PhD Student Department of Economics Fon +49 341 6025-4679 mansi.nagpal@ufz.de

Leipzig, 4/11/2025

Cover letter for manuscript number EGUSPHERE-2024-2585

Dear Dr. Vico,

We appreciate the continued consideration of our manuscript "Measuring extremes-driven direct biophysical impacts in agricultural drought damages", and the thoughtful feedback provided by the reviewers during this second round of review.

In this revised version, we have addressed the remaining points raised by the reviewers. Specifically, we have clarified the unit of analysis, expanded the discussion of hydro-meteorological extremes beyond drought, and added new supporting material to better reflect the role of multiple extremes in our assessment (including the bar plot in Figure 3 and Supplementary Figure S7). A detailed, point-by-point response to all comments is included.

We sincerely appreciate the thoughtful and constructive feedback provided throughout the review process. We believe the manuscript has been now significantly improved and look forward to your further assessment.

Best regards,

Mansi Nagpal on behalf of all co-authors

Helmholtz Centre for Environmental Research – UFZ

Company domicile: Leipzig

Permoserstr. 15, 04318 Leipzig, Germany or PF 500136, 04301 Leipzig, Germany

info@ufz.de www.ufz.de

Registration court: Leipzig district court Commercial register No. B 4703

Chairman of the Supervisory Board: MinDirigʻin Oda Keppler

Scientific Director: Prof. Dr. Rolf Altenburger

Administrative Director: Dr. Sabine König

Bank details:
HypoVereinsbank Leipzig
Sort code 860 200 86
Account No. 5080 186 136
Swift (BIC) code HYVEDEMM495
IBAN No. DE12860200865080186136
VAT No. DE 141 507 065
Tax No. 232/124/00416

Manuscript Number: egusphere-2024-2585

Response to Reviewers comments

11 April 2025

Contents

Response to Reviewer#1	
Pamaining comments	
Remaining comments	
Minor comments	5
Response to Reviewer#2	6

Reviewer comments and authors' replies marked in black

Previous manuscript and supplement text marked in brown

New manuscript and supplement edits marked in blue

All page and line numbers refer to the revised, unmarked manuscript

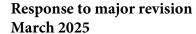
We sincerely thank the reviewer for the positive assessment and constructive feedback. We have carefully addressed the two remaining comments as well as the minor suggestions for clarification, and revised the manuscript accordingly. Our detailed responses to the remaining comments are provided below.

Remaining comments

S.No.	Reviewer's Comment	Authors' Response
1	My first comment relates to the unit of	Agreed and clarified: We have removed the
	analysis (field, farm, region?) and the aim	term "farm" from the aim of the paper to
	of the paper (lines 73-75). I still struggle to	prevent confusion about the unit of analysis.
	understand what the aim of the paper is, as	Throughout the manuscript, we now clarify
	it consists of two parts. The first part is	that our analysis is conducted at the district
	about the biophysical damage of extremes	(regional) level. While the term 'farm-level' was
	and droughts, and the second part relates	based on our conceptualization of the revenue
	to farm-level revenue losses. I am a bit	losses, we recognize that this might cause
	confused here, as you work with	confusion and is not necessary for
	regional/district-level data and present	understanding the paper. All data inputs,
	your results (i.e. Figures 3-7) at a regional	simulations, and resulting figures (e.g., revenue
	level as well. Can you clarify how you	losses) are based on district-level aggregations,
	measure farm-level revenues with regional	and this has been made explicit in the revised
	data? Or is the unit of analysis	manuscript. To further improve clarity, we have
	regional/district-level? Please check	revised the text surrounding the study's aim in
	throughout your whole manuscript if it is	the introduction to explicitly describe the
	regional.	second aim of the paper.
		Pg 2, lines 73-82: "The aim of this study is to
		measure the direct biophysical damage of
		extreme hydro-meteorological drivers during
		droughts (hereafter called direct biophysically-
		induced damages) and assess the contribution
		of these biophysically-induced damages to the
		total reported agricultural revenue losses.
		These damages refer to the loss in revenue
		caused by the effects of extreme hydro-
		meteorological drivers on crop yields, without
		accounting for other economic impacts, such as
		changes in costs. They include the effects of
		droughts themselves, as well as additional
		damage from concurrent or successive weather
		extremes that exacerbate drought-related
		effects in regions experiencing drought
		conditions. To isolate the biophysical impacts of
		these extremes on crop yields from other
		influencing factors, we employ crop specific
		statistical yield models. To evaluate the
		contribution of these extremes in shaping
		observed economic outcomes, we compare the
		direct biophysically-induced damages estimated

S.No.	Reviewer's Comment	Authors' Response
		from these models with reported revenue losses. This allows to identify the relative contribution of these extremes across different regions and crops, which can guide more targeted drought adaptation and enable better decision-making. The empirical analysis of direct biophysically-induced damages during droughts is done at the district (regional) level for rainfed agriculture for eight major field crops in Germany from 2016-2022."
2	My second comment relates to the focus on droughts or droughts and other extreme weather events in the current manuscript. Having read your work again, I have to admit that I still feel the manuscript predominantly focuses on droughts and less on other extremes. You now acknowledge this in the limitations (lines 500-505), where you highlight that these other extremes are not considered in the counterfactual. Besides that, the vast majority of the results focus on droughts. Section 3.4 should be about droughts and other extremes, but I find it still to be dominated by droughts, with little mention of other extremes. Can you describe this a bit better in the main text? Figure 6 is clear, so you could build on that.	Agreed and revised: We have added the clarifying text building on Figure 6 in section 3.4 and discussion section to better highlight the role of extreme events beyond drought in our manuscript. Pg 15, lines 447-451: "Beyond drought and heat, Figure 6 also highlights the influence of other extreme events on crop yield anomalies in Germany. For example, black frost had notable effects on winter crops in 2021 and 2022 and alternating frost adversely affected rapeseed during these years. In contrast, waterlogging appears to have had a beneficial effect yield anomalies for most crops. These results show the complex interplay of weather extremes and their varying combinations, which determine the extent of yield losses from compounding and overlapping events in different years, as captured by the yield model." Pg 17, lines 504-506: "While drought and heat dominate the impacts, the yield model also captures the effects of other extremes—such as frost and waterlogging—whose contributions vary by crop and year." Additionally, in response to Reviewer#2's comment, we have added a new bar plot in Figure 3, which also helps address this concern by illustrating the relative contribution of both drought and other hydro-meteorological extremes to total biophysical damages. This addition highlights the role of other extremes in our damage assessment.

Minor comments


S.No.	Reviewer's Comment	Authors' Response
1	You often refer to "regions" (e.g. line 187) and sometimes to "districts" (e.g. lines 227-229). Can you define somewhere what you mean by these? Do regions consist of districts (i.e. a region is bigger than a district), or are they synonyms?	Agreed and revised: Thank you for pointing out the inconsistent usage of "regions" and "districts." In our revised manuscript, we have aimed to maintain consistency by referring to them as "districts" and clarifying where necessary that these terms are used interchangeably.
2	Figures 3, 4, and 5: Check the legend and be consistent. Figures 3 and 5 refer to "drought losses," while Figure 4 refers to "drought damages." Should this be consistently "damage"? - Figure 4: "mn" should be "millions."	Agreed and revised: We have revised the figure legends so that all references consistently use "damages," and replaced "mn" with "millions" in Figure 4 for clarity.
3	Lines 395-400: I would refrain from referring to specific districts without specifying where in Germany these districts are located. For non-German readers, that is hard to understand. Specify where Mecklenburg-Vorpommern, Lower Saxony, and Saxony-Anhalt are located.	Agreed and revised: Thank you for highlighting the need to situate these districts for non-German readers. In the revised manuscript, we have added brief geographical references so that readers unfamiliar with German state locations can better understand where these districts lie. Pg 14, lines 419-422: "Interestingly, in 2019, 2020, and 2022, only limited losses were observed for sugar beets in Mecklenburg-Vorpommern (northeast Germany) and the bordering districts of Lower Saxony (northwest Germany) and Saxony-Anhalt (east-central Germany), despite a considerable share of area in these regions dedicated to growing this crop."
4	Lines 408-410: "Contrary to intuition, specific crop affected." Explain what extremes have a positive effect on yield anomalies.	Agreed and clarified: We have included specific examples (precipitation scarcity in March, heavy rain in July) in the revised manuscript to clarify how these extremes may sometimes benefit certain crops. Pg 14, lines 434-437: "For example, precipitation scarcity in March was found to benefit spring barley, rapeseed, and winter barley if soils still hold sufficient winter moisture (Gömann et al., 2015). Similarly, heavy rainfall in July may increase yields for summer crops such as potatoes and silage maize, by mitigating drought stress in late summer when soils tend to be dryer (Samaniego et al., 2013)."

S.No.	Reviewer's Comment	Authors' Response
5	Lines 430-435: Thanks for running all these robustness checks and sensitivity analyses. Can you add a couple of lines explaining these findings? What explains the lower and/or upper range? And how do these results increase your confidence in your main model specification?	Agreed and clarified: We have now added explanatory text in section 3.5 "Sensitivity analysis of estimated biophysically-induced direct damages" clarifying how changes in the counterfactual period or the droughtarea threshold affect the expected revenue benchmark, which in turn shifts the damage estimates. We also highlight that, despite these variations, our main results remain within the observed range of outcomes, demonstrating the robustness of our estimations.
6	Lines 506-508: "This study presents a conceptual framework in agriculture." You just removed the conceptual framework when you revised the paper. Maybe rephrase it to "provides an empirical illustration"? I would also change "economic impacts" to "economic damage" in that sentence to maintain consistency throughout the paper.	Corrected and proofread: Thank you for noting the error. We have removed the mention of the conceptual framework from this sentence and have carefully proofread the text to ensure no such mentions remain.
7	You suggest future research both at the end of the discussion (lines 504-505) and at the end of the conclusions (lines 531-535). I suggest merging these. Either at the end of the discussion or the conclusion is fine.	Agreed and revised: We have merged the text on future research from the discussion with the relevant text in conclusion to maintain consistency.

Reviewer's Comment	Authors' Response
I commend the authors for addressing all other	Agreed and clarified: We appreciate the
major comments, but the issue of damage	reviewer's continued attention to the accuracy of
estimates including more than droughts still	our damage assessment. We agree that some
remains in my opinion. A simple figure illustrating	bias may arise due to the inclusion of multiple
estimated drought damages during NON	hydro-meteorological extremes in the yield
DROUGHT years would resolve this. If damage in	model, even in non-drought years, which can
non drought years is 0, then what is present in	slightly influence the estimation of expected
the paper should not be changed. If however, the	revenues. However, we also note that excluding
deviations are significant, then drought has either	these extremes could underestimate total
been over or underestimated.	damages in drought-affected regions, as heat and
	precipitation scarcity often co-occur with drought
	and contribute to total damages as shown in the
	new bar plot introduced in the results section.
	We now discuss this trade-off in both the results
	and discussion sections. Specifically, we estimate
	the relative contribution of drought and other
	extremes to total biophysical damages (modified

Davierre de Comerce est	Author/ Possons
Reviewer's Comment	Authors' Response
	figure 3) and assess the potential for bias by
	examining estimated damages in non-drought affected districts (Supplementary Figure S7).
	These additions strengthen the contribution of
	our approach while acknowledging its limitations.
	our approach while acknowledging its initiations.
	Pg 12, lines 364-384: "These biophysically-
	induced damages include the effects of all hydro-
	meteorological extremes, as captured by the
	LASSO yield models. Because the model accounts
	for multiple extremes, it is not possible to isolate
	the effects of drought alone from these damage
	estimates. To address this, we estimate the
	relative contribution of individual hydro-
	meteorological extreme to total damages using
	the average feature contributions (in percentage)
	to predicted yield anomalies, based on the models
	coefficients. These contributions are then used to
	weight total simulated damages, allowing us to
	approximate the share of revenue losses linked to
	individual extremes such as drought (Figure 3b).
	In years with high damages —2018, 2019 and
	2022 —drought accounts for the largest share of
	total biophysical damages. Notably, heat and
	precipitation scarcity also contribute substantially
	during these years. This co-occurrence suggests
	that these extremes do not act in isolation and
	most likely interact with each other. For example,
	heat and precipitation scarcity may exacerbate
	the impacts of drought by adding further stress
	on crops or drought conditions may amplify the
	negative effects of high temperatures or low
	rainfall. This underscores the importance of
	including multiple hydro-meteorological extremes
	in the assessment of damages in drought-affected
	regions.
	However, it is important to note that our
	approach also leads to positive values for
	biophysically-induced damages in districts and
	years that are not classified as drought (Supplementary Figure S7). This is because the
	yield model includes multiple extremes, which
	may still influence the non-drought years used to
	estimate expected yield and revenue in equation
	2. While this may introduce small biases, they are
	not large in magnitude. Our approach may
	therefore slightly overestimate damages in
	therefore singility overestillute duffluges III

Reviewer's Comment	Authors' Response
	droughts, whereas excluding the effects of other
	extremes would likely underestimate the total
	impacts in drought-affected districts and years.
	The true damages likely fall between these two
	cases. By including multiple hydro-meteorological
	extremes, our approach captures the biophysical
	effects related to extremes more comprehensively
	in drought affected regions. We further
	demonstrate the robustness of these estimates
	through sensitivity analyses that test alternative
	counterfactual periods and drought classification
	thresholds in Sect. 3.5."
	Pg 17, lines 488-492: "Since the yield model
	includes all hydro-meteorological extremes, the
	non-drought years used to estimate expected
	revenue may still be influenced by these
	extremes. This can introduce small biases in the
	damage estimates. To address this, we use a five-
	year average of non-drought years, which helps
	smooth fluctuations and reduce the influence of
	other anomalies. The results are robust to
	alternative definitions of the counterfactual
	baseline which supports the reliability of our
	approach."

Helmholtz Centre for Environmental Research – UFZ Permoserstr.15 · 04318 Leipzig · Germany

Dr. Giulia Vico Editor Natural Hazards and Earth System Sciences

Mansi Nagpal PhD Student Department of Economics Fon +49 341 6025-4679 mansi.nagpal@ufz.de

Leipzig, 3/3/2025

Cover letter for manuscript number EGUSPHERE-2024-2585

Dear Dr. Vico,

Thank you for giving us the opportunity to submit a revised version of our manuscript "Measuring extremes-driven direct biophysical impacts in agricultural drought damages". We appreciate the time and effort you and the reviewers invested in providing valuable feedback on our paper. The insightful comments and suggestions from you and the reviewers have been carefully integrated into the manuscript. Below is a brief overview of the main changes made to address the reviewers' and your comments:

- (1) The introduction has been revised and enhanced to explicitly state the aim of the study and clarify the focus and scope of the investigation.
- (2) The standalone section on conceptual framework has been removed to incorporate the recommendation to streamline the first part of the paper and maintain focus on empirical analysis of direct biophysically-induced damages.
- (3) The structure of methodology section is enhanced with the introduction of a new subsection, 2.1 Overview of Analytical Approach to provide a structured overview of the methodological components used in the study.
- (4) The subsection 2.2 on damage measurement is improved with clarified definition of counterfactual, the role of statistical yield model and the use of drought-year prices to isolate and quantify the direct biophysically-induced damages.
- (5) In the results section, we have <u>added a new section 3.5 on robustness</u> <u>checks as sensitivity analysis</u>, to show the extent of damage driven by expected revenues as counterfactuals.

Helmholtz Centre for Environmental Research – UFZ

Company domicile: Leipzig

Permoserstr. 15, 04318 Leipzig, Germany or PF 500136, 04301 Leipzig, Germany

info@ufz.de www.ufz.de

Registration court: Leipzig district court Commercial register No. B 4703

Chairman of the Supervisory Board: MinDirigʻin Oda Keppler

Scientific Director: Prof. Dr. Rolf Altenburger

Administrative Director: Dr. Sabine König

Bank details:
HypoVereinsbank Leipzig
Sort code 860 200 86
Account No. 5080 186 136
Swift (BIC) code HYVEDEMM495
IBAN No. DE12860200865080186136
VAT No. DE 141 507 065
Tax No. 232/124/00416

- (6) <u>The discussion section has been significantly improved</u> to elaborate on methods and their limitations, compare findings with studies beyond Germany and discuss broader implications of our results.
- (7) <u>Further edits</u> have been made throughout the manuscript to incorporate your feedback and address the specific comments provided by the reviewers.

Please find detailed response to the specific comments by you and the reviewers in the document below. We believe that our revisions have addressed your and reviewers' concerns and suggestions, resulting in a much improved paper.

Thank you for considering our revised manuscript. We look forward to your response.

Best regards, Mansi Nagpal on behalf of the authors Manuscript Number: egusphere-2024-2585

Response to Editor and Reviewers comments

3 March 2025

Contents

Response to Editor	
Additional minor comments:	10
Response to Reviewer#1	11
General comments	12
Specific suggestions	17
Response to Reviewer#2	19
Some typos	24

Editor and reviewer comments and authors' replies marked in black

Previous manuscript and supplement text marked in brown

New manuscript and supplement edits marked in blue

All page and line numbers refer to the revised, unmarked manuscript

Response to Editor

S.No.	Editor's Comment	Authors' Response
G1.a	The reviewer have provided very insightful	Agreed and clarified: We acknowledge the
	comments.	need to clarify the study's focus from the
	I agree with the reviewers that, in its current	outset. To address this, we have revised and
	form, the manuscript does not clarify upfront	extended the text around line 71 in the
	what is being investigated. The first part is	introduction to explicitly state the aim of this
	particularly confusing and it is difficult for me	study and introduce a clear definition of
	to evaluate whether the planned changes will	direct biophysically-induced damages to
	sufficiently improve the clarity.	clarify the focus of our analysis.
		Pg 2, lines 71-77: "In this study, we address
		this bias by assessing the economic damage
		of drought in combination with concurrent or
		successive weather extremes in rainfed
		agriculture. The aim of this study is to
		measure the direct biophysical damage of
		extreme hydro-meteorological drivers during
		droughts (hereafter called direct
		biophysically-induced damages) and assess
		their contribution to farm revenue losses.
		These damages refer to the loss in revenue
		caused by the effects of extreme hydro-
		meteorological drivers on crop yields, without
		accounting for other economic impacts, such
		as changes in costs. They include the effects of droughts themselves, as well as additional
		damage from concurrent or successive
		weather extremes that exacerbate drought-
		related effects in regions experiencing
		drought conditions."
		ar ought conditions.
		To further streamline the manuscript and
		improve its clarity, we have:
		(a) Removed the standalone conceptual
		framework section: The original
		conceptual framework illustrated the
		full range of impacts, including both
		direct damages and indirect
		economic impacts. To maintain focus
		on empirical investigation of direct
		biophysically-induced damages, we
		have removed references to the old
		conceptual framework in the
		introduction and eliminated the
		standalone Section 2 on conceptual
		framework. Please refer to our
		detailed response to your comment

S.No.	Editor's Comment	Authors' Response
		G1.b for further details.
		(b) Introduced new subsection: To
		enhance the structure of
		methodology section, we have
		introduced new subsection "2.1
		Overview of Analytical Approach"
		that outlines the methodological
		components used in the study and
		guide the reader's understanding of
		our approach. Please refer to our
		detailed response to your comment
		G1.b for further details.
		(c) Standardized terminology
		throughout the manuscript: In
		response to Reviewer 1, comment
		G2, we now consistently use "direct
		biophysically-induced damages"
		instead of "economic impacts" to
		more accurately reflect the focus of
		our study.
G1.b	I add to the reviewers comments that the	Agreed and revised: Thank you for
	role of the contextualization framework	highlighting an important area for improving
	(section 2 and Fig 1) in the general economy	the coherence of the manuscript. In
	of the manuscript remained unclear to me.	response, we have removed the standalone
	Either it is better integrated in the work or,	section on conceptual framework from the
	likely better, it is removed from the	revised manuscript along with figure 1. This
	manuscript, thus focusing the work to the	has allowed us to restructure the manuscript
	actual analyses. More in general, I urge the	along a more standard format, with section 2
	authors to critically check the logic behind	now titled "Methodology".
	presenting the material in a certain order and	To retain key theoretical components from
	consider if and where clarifications are	the removed section, we have introduced a
	needed.	new subsection, titled "2.1 Overview of
		Analytical Approach" [See pg 3], within the
		methodology. This new section provides
		direct link between the theoretical
		background and the methodology used in the
		study. It outlines the key methodological
		components used to estimate direct
		biophysically-induced damages and
		introduces the causal pathways by which
		hydro-meteorological extremes impact crop
		yields and result in revenue losses. These
		explanations are structured to support the
		understanding of the empirical methods,
		guiding the reader to relevant
		methodological components in the
		subsequent sections and improving the

S.No.	Editor's Comment	Authors' Response
		logical flow of the manuscript.
		As a visual aid and to enhance clarity, we
		have replaced the old figure 1 with a new and
		more concise figure to present these
		connections between casual pathways with
		the analytical approach used in the paper.
		These changes help to clarify the structure of
		the information presented in methods
		section and guide the reader's understanding
		of our approach.
		Additionally, we have ensured that the
		explanations within this new section are
		directly tied to the scope and objectives of
		the study by reducing the theoretical
		discussion on indirect impacts of droughts,
		which are not assessed in this paper and
		emphasizing on direct biophysically-induced
		damages, which form the core of our
		empirical analysis.
G1.c	Furthermore, the authors should clarify why	Agreed and clarified: We have clarified in the
	several extremes are defined (Table 1) but	methodological description of section 2.3 the
	the focus appears to be on droughts only.	use of several extremes defined in table 1
		and its use in estimating economic damage
		driven by the biophysical impacts of droughts
		and their interaction with other extremes.
		Pg 8, lines 262-267: "To simulate crop yields
		(in decitons per hectare - dt/ha), we multiply
		the predicted yield anomaly by the district-
		level mean yield. This approach allows us to
		isolate crop yields attributable to hydro-
		meteorological extremes defined in Table 1,
		including droughts. These simulated yields
		are then used for damage assessment in
		drought-affected regions categorised using
		the SMI (as described in next section),
		aligning with the objective of quantifying the
		economic damages during droughts driven by
		the biophysical impacts of droughts and their
		interaction with other extremes."
G1.d	Some key methodological issues have also	We greatly appreciate the valuable feedback
	been raised and the authors have delineated	of the reviewers and acknowledge the
	apparently satisfactory ways to address some	recognition of our efforts in addressing their
	of the main concerns. Of particular relevance	concerns.
	are 1) clarifying the definition of	-
	counterfactual and showing that the results	
	are robust to any somewhat subjective	
	choice in its definition; and 2) acknowledge	
	choice in its definition, and 2/ acknowledge	

S.No.	Editor's Comment	Authors' Response
	the limitations of the methods and discuss	
	their implications, in particular regarding the	
	role of detrimental conditions beyond water stress.	
G1.e	Beyond the points raised by the reviewers, I	Agreed and clarified: We acknowledge the
02.0	notice that the period 1999-2022 is a rather	concern regarding the length of the period.
	short one to identify extremes. Moreover, in	To address this, we have included temporal
	principle all definition of extremes are not	histograms for all extremes for the maize
	justified and the threshold tested.	crop as a representative crop in the
		supplementary material, which demonstrates
		that the 1999–2022 period captures a
		substantial number of extreme events, notably the exceptional droughts of 2003,
		2018-2020, and 2022, waterlogging in 2001,
		2007, 2010 and 2013, as well as severe frost
		and heat events.
		Pg 8, lines 258-262: "To illustrate the
		adequacy of the 1999–2022 period in
		identifying extremes, temporal histograms of
		all extreme weather events for the maize crop, used as a representative crop, are
		provided in the supplementary material
		(Supplementary Figures S2-S3). These
		histograms demonstrate that the selected
		period captures a substantial number of
		extreme events, notably the exceptional
		droughts of 2003, 2018-2020, and 2022,
		waterlogging in 2001, 2007, 2010 and 2013,
		as well as severe frost and heat events."
		Regarding the justification and testing of
		thresholds, we have clarified in the discussion
		that, as we relied on an established statistical
		model with pre-defined thresholds, their
		sensitivity was not assessed. This has been
		acknowledged as a limitation of the study.
		Pg 17, lines 494-498: "Second, the estimation of revenue losses might be underestimated
		due to the inherent limitations of the
		statistical yield model in simulating extreme
		crop yields. This underestimation partially
		arises from the use of pre-defined thresholds
		for extreme events. Since the study relied on
		an established statistical model, we did not
		assess the sensitivity of these thresholds,
		which should be explored in future research
	<u> </u>	to improve robustness."

S.No.	Editor's Comment	Authors' Response
G1.f	I further add that the discussion needs	Agreed and enhanced: We have significantly
	substantial development, to include	improved the discussion section by
	discussion on the methods and their	addressing the methods and their limitations,
	limitations, comparisons of results beyond	comparing our results with studies from
	Germany only, and the implications of the	regions beyond Germany and elaborating on
	main conclusions.	the implications of our main conclusions.
		Additionally, we have expanded the abstract
		and the conclusion to include an outlook on
		integrating damage estimates into drought
		monitoring systems to enhance early warning
		and adaption.
		Pg 17, lines 492-502: "While our estimates
		provide robust insights into the biophysical
		damages of droughts and associated
		extremes in drought affected regions, there
		are some limitations to consider. First, our
		analysis is focused on short-term impacts
		damages and does not include adaptation
		costs or indirect impacts beyond the
		immediate consequences of biophysically
		induced yield losses. Second, the estimation
		of revenue losses might be underestimated
		due to the inherent limitations of the
		statistical yield model in simulating extreme
		crop yields. This underestimation partially
		arises from the use of pre-defined thresholds
		for extreme events. Since the study relied on
		an established statistical model, we did not
		assess the sensitivity of these thresholds,
		which should be explored in future research
		to improve robustness. Last, this yield model
		is based on anomalies relative to district-level
		means which limits our ability to fully control
		for the biophysical impacts of weather
		extremes in the counterfactual. While a non-
		extreme weather events counterfactual could
		have provided valuable insights into the
		interplay between droughts and other
		extremes, this was not feasible within the
		current modelling framework. Future
		research should focus on testing different
		types of yield models that allows control of
		impacts of weather extremes in the
		counterfactual while capturing the dynamics
		of extreme weather impacts on yields."
		De 17 lines 401 400, ##
		Pg 17, lines 481-490: "In comparison to our

S.No.	Editor's Comment	Authors' Response
		findings, García-León et al. (2021) estimated
		that agricultural losses due to droughts in
		Italy ranged from €0.55 billion and €1.75
		billion per year, while Howitt et al. (2015)
		reported crop revenue losses in California,
		United States of approximately \$902 million
		to \$940 million per year. Our result that
		maize was the most effected crop during
		recent droughts in Germany is consistent with
		the findings of Brás et al (2021), who found
		maize as experiencing the highest production
		losses among cereals across Europe due to
		droughts and heatwaves between 1964 and
		2015. Maize's vulnerability to drought is not
		limited to Europe. In the United States,
		substantial yield variability in maize has been
		linked to drought and heat stress (Zipper et
		al., 2016). Similarly, in China, maize yield
		losses have been shown to increase with the
		severity of drought, contributing to significant
		reductions in maize production across the
		country (S. Liu et al., 2022). These
		comparisons highlight the dual challenge of
		mitigating economic losses across diverse
		cropping systems and addressing the specific
		vulnerabilities of drought-sensitive crops like
		maize. They underscore the importance of
		globally coordinated efforts to enhance
		agricultural resilience in the face of increasing
		weather extremes."
		Pg 16, lines 447-448: "The spatially
		distributed approach used here can be
		adapted in other regions to provide more
		precise assessment of revenue losses and to
		inform policy planning."
		Pg 16, lines 458-459 "These findings
		underscore the need for spatially targeted
		polices and interventions, particularly in
		northern and eastern Germany, where
		agriculture is disproportionally affected
		during droughts."
		during droughts.
		Pg 17, lines 466-467: "It helps disentangling
		the contributions of extreme hydro-
		meteorological drivers of yields vis-à-vis other
		meteo. orogical arrivers of yields vis a vis other

S.No.	Editor's Comment	Authors' Response
		drivers of yields to revenue losses, underlining the importance of these factors in shaping agricultural outcomes."
		Pg 1, lines 28-30: "Future integration of routine drought damage estimation into operational monitoring and forecasting systems would enhance early warning capabilities, improve economic preparedness against increasing weather extremes, and support more proactive adaptation strategies."
		Pg 18, lines 528-533: "Future work should focus on routinely estimating these losses within operational drought monitoring systems such as the German Drought Monitor (Zink et al., 2016), and forecasting frameworks like Hydroclimatic Subseasonal-to-Seasonal forecasting system (Hydroclimatic Forecasting System, 2024). By linking hydro-meteorological variables with projected economic damages, such integration would enhance early warning capabilities, improve economic preparedness against increasing weather extremes, and support more proactive adaptation strategies."

Additional minor comments:

S.No.	Editor's Comment	Authors' Response
1.	L 48: I'd say drought types or similar, not	Agreed and revised: We have replaced
	classifications	"classifications" with "types" in the text to
		better align with the intended meaning.
2.	L 61: weather extremes can mean many	Agreed and clarified: We have added the
	things: I suggest adding a few examples	following examples to clarify the meaning of
		weather extremes.
		Pg 2, lines 61-64: "For example, extreme heat
		during summer droughts can intensify
		damage to crops such as maize, further
		reducing yields (AghaKouchak et al., 2014).
		Similarly, winter crops like wheat can suffer
		significant losses from drought, heat and
		drought followed by periods of excessive
		rainfall, negatively affecting yields and

S.No.	Editor's Comment	Authors' Response
		harvest quality (J. Ding et al., 2018; Zampieri
		et al., 2017)."
3.	L 66-71: the difference between the two types of damage/impacts is rather obscure	Agreed and clarified: Thank you for your comment. The term "impact" has been removed from these lines, as it was originally used in reference to the conceptual framework, which has now been removed during the revision process. We now use only the term "damage," which has been elaborated on in the revised text to ensure clarity.
		Pg 2, lines 72-75: "The aim of this study is to measure the direct biophysical damage of extreme hydro-meteorological drivers during droughts (hereafter called direct biophysically-induced damages) and assess their contribution to farm revenue losses. These damages refer to the loss in revenue caused by the effects of extreme hydrometeorological drivers on crop yields, without accounting for other economic impacts, such as changes in costs."
4.	L 223: "it" instead of them	Agreed and revised: Thank you for pointing this out; we have replaced "them" with "it" as suggested.

This paper explores the economic impacts of The	
multiple climate extremes, focusing on droughts, by estimating revenue changes. The economic damage is defined as the difference between expected and actual revenues. Using a	chank you for appreciating the relevance of our ontribution and providing valuable comments on ow to improve this manuscript. We have carefully reviewed these comments and ave made significant revisions to address them, ummarized below: Counterfactual & robustness checks: We have clarified the definition and included robustness checks to show the extent of damage driven by expected revenues as counterfactuals. See our response to general comment G1 for further details. Definition of economic damages: We clarified that our focus is on assessing direct biophysically-induced damages of extreme hydro-meteorological drivers during droughts and their contribution to farm revenue losses.

drought revenues within the same region. I am uncertain if this is the best approach, and we might have taken different directions here. To address this, a clear justification for your counterfactual is needed, likely supported by robustness checks to show how results might change with different counterfactuals. Additionally, I would like to discuss (i) your definition of economic impacts and (ii) whether droughts and climate extremes are best measured dichotomously or continuously. These three points form the basis of my general comments. I have also provided a few minor suggestions and textual edits below.

- For specific details, please refer below to our response to *general comment G2*.
- Continuous measurement of droughts and extremes: We clarified that the extremes including droughts are measured as continuous variables in statistical yield model. However, drought occurrences are categorized dichotomously (including spatial and temporal development characteristics) to focus damage assessments on affected regions and for counterfactual estimations. Please refer to our response to general comment G3 for details.
- Aim of study: The study's aim is now explicitly stated in the revised introduction. Please see our response to specific comment S1 for the details.
- Farm level damage assessment literature: We have added literature on farm-level damage assessment for a more comprehensive introduction. Please see our detailed response to specific comment S2 for further details.
- Conceptual figure: The color scheme of the conceptual figure has been revised with distinct grayscale tones to ensure that the biophysical and economic processes remain distinguishable when the document is printed in black-&-white. In the revised manuscript, this figure has been moved to the supplementary materials (now Supplementary Figure S1). The new figure 1, also designed with distinct grey scale tones, presents a concise overview of the empirical analysis and the methods used.

General comments

S.No.	Reviewer's Comment	Authors' Response
G1.a	My main suggestion is to reconsider your	Agreed and enhanced: To clarify the aim of the
	counterfactual and clarify what it is actually	counterfactual and what it represents, we have
	measuring. How do you accurately estimate	modified and added the following text:
	the expected revenues? What is the	Pg6, lines 185-195: "The counterfactual
	counterfactual representing? Defining a	conditions aim to represent the average non-
	reliable counterfactual is critical because the	drought conditions specific to each region. In
	economic impacts in your paper are defined as	the context of ongoing climate variability, it is
	the difference between observed and expected	critical that the counterfactual conditions
	revenues. Currently, you define expected	represent the evolving regional climatology
	revenues as the average revenues over the	(Suarez-Gutierrez et al., 2023) rather than relying
	past five non-drought years. However, I am	on an idealized "normal" year in the traditional
	uncertain about whether this counterfactual is	sense, which may no longer occur in practice. In
	direction about whether this counterfactual is	this analysis, we define the counterfactual

S.No.	Reviewer's Comment	Authors' Response
	consistently measuring the same expectations	conditions as the average conditions in the
	across regions, especially since no other	preceding five non-drought years. We selected
	observable factors are considered. As noted in	a five-year window following Trenczek et al.
	lines 156-173, the counterfactual seems	(2022), who used it to estimate damages for
	somewhat arbitrarily defined.	2018 and 2019 droughts in Germany. The
	For example, consider two regions where	reason for this number of years is a trade-off:
	neither has experienced a "normal" year during	using more years could in theory further
	the reference period. Region 1 has had	enhance the statistical representativeness regarding local climatic conditions, but it risks
	consecutive slightly wet years, while region 2	introducing bias by masking changing market
	has had five consecutive slightly dry years	and production conditions, as well as the
	(though not extreme). Consequently, your	overall trend in climate change, which also
	expected revenues for region 1 are based on	influence local yields and revenues (Lobell et al.,
	slightly wet conditions, while for region 2, they	2011).
	reflect slightly dry conditions. As a result, the	We determine drought (and non-drought) years
	estimated economic impact of droughts is now	based on the soil moisture. In order to do so,
	being benchmarked against two different	we use the Soil Moisture Index (SMI) metric, as
	baselines, which could affect the accuracy of	explained in Sect. 2.4, and exclude any drought
	your estimates.	years in the average estimation, an
	,	improvement over existing approaches in the
		literature."
		Additionally, we have clarified our presentation
		for readers to address the reviewer's related
		concern about whether the observable factors
		considered in the counterfactual design are
		sufficient to reflect spatial differences between
		regions. To this end, we have modified and
		added the following text:
		Pg9, lines 279-281: "Using monthly SMI data,
		at a resolution of 4km x 4km and covering the
		Germany entirely, the monthly average area
		under drought conditions was estimated
		(Nagpal et al., 2024) for each district. The
		drought categorization based on the SMI
		reflects regional differences in climatic
		conditions as the SMI is calculated relative to
		the local historical soil moisture distribution in
		each district."
G1.b	Then, a second objective of the paper is to	Agreed and enhanced: We have added the
	investigate the economic impacts of the	suggested robustness checks as sensitivity
	interplay of droughts and extreme weather	analysis, now detailed in a new results section
	events. I do not yet see how this is reflected in	3.5 "Sensitivity analysis of estimated
	your current counterfactual, as those extreme	25. 25
	weather events are not considered when you	

S.No.	Reviewer's Comment	Authors' Response
	define your counterfactual. The implications of	biophysically-induced direct damages" [See
	this are that the expected revenues do not	page 15], of the revised manuscript.
	consider any past exposure to other extreme	The new sensitivity analysis include the
	weather events, making me wonder how	following:
	accurate your economic impact estimates are.	
	One way forward to convince me that your	(a) Varying the counterfactual period by \pm
	counterfactual is measuring what it intends to	1 year to examine the effect of
	measure is to include robustness checks, with	different reference periods on the
	different counterfactual definitions (e.g., using	estimates.
	shorter or longer reference periods, or	(b) Adjusting the drought classification
	incorporating multiple extreme weather	criteria by testing thresholds with $\pm5\%$
	events). Alternatively, you could consider	variations in the area of each district
	defining your counterfactual based on	with an SMI < 0.2 per month, in
	matching or regression-based approaches,	addition to the original 20% threshold.
	which allows you to account for observable	We have also clarified in the manuscript text
	characteristics such as the severity of drought	how our counterfactual address potential bias
	(using continuous measures like soil moisture	from exposure to other extreme events, as well
	index), crop types, or land area. It would also	as the limitation of our approach.
	be useful to indicate how much of the	Pg7, lines 197-200: "While the counterfactual is
	estimated economic impact is driven by the	designed to exclude drought years, it is possible
	occurrence of droughts versus changes in the	that some exposure to other extremes could
	expected revenues themselves (i.e. how do	still be reflected in the yields of non-drought
	your results change when defining different	years. Any potential yield anomalies in non-
	counterfactuals?)	drought years, which could lead to over- or
		under-estimating drought damages, are
		addressed through the approach of estimating
		expected revenue based on the five-year
		average. This helps to smooth out any random
		yield fluctuations and minimize the influence of
		non-drought related anomalies."
		Pg 17, lines 498-501: "Last, this yield model is
		based on anomalies relative to district-level
		means which limits our ability to fully control
		for the biophysical impacts of weather
		extremes in the counterfactual. While a non-
		extreme weather events counterfactual could
		have provided valuable insights into the
		interplay between droughts and other extreme
		weather events, this was not feasible within the
		current modelling framework."
G2.	Are you truly estimating the economic impact	Agreed and clarified: We agree that our
	of droughts? Your analysis focuses on changes	analysis focuses on revenue changes rather
	in revenues, but it does not account for	than a full economic impact assessment, which

S.No.	Reviewer's Comment	Authors' Response
	changes in costs (e.g. inputs, intermediates	would require accounting for costs such as
	etc.). I could live with damage but feel like you	inputs and operations. To address this, we have
	are not estimating economic impacts.	clarified in the introduction that our focus is on
		assessing direct biophysically-induced damages
		of extreme hydro-meteorological drivers
		during droughts and their contribution to farm
		revenue losses.
		Pg2, lines 71-74: "In this study, we address this
		bias by assessing the economic damage of
		drought in combination with concurrent or
		successive weather extremes in rainfed
		agriculture. The aim of this study is to measure
		the direct biophysical damage of extreme
		hydro-meteorological drivers during droughts
		(hereafter called direct biophysically-induced
		damages) and assess their contribution to farm
		revenue losses."
		Additionally, we have revised the manuscript
		to consistently communicate that we are
		estimating direct biophysically-induced
		damages, rather than attempting a full
		economic impact assessment.
		a. We have modified the old conceptual
		framework figure (now part of a new
		section 2.1 "Overview of Analytical
		Approach") to emphasize the specific
		component of direct biophysically-
		induced damages as the focus of our
		measurement and analysis. Please
		refer to improved figure1 (page 4) in
		the revised manuscript.
		b. We have now consistently used the
		term "direct biophysically-induced
		damages" instead of "economic
		impacts" to more accurately reflect the
		scope of our analysis.
		c. We have ensured that there is always a
		qualifier clarifying the meaning of the
		word "impacts" and prevent any
		misunderstanding as referring to
		economic impacts.
		d. We have revised the figure legends in
		the results section to clarify that they
		pertain to damages.

Reviewer's Comment S.No. **Authors' Response** G3. Agreed and clarified: To address the reviewer's Are droughts something to be measured dichotomously? Same for the extreme weather concern regarding how our dichotomous events. There seems to be a slight mismatch drought categorization methodology, essential between the research gap you identify and for defining the counterfactual, accounts for your approach in practice. For example, in lines the complexity of drought occurrence including 43-45, you describe the research gap as variability and intensity of droughts as focusing on the variability and intensity of described in lines 43-45, we have revised droughts. This suggests a continuous definition, section 2.4 to include the following where drought ranges from slightly dry to clarification: Pg9, lines 284-290: "This approach accounts for extremely dry conditions. However, if I the slow development and spatial and temporal understand correctly, in your paper droughts are defined dichotomously—either present or accumulation characteristics of droughts. By absent. The same issue arises in lines 58-59. Is using a threshold of SMI<0.2, we the research gap you have identified (regarding comprehensively capture all regions affected by the variability of droughts and extreme droughts, including those experiencing varying weather) truly being addressed by your current intensities from severe (SMI<0.1) to exceptional approach? conditions (SMI<0.02). This method enables the identification of non-drought years necessary for estimating expected revenues under counterfactual conditions. To evaluate the effect of this drought classification approach on damage estimates, we conducted sensitivity analyses by varying the threshold for the proportion of affected area (±5%), to confirm the robustness of the damage estimates under alternative drought classification criteria." To address the reviewer's concern regarding the variability and intensity of droughts as described in lines 58-59, it is important to clarify that while thresholds are used for categorizing regions as drought (non-drought), the statistical yield model incorporates it, along with other extreme weather events, as continuous variables. This approach accounts for their severity, where higher intensities leads to greater predicted yield reductions. We have revised the manuscript to reflect this clarification. Pg 8, lines 247-253: "These indicators are calculated by counting the days in a month that exceed or fall below the defined thresholds.[......] All features are used as

S.No.	Reviewer's Comment	Authors' Response
		continuous variables to account for stronger
		effects on crop yields through more intense
		extremes."

Specific suggestions

S.No.	Reviewer's Comment	Authors' Response
S1.	I have read your introduction but couldn't	Agreed and clarified: We have revised the text
	identify the aim of the paper. I could be wrong	surrounding lines 66-67 (now lines 71-72) to
	here but my feeling is that lines 66-70 intend	explicitly clarify the aim of our study for the
	to do this. It is a little vague and would help me	benefit of the readers.
	if you make this more concrete. I am looking	Pg2, lines 73-74: "The aim of this study is to
	for a sentence like "The aim of this paper is	measure the direct biophysical damage of
	to" or "This paper addresses the question"	extreme hydro-meteorological drivers during
		droughts (hereafter called direct biophysically-
		induced damages) and assess their
		contribution to farm revenue losses."
S2.	Lines 83-85: Perhaps you could consider adding	Agreed and enhanced: As suggested, we have
	some studies on farm-level economic damage	incorporated the following text in the
	to be complete. There is a lot of ongoing work	introduction of the paper, which discusses the
	here on adaptation literature but also on	added references on recommended empirical
	estimating drought damage on the farm level.	studies analyzing drought damages at the farm
		level.
		Pg3, lines 88-94: "Alternatively, there are
		several empirical studies analysing drought
		damages at the farm level that often
		incorporate adaptation strategies (van Duinen
		et al., 2015; Wens et al., 2021), input changes
		(Prasanna, 2018) and factors affecting
		localized responses to droughts (Ahmad et al.,
		2022; Garbero & Muttarak, 2013; Gray et al.,
		2009). Their empirical findings are tailored to
		specific context and may not be readily
		scalable to broader regions. Conversely,
		national-level assessments, though
		comprehensive, fail to capture the spatial
		variability of drought impacts. As droughts can vary greatly across different locations and
		times (Jaeger et al., 2013; Samaniego et al.,
		2013), there is a need for consistent, spatially-
		explicit damage assessments (Meyer et al.,
		2013) bridging the gap between farm-level-
		detail and national-level scope."
		aetan ana national-level scope.

S3. Figure 1: I printed your manuscript in black and white and could not see any colour differences.

Consider changing the colours or thinking of some other way to underline what is a biophysical process and what is an economic process.

Agreed and modified: Thank you for the suggestion. We have replaced the original color scheme of figure 1 with distinct grayscale tones to ensure that the biophysical and economic processes remain distinguishable when the document is printed in black-and-white. Please refer to improved figure 1 (page 4) in the revised manuscript.

Reviewer's Comment

The authors address the complicated question of accurately estimating the direct impacts of droughts on agricultural yields. In doing so, they tackle a number of issues that confound the drought estimates, including the co-occurrence of other extreme weather events, the regional heterogeneity in occurrences and effects that limit the viability of national aggregated measures and the presence of indirect effects that come from secondary and tertiary impacts. Using Germany as the backdrop, they find that the direct impact of droughts amounts to 781 million euros in the period investigated, accounting for 60% of reported yield losses in drought years, going as far as 97% of total damage when the focus is on rice yields in 2018. They also find a discrepancy when comparing national aggregated estimates to regionally estimated losses, suggesting a preference for regional estimates. Some issues remain and are addressed below

Authors' Response

Thank you for your appreciation of the significance of our contribution. We found your feedback valuable in further improving our manuscript and have made key revisions to our manuscript to address your comments, as outlined below:

- Focus of investigation: We explicitly stated the aim of this study in the introduction. For details, please refer to our response to comment 1.
- <u>Damage measurement:</u> We clarify the role of statistical yield model and assumption of constant prices in assessing direct biophysically-induced damages of hydrometeorological extremes during drought years in the manuscript. We also present additional sensitivity analyses to evaluate the potential of over- or underestimation of drought damages. Please refer to our response to *comment 2* for the details.
- Use of current prices in damage assessment: We clarify that the inclusion of prices is essential to our aim of quantifying the direct biophysically-induced damage in monetary terms. The use of current prices reflects conditions contemporaneous to the drought and maintain consistency with previous studies. Please refer to our response to comment 3 for more information.
- Simulation of yields using regression coefficients: We clarify the use of extreme events features of the LASSO model for simulating yields used in the damage assessment. Details are provided in our response to comment 4.
- Spatial disaggregation: We clarify crop-specific assessments as a consistent component of both national-level and regional-level analysis and the discrepancies observed in national estimates arising from spatial-disaggregation. Please see our response to comment 5 for further details.
- <u>Typos corrected and proofread:</u> We have corrected the typos and thoroughly proofread the text to ensure no additional errors remain.

S.No.	Reviewer's Comment	Authors' Response
1.	The first issue I came across while reading was	Agreed and clarified: To address the confusion
	confusion on what exactly was being	regarding the focus of our investigation, we
	investigated. For the first few pages, I assumed	have explicitly stated the aim of the study and
	the purpose was an investigation of the impact	clarified it further to eliminate ambiguity, as
	of agricultural droughts measured by soil	detailed below.
	moisture, but after a few pages, the phrase	Pg 2, lines 71-79: "In this study, we address this
	"extreme weather on agriculture during	bias by assessing the economic damage of
	drought years" gave the impression that the	drought in combination with concurrent or
	investigation was a secondary effect of other	successive weather extremes in rainfed
	extreme weather events during drought years.	agriculture. The aim of this study is to measure
	After reading, I am convinced that the paper is	the direct biophysical damage of extreme
	just about the impact of drought (first, with a	hydro-meteorological drivers during droughts
	combination of other extremes investigated in	(hereafter called direct biophysically-induced
	section 4.4), if I am mistaken, it adds to the	damages) and assess their contribution to farm
	confusion I had while reading through.	revenue losses. These damages refer to the loss
	Simplifying the text and stating precisely what	in revenue caused by the effects of extreme
	was investigated would be ideal.	hydro-meteorological drivers on crop yields,
		without accounting for other economic
		impacts, such as changes in costs. They include
		the effects of droughts themselves, as well as
		additional damage from concurrent or
		successive weather extremes that exacerbate
		drought-related effects in regions experiencing
		drought conditions. To isolate the biophysical
		impacts of these extremes on crop yields from
		other influencing factors, we employ crop
		specific statistical yield models. By comparing
		the direct biophysically-induced damages
		estimated from these models with reported
		farm revenue losses, we can identify the
		relative contribution of these factors across
		different regions and crops, which can guide
		more targeted drought adaptation and enable
		better decision-making."
		We have also modified figure1 (pg 4) to
		emphasize the specific component of direct
		biophysically-induced damages as the focus of
		our analysis.
2.	The measure of damage in equation 1 itself	Agreed and clarified: Thank you for the
	may be over or underestimating drought	insightful comment. In the revised manuscript,
	effects in its current form. With the impact	we have clarified the role of statistical crop
	being the difference between the expected	yields and constant price assumption in
	revenue and the actual revenue, it ascribes this	ascribing the difference between expected and
	difference in its entirety to drought effects,	actual revenue to biophysically-induced
	which may not be entirely true. It is the classic	impacts of extreme weather events including
	diff-in-diff argument. For the damage equation	droughts. We have also clarified our approach

S.No.	Reviewer's Comment	Authors' Response
	to be solely due to droughts, the authors	to handling potential yield shortfalls or
	current approach would necessitate that in	windfalls through the five-year window for
	non-drought years, expected outcomes	estimating expected revenues in Equation 1, as
	ALWAYS match the realized outcomes. I am	detailed in the text below. Furthermore, we
	doubtful that this is true, and as such, any	have tested the sensitivity of our approach by
	shortfalls in non-drought years would imply	varying the counterfactual period by ± 1 year
	that negative drought effects are	to assess the risk of over- or underestimating
	overestimated while any windfalls (realized	drought effects. The results are detailed in a
	yields greater than expected) would	new subsection 3.5 "Sensitivity analysis of
	underestimate the drought effects. Therefore,	estimated biophysically-induced direct
	I suggest that the damage be estimated as	damages" [See pg 15].
	g	Pg 7, lines 216-221: "We use simulated crop
	$D_{t} = \sum_{c=1}^{6} (\bar{R}_{expected,c,t} - R_{actual,c,t}) - \frac{1}{T} \sum_{t=1}^{T} \sum_{c=1}^{8} (\bar{R}_{expected,c,t} - R_{expected,c,t}^{ND})$	yields to estimate actual revenue for drought
		years and expected revenue under
		counterfactual conditions for non-drought
	$\left \frac{1}{m} \right\rangle \left(\bar{R}_{expected.c.t} - R_{expected.c.t}^{ND} \right)$	years, in order to calculate damages in eq.1.
	$\begin{array}{c c} I & \longrightarrow &$	This ensures that the damage estimates are
		explicitly based on yield variability driven by
	Where the additional term is the average	EWE as described in equation 3, while
	difference between expected revenue and	excluding other factors unrelated to extreme
	realized	hydro-meteorological drivers. Along with the
	revenue in T non drought years in the	-
	study. This way, any non-drought related	assumption of constant prices, this methodology ensures that the revenue
	discrepancies can be correctly accounted for.	deviation between expected and actual
		•
		revenues is attributed solely to the direct
		biophysically-induced yield impacts during
		droughts.
		Pg 6, lines 197-200: "While the counterfactual
		is designed to exclude drought years, it is
		possible that some exposure to other extremes
		could still be reflected in the yields of non-
		drought years. Any potential yield anomalies in
		non-drought years, which could lead to over- or
		under-estimating drought damages, are
		addressed through the approach of estimating
		expected revenue based on the five-year
		average. The helps smooth out any random
		yield fluctuations and minimize the influence of
2	In equation 2, using the surrent price to	non-drought related anomalies."
3.	In equation 2, using the current price to	Agreed and clarified: To clarify the use of
	estimate expected revenue might be	drought-year prices for estimating expected
	problematic given that others have found that	revenues, we have provided the following
	extreme weather events have their own	explanation in the revised manuscript.
	distinct impact on prices (Berhanu & Wolde,	Pg 6, lines 205-212: "The use of drought-year
	2019; Felix & Romuald, 2012; Ray, 202 1). It	prices to estimate expected revenues reflects
	may be beneficial to use in year prices adjusted	contemporaneous market conditions during

S.No.	Reviewer's Comment	Authors' Response
	for inflation to estimate expected revenues. If	the drought year and maintains consistency
	the idea was to allow for the focus to be just	with previous studies. While using in-year
	on yields, then I would recommend just leaving	prices for estimating expected revenues might
	prices out entirely. Including prices would	capture the indirect effects of droughts on
	mean that expectations are driven by two	prices (Badolo & Somlanare, 2012; Berhanu &
	sources: expected yields and expected prices,	Wolde, 2019; C. A. Ray, 2021), it would also
	both of which can be separately impacted by	incorporate other agricultural market
	domestic and external weather shocks.	developments unrelated to local droughts or
		extremes, complicating the attribution of
		damages to regional extreme hydro-
		meteorological drivers. Holding prices constant
		ensures that the damage estimates focus solely
		on the yield changes induced by extreme
		hydro-meteorological drivers, providing an
		economic estimation of biophysically-induced
		direct damages in monetary terms."
4.	The statistical crop yield model shows a	Agreed and clarified: As suggested, we have
	regression that included several weather	modified the methodological description of
	extremes on the right-hand side, but did not	statistical crop yield model in section 2.3 and
	discuss how the drought contribution to yield	have added descriptive statistics in a new
	was extracted or what it in fact looks like.	table-Appendix A (Page 18,19), to make it
	Some descriptive statistics would be helpful	easier for readers to understand the model
	here. Is drought driven yield just	outputs without consulting the original
	beta*drought? Is the dependent variable in	publication (Heilemann et al., 2024). We have
	subsequent analysis yields as a result of	clarified that the dependent variable is indeed
	droughts? More exposition on what exactly	the yield anomaly as a result of droughts (and
	was done to generate the variable of interest	other extreme events).
	would be ideal.	Pg 8, lines 256-268: "Based on the extreme
		event features, the LASSO models predict the
		annual yield anomaly (in %) as the dependent
		variable, representing the deviation of yields
		from the district-level mean yield for 1999-
		2022. Details on the standardized coefficients
		of the crop-specific LASSO models can be found
		in Table S2 of Heilemann et al. (2024). To
		illustrate the adequacy of the 1999–2022
		period in identifying extremes, temporal
		histograms of all extreme weather events for
		the maize crop, used as a representative crop,
		are provided in the supplementary material
		(Supplementary Figures S2-S3). These
		histograms demonstrate that the selected
		period captures a substantial number of
		extreme events, notably the exceptional
		droughts of 2003, 2018-2020, and 2022,
		waterlogging in 2001, 2007, 2010 and 2013 as
		well as severe frost and heat events. To

date crop yields (in decitons per hectare - a), we multiply the predicted yield anomaly be district-level mean yield. This approach as us to isolate crop yields attributable to co-meteorological extremes defined in a case 1, including droughts. These simulated as are then used for damage assessment in a ght-affected regions categorised using the case described in next section), aligning with bjective of quantifying the economic
ages during droughts driven by the envisical impacts of droughts and their action with other extremes. Descriptive stics for the simulated yields, including annual mean, minimum, and maximum as, are provided in Appendix A." ave also updated the citation of the stical yield model paper (Heilemann et al., of from the pre-print to the published on that reflects the final, peer-reviewed cation. Bed and clarified: We appreciate the gatful comment and acknowledge that the nal text may not have clearly conveyed the action between crop-specific and spatial gregation in damage estimates. To less this, we have clarified the mechanism and the disaggregated assessment in the led manuscript with the text below: 10. Lines 327-332: "In our analysis, cropfic damages are calculated both at the nal level, using aggregated national data, at the regional-level, using reported yields leach district. Regional-level damages are summed to obtain national totals for varison with aggregated national-level ats. This approach allows us to compare the late of differences in damage estimates leen national-level and regional-level data less while retaining a crop-specific focus in cases, providing insights into the potential as that may arise from relying solely on

Some typos...

S.No.	Reviewer's Comment	Authors' Response
5.	Page 2 line 64: underestimates should be	Corrected and proofread: Thank you for
	underestimate	thoroughly reviewing the manuscript and
6.	Page 2 line 77 "are derived from a the"	noting the typos. We have corrected the
	delete "a"	identified errors and carefully proofread the
7.	Page 3 line 97 "casual" should be "causal"	text to ensure no other such errors remain.

Additional references, as suggested by the reviewers/editor, or included to address their feedback: Ahmad, M. M., Yaseen, M., & Saqib, S. E. (2022). Climate change impacts of drought on the livelihood of dryland smallholders: Implications of adaptation challenges. International Journal of Disaster Risk Reduction, 80, 103210. https://doi.org/10.1016/j.ijdrr.2022.103210

Badolo, F., & Somlanare, R. K. (2012). Rainfall shocks, food prices vulnerability and food security: Evidence for Sub-Saharan African Countries. Proceedings of the African Economic Conference, Kigali, Rwanda, 1.

Berhanu, M., & Wolde, A. (2019). Review on Climate Change Impacts and its Adaptation strategies on Food Security in Sub-Saharan Africa. Agricultural Social Economic Journal, 19, 145–154. https://doi.org/10.21776/ub.agrise.2019.019.3.3

Ding, J., Huang, Z., Zhu, M., Li, C., Zhu, X., & Guo, W. (2018). Does cyclic water stress damage wheat yield more than a single stress? PLoS ONE, 13(4), e0195535. https://doi.org/10.1371/journal.pone.0195535

Garbero, A., & Muttarak, R. (2013). Impacts of the 2010 Droughts and Floods on Community Welfare in Rural Thailand: Differential Effects of Village Educational Attainment. Ecology and Society, 18(4). https://doi.org/10.5751/ES-05871-180427

García-León, D., Standardi, G., & Staccione, A. (2021). An integrated approach for the estimation of agricultural drought costs. *Land Use Policy*, *100*, 104923. https://doi.org/10.1016/j.landusepol.2020.104923

Gray, M., Hunter, B., & Edwards, B. (2009). A Sunburnt Country: The Economic and Financial Impact of Drought on Rural and Regional Families in Australia in an Era of Climate Change. Australian Journal of Labour Economics (AJLE), 12, 108–131.

Heilemann, J., Klassert, C., Samaniego, L., Thober, S., Marx, A., Boeing, F., Klauer, B., & Gawel, E. (2024). Projecting impacts of extreme weather events on crop yields using LASSO regression. *Weather and Climate Extremes*, 46, 100738. https://doi.org/10.1016/j.wace.2024.100738

Howitt, R., MacEwan, D., Medellín-Azuara, J., Lund, J., & Sumner, D. (2015). *Economic Analysis of the 2015 Drought For California Agriculture*. Center for Watershed Sciences, University of California – Davis.

Hydroclimatic Forecasting System. (2024). https://www.ufz.de/index.php?en=47304

Liu, S., Xiao, L., Sun, J., Yang, P., Yang, X., & Wu, W. (2022). Probability of maize yield failure increases with drought occurrence but partially depends on local conditions in China. *European Journal of*

Agronomy, 139, 126552. https://doi.org/10.1016/j.eja.2022.126552

Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate Trends and Global Crop Production Since 1980. Science, 333(6042), 616–620. https://doi.org/10.1126/science.1204531

Prasanna, R. P. I. R. (2018). Economic costs of drought and farmers' adaptation strategies: Evidence from Sri Lanka. Sri Lanka Journal of Economic Research, 5(2). https://doi.org/10.4038/sljer.v5i2.49

Ray, C. A. (2021). The Impact of Climate Change on Africa's Economies. Suarez-Gutierrez, L., Müller, W. A., & Marotzke, J. (2023). Extreme heat and drought typical of an end-of-century climate could occur over Europe soon and repeatedly. Communications Earth & Environment, 4(1), 1–11. https://doi.org/10.1038/s43247-023-01075-y

van Duinen, R., Filatova, T., Geurts, P., & van der Veen, A. (2015). Coping with drought risk: Empirical analysis of farmers' drought adaptation in the south-west Netherlands. Regional Environmental Change, 15(6), 1081–1093. https://doi.org/10.1007/s10113-014-0692-y

Wens, M. L. K., Mwangi, M. N., van Loon, A. F., & Aerts, J. C. J. H. (2021). Complexities of drought adaptive behaviour: Linking theory to data on smallholder farmer adaptation decisions. International Journal of Disaster Risk Reduction, 63, 102435. https://doi.org/10.1016/j.ijdrr.2021.102435

Zipper, S. C., Qiu, J., & Kucharik, C. J. (2016). Drought effects on US maize and soybean production: Spatiotemporal patterns and historical changes. *Environmental Research Letters*, *11*(9), 094021. https://doi.org/10.1088/1748-9326/11/9/094021