2 **Revisiting the high tropospheric ozone over Southern Africa:**

3 overestimated biomass burning and underestimated anthropogenic

4 emissions

- 5 Yufen Wang¹, Ke Li^{1*}, Xi Chen¹, Zhenjiang Yang¹, Minglong Tang¹, Pascoal M.D. Campos², Yang
- 6 Yang¹, Xu Yue¹, and Hong Liao¹
- 7 ¹Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative
- 8 Innovation Centre of Atmospheric Environment and Equipment Technology, Joint International Research Laboratory of
- 9 Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information
- 10 Science and Technology, Nanjing, China
- 11 ²CNIC-Centro Nacional de Investigação Científica, Ministério Do Ensino Superior Ciência, Tecnologia e Inovação,
- 12 Avenida Ho Chi Minh N° 201, Luanda, Angola
- 13
- 14 *Correspondence to: keli@nuist.edu.cn

15

16 Figure S1. GEOS-Chem modelled surface ozone concentration obtained from the July 2019 benchmark experiment

17 (downloaded from https://ftp.as.harvard.edu/gcgrid/geoschem/1mo_benchmarks/).

Figure S2. Comparison of the GEOS-Chem simulated NO₂ columns in Africa in July-August 2019 using the QFED2
 inventory (a) with OMI (b) and TROPOMI (c). Numbers below the red boxes indicate the regional averages.

21 22 23 24

Figure S3. GEOS-Chem simulated surface ozone, tropospheric ozone columns, and NO₂ columns in Africa for July-August 2019 and its comparison with satellite data. The left panels are results from the baseline simulation; the middle panels are results from the simulation with 34% reduction in NO_x emissions from the QFED2 inventory; the right panels are results 25 from the satellite data.

26 27

Figure S4. The simulated effects of aerosol chemistry on MDA8 ozone (top) and tropospheric ozone columns (bottom) in 28 July-August 2019 by using the GFED4.1 and QFED2, respectively.

30

31 Figure S5. Time series of the simulated and observed (black) median daily PM_{2.5} concentrations for June-August 2023. a-32 d are for Humpata, Luanda, Luena, and Lusaka, respectively. The plots labelled by the "SIM_noDST" and "SIM_10NOx" 33 are the PM2.5 concentration after removing dust aerosols and the PM2.5 concentrations when anthropogenic NOx emissions 34 were increased by a factor of 10 in CEDSv2.

Figure S6. Time series of simulated June-August 2023 surface MDA8 ozone concentrations from the baseline simulation
 (black) and the sensitivity simulation (red) in which anthropogenic NO_x emissions were increased by a factor of 10 in
 CEDSv2.

39

Figure S7. The observed and simulated tropospheric NO_2 columns in June-August 2023. (a) the baseline simulation with QFED2 inventory. (b) the sensitivity simulation with anthropogenic NO_x emissions increased by a factor of 10. (c) TROPOMI data. (d-f) the sensitivity simulations with sectoral NO_x emissions increased by a factor of 10 in energy, industry, and transportation. The numbers in the plots are all the relative NO_2 columns enhancement in Luanda area. The dashed boxes indicate the downwind background area, which is subtracted to obtain the relative NO_2 column concentration in Luanda.

47

Figure S8. The simulated contributions to surface ozone in July-August 2019 from different sources, including biomass burning emissions (left), natural emissions (middle), and anthropogenic emissions (right), under Run_QFED simulation (top) and under Run_QFED_Anth10NO_x simulation (bottom) where anthropogenic NO_x sources were increased by a factor of 10. Here the natural emissions refer to the biogenic VOC and soil NO_x emissions.

Figure S9. Trends in NO_x emission rates from anthropogenic sources under different future scenarios (Unit: kg m⁻² s⁻¹).

	Species	Spatial resolution	Time
OMI	O ₃	$1^{\circ} \times 1.25^{\circ}$	July-August 2019
OMI	NO_2	$0.25^\circ imes 0.25^\circ$	2019-2020
OMI	НСНО	$0.05^\circ imes 0.05^\circ$	July-August 2019
TROPOMI	NO_2	$0.125^\circ \times 0.125^\circ$	2018-2023
MODIS	AOD	$1^{\circ} \times 1^{\circ}$	July-August 2019
MOPITT	CO	$1^{\circ} \times 1^{\circ}$	July 2019

 Table S1:
 Satellite data used for this study