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 13 
Abstract. Tropospheric ozone over Southern Africa is particularly high and causes tremendous health risks and crop yield 14 
losses. It has been previously attributed to the influence by biomass burning (BB), with a neglected contribution from 15 
anthropogenic emissions. However, due to the lack of measurements for ozone and its precursors, the modeled impacts of 16 
BB and anthropogenic emissions on tropospheric ozone were not well evaluated in Southern Africa. In this study, we 17 
combined the nested GEOS-Chem simulation with a horizontal resolution of 0.5° × 0.625° with available multiple 18 
observations at the surface and from space to quantify tropospheric ozone and its main drivers in Southern Africa. Firstly, 19 
BB emissions from current different inventories exhibit similar peaks in summer season but also have large uncertainties 20 
in Southern Africa (e.g., uncertainty of a factor of 2-3 in emitted NOx). The model-satellite comparison in fire season (July-21 
August) in 2019 shows that using the widely-used Global Fire Emissions Database Version 4.1 (GFED4.1) inventory, the 22 
model tends to overestimate by 87% compared to OMI NO2, while the Quick Fire Emissions Database (QFED2) inventory 23 
can greatly reduce this model bias to only 34%. Consequently, the modeled tropospheric column ozone (TCO) bias was 24 
reduced from 14% by GFED4.1 to 2.3% by QFED2. In addition, the QFED2 also has a much better spatial 25 
representativeness than GFED4.1. The simulated surface daily maximum 8-hour mean (MDA8) ozone was decreased from 26 
74 ppb by GFED4.1 to only 56 ppb by QFED2. This suggests a highly overestimated role of BB emissions in surface ozone 27 
if GFED4.1 is adopted. The model-observation comparison at the surface shows that the global Community Emissions 28 
Data System (CEDSv2) anthropogenic inventory tends to underestimate anthropogenic NOx emissions in typical Southern 29 
African cities and likely misrepresented anthropogenic sources in some areas. That means that urban ozone and PM2.5 30 
concentrations in Southern Africa may be strongly underestimated. For example, a ten-fold increase in anthropogenic NOx 31 
emissions can change ozone chemistry regime and increase PM2.5 by up to 50 µg m-3 at the Luanda city. Furthermore, we 32 
also find that the newly TROPOMI can already capture the urban NO2 column hotspots over low-emission regions like 33 
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Southern Africa while this is unavailable from the OMI instrument, highlighting the critical role of high-resolution 34 
measurements in understanding atmospheric chemistry issues over Southern Africa. Our study presents a deeper 35 
understanding of the key emission sources and their impacts over Southern Africa that will be helpful not only to formulate 36 
targeted pollution controls, but also to enhance the capability in predicting future air quality and climate change, which 37 
would be beneficial for achieving a healthy, climate-friendly, and resilient development in Africa. 38 
 39 
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1 Introduction 41 

Tropospheric ozone (O3) is an important trace gas in the atmosphere, posing multifaceted threatens to public health, crop 42 
yield, and global environment (Xu et al., 2018; Bourgeois et al., 2021). Complex photochemical reactions of nitrogen 43 
oxides (NOx = NO + NO2) and volatile organic compounds (VOCs) in the presence of sunlight is the main source of 44 
tropospheric ozone (Wang et al., 2022). These two ozone precursors are emitted from both anthropogenic and natural 45 
sources. Great efforts have been made to reduce anthropogenic emissions, but ozone pollution is still challenging in many 46 
urban regions across the globe (Gaudel et al., 2020; Lyu et al., 2023). Globally, it was estimated that ~365,000 premature 47 
deaths could be attributed to ozone pollution in 2019 (Murray et al., 2020). The urban population exposed to ozone was 48 
increased at a trend of 0.8% per year from 2000 to 2019, and the largest increases of daily maximum 8-hour mean (MDA8) 49 

ozone occurred in Africa and India (Sicard et al., 2023). However, due to the lack of comprehensive studies on 50 

tropospheric ozone pollution in Southern Africa, it is urgent to explore the major source contributions driving ozone 51 

pollution over these less-studied regions. A better understanding of the major emission sources is not only helpful to 52 
formulate actionable targeted pollution controls and to reduce air pollution risks, but also important to predict future air 53 
quality in developing regions under the rapid changing of emissions and climate change.  54 
 55 
Biomass burning (BB) emits large amounts of air pollutants that are important ozone precursors (Qin et al., 2024). Africa 56 
is frequently exposed to intense BB (Vernooij et al., 2021), contributing to 70% of the global BB area and nearly 75% of 57 
global infant deaths attributed to BB pollutants (Jiang et al., 2020; Hickman et al., 2021). Exposure to air pollution from 58 
BB has strong differences in socioeconomic levels (Yue et al., 2024), with the most heavily exposed populations being in 59 
Southern Africa (Xu et al., 2023). Due to the complex climate types and unique lifestyles, BB in Africa during June-August 60 
months is concentrated over Southern Africa (Meyer-Arnek et al., 2005; Williams et al., 2010), and this “slash-and-burn” 61 
agricultural activity could lead to the very high ozone concentrations over Southern Africa. As shown in Figure S1, surface 62 
ozone concentrations in Southern Africa were simulated exceeding 100 ppb in July, making it to be the highest ozone level 63 
worldwide. This is consistent with the previous modeling findings that BB activities are the dominant driver of tropospheric 64 
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ozone in this region (V. Clarmann et al., 2007). At the city level, Rwanda with observed daily ozone maximum of 70 ppb 65 
during the dry season (Dewitt et al., 2019) can be affected by the transport of BB from Northern and Southern Africa. The 66 
high ozone is mainly driven by BB NOx emissions; for example, the Southern African BB can increase NOx concentrations 67 

by a factor of 2-5 in July-August months (Hoelzemann, 2006).Although BB has a great impact on ozone and its precursors 68 

in Southern Africa, there are few quantitative studies on this issue. 69 
 70 
The popular way of quantifying the role of BB is to conduct chemical transport modeling, e.g., using the ECHAM5-MOZ 71 
(Aghedo et al., 2007), GEOS-Chem (Wang et al., 2022; Marvin et al., 2021), and WRF-Chem (Yang et al., 2022). The 72 
ECHAM5-MOZ model simulations show that BB can increase surface ozone by more than 50 ppb in Central Africa in 73 
June-August during 1997-2001 (Aghedo et al., 2007). Williams et al. (2010) used the Tracer Model version 4 to simulate 74 
June-August air pollution in 2006, and they showed that BB in Southern Africa is the largest source of carbon monoxide 75 

and ozone precursor emissions in Africa. However, model assessment is highly dependent on BB emission inventories and 76 

there is a lack of comparative studies of different BB inventories over the Southern Africa. This is because existing BB 77 
emission inventories have large uncertainties in Africa (Petrenko et al., 2012; Shi et al., 2015). The most widely-used 78 
inventory for global model simulations is the Global Fire Emissions Database (GFED) (Shi et al., 2020), and other BB 79 
inventories include the Quick Fire Emissions Database (QFED), the Global Fire Assimilation System (GFAS), and the Fire 80 
Inventory from NCAR (FINN). The uncertainties of a factor of 2-10 among these inventories source from estimated burned 81 
area, emission factors, and vegetation type (Fu et al., 2022). Depending on how fire emissions are calculated, these 82 
inventories can be divided into two categories: the fuel-based bottom-up estimation (e.g., GFED and FINN) (Pechony et 83 
al., 2013; Nikonovas et al., 2017) and the satellite-derived top-down estimation (e.g., QFED and GFAS) (Nikonovas et al., 84 
2017). In addition, the injected height of BB emissions is also a key factor in determining the residence time of pollutants 85 
in the atmosphere that would impact the spatiotemporal distribution of tropospheric ozone (Rémy et al., 2017). Therefore, 86 
it is urgent to take advantage of observational constraints to evaluate the current BB inventories and quantify their impacts 87 
on tropospheric ozone in Africa. 88 

 89 

In addition to the effects of BB, tropospheric ozone can be also affected by anthropogenic emissions in Africa. Although 90 
the intensity of anthropogenic emissions is relatively low in Africa, its impact at the urban scale cannot be ignored. With 91 
the rapid urbanization (Liousse et al., 2014), mean concentrations of surface SO2, PM2.5, and PM10 in Luanda have exceeded 92 
European Union human health protection limits (Campos et al., 2021). More importantly, anthropogenic emissions (e.g., 93 
black carbon) are projected to be comparable with BB emissions by 2030 in Africa (Liousse et al., 2014). Projection studies 94 
also pointed out that 50% of the population will be expected to live in cities by 2050 (Aucoin and Bello-Schünemann, 95 
2016), resulting in a significant increase in the population exposure to ozone in Africa. With air pollution becoming a major 96 
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cause of premature deaths in Africa (Julien et al., 2018), urban air pollution will likely pose more challenges in the context 97 
of increasing anthropogenic emissions (Roy, 2016; Marais and Wiedinmyer, 2016; Zhang et al., 2021). However, whether 98 
the current anthropogenic emission inventories are reasonable in urban Southern Africa remains unclear.  99 
 100 

Lack of surface observations is a major challenge for assessment of emission inventories in Africa. About 66% of African 101 

countries do not have regular air quality monitoring (Fajersztajn et al., 2014), particularly few in Southern Africa (Julien 102 
et al., 2018). Recently, there are continuous surface measurements available at several major cities over Southern Africa 103 
(Figure 1), together with the high-resolution satellite observations (e.g., TROPOMI), which could be very helpful to detect 104 
urban air pollution in this region. With the worsening air pollution in Africa (Sicard et al., 2023), it is particularly timely 105 
to take advantage of these valuable measurements to assess the key drivers of high tropospheric ozone in Southern Africa. 106 
 107 
As abovementioned, there are notable uncertainties in the estimation of major emission sources over Southern Africa. 108 
Assessing and predicting the impacts of emissions on air quality and health risks rely heavily on model simulations, and 109 
these uncertainties in emission inventories can affect the development of effective control strategies. We therefore need to 110 
utilize surface and satellite observations to gain a comprehensive understanding of the emission source contributions in 111 
Southern Africa. This will help to develop effective mitigation measures to realize the Sustainable Development Goals for 112 
having a healthy, climate-friendly, and resilient development in Africa. 113 
 114 
Here we integrated the high-resolution GEOS-Chem model and newly-available measurements to estimate the impact of 115 
biomass burning and anthropogenic emissions on tropospheric ozone over Southern Africa. The aim of this study is: 1) to 116 
quantify the role of BB emissions on regional tropospheric ozone over Southern Africa, and 2) to assess the 117 
representativeness of anthropogenic emission inventories in urban Southern Africa and their impacts on urban ozone 118 
pollution. Observational data, model description and experimental setup are presented in Section 2. Section 3.1 shows the 119 
major emission sources and the high tropospheric ozone issue over Southern Africa. The estimated impacts of biomass 120 
burning and anthropogenic emissions on tropospheric ozone are analysed in Sections 3.2 and 3.3, respectively. Conclusions 121 
and discussion are given in Section 4. 122 
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 123 
Figure 1. The biomass burning NOx emissions (shaded) and 850hpa wind fields. The BB NOx emissions are for July-124 
August 2019 from the GFED4.1 inventory (unit: Gg month-1). Blue dots represent the locations of surface observations and 125 
red dot denotes the ozonesonde measurement; and satellite data used in this study are listed in the lower right corner. 126 

2 Measurement data and model description 127 

2.1 Surface measurements 128 

Figure 1 shows the locations of the four surface observation sites over Southern Africa. Hourly and daily real-time air 129 
quality indexes (AQI) for NO2 and PM2.5 were obtained from the Worldwide Air Quality Index (https://aqicn.org/station). 130 
The AQI can be converted to pollutant concentrations based on the website’s AQI Calculator. These four sites record 131 
continuous measurement data in the study area, namely: Humpata in Angola (14°95'S, 13°44'E), Luanda in Angola (8°80'S, 132 
13°23'E), Luena in Angola (11°76'S, 19°91'E), and Lusaka in Zambia (15°41'S, 28°29'E). The stations in Angola and 133 
Zambia have been operating since mid-May 2023 and February 2022, respectively, and data for June-August 2023 were 134 
selected for this study. To evaluate modeled ozone profiles, we adopted the Ascension Island’s ozonesonde data from the 135 
Southern Hemisphere Additional Ozone Sounding (SHADOWZ) network, which measured ozone profile from 1998 136 
(Thompson et al., 2000). 137 

2.2 Satellite data 138 

In order to investigate the model results driven by different BB emission inventories and the anthropogenic emission 139 
inventories, multiple observations from the OMI (https://disc.gsfc.nasa.gov/datasets/), TROPOMI 140 
(https://www.earthdata.nasa.gov/sensors/tropomi), MODIS (https://ladsweb.modaps.eosdis.nasa.gov/search/), and 141 
MOPITT (https://giovanni.gsfc.nasa.gov/giovanni/) satellite instruments were used (Table 1). The OMI sensor observes 142 
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the globe once a day and is capable of obtaining the column concentration distributions of a variety of tropospheric trace 143 
gases (e.g., NO2 and O3). The TROPOMI sensor is a troposphere-specific observational instrument, and Wang et al. (2020) 144 
have compared the NO2 concentrations of OMI and TROPOMI with observations. As for MODIS AOD, Shi et al. (2019) 145 
compared observations from 400 stations of the Aerosol Robotics Network (AERONET) with the MODIS AOD, and 146 
demonstrated that the MODIS was able to better capture the spatial and temporal variations of AERONET AOD (Zhang et 147 
al. 2024). MOPITT was launched in December 1999 on board the Earth observation satellite Terra with a 10:30 am equator 148 
crossing time (Kopacz et al., 2010). Here, as listed in Table 1, we used tropospheric ozone, NO2, and HCHO observations 149 
from OMI with resolutions of 1° × 1.25°, 0.25° × 0.25°, and 0.05° × 0.05°, respectively, as well as NO2 observations from 150 
TROPOMI with a resolution of 0.125° × 0.125°. AOD and CO observations with a resolution of 1° × 1° are from MODIS 151 
and MOPITT, respectively. We sampled the model simulation results consistent with satellite overpass times in the 152 
following comparisons. Although these satellite datasets have been well employed to reflect emission changes, their 153 
uncertainties are also notable due to biases in slant column density, air mass factor, and stratosphere-troposphere separation. 154 
For example, the reported uncertainties in NO2 columns from OMI and TROPOMI are 25-50% and they can be increased 155 
to 50-100% in terms of OMI HCHO columns.  156 

  Table 1. Satellite and surface observations used for this study. 157 

Species  
Spatial resolution/  

Site locations 
Time 

O3 

NO2 

HCHO 

OMI 1° × 1.25° July-August 2019 

OMI 0.25° × 0.25° 2019-2020 

OMI 0.05° × 0.05° July-August 2019 

NO2 TROPOMI 0.125° × 0.125° 2018-2023 

AOD  MODIS 1° × 1° July-August 2019 

CO MOPITT 1° × 1° July 2019 

PM2.5 

Humpata (14°95' S, 13°44' E) 

June-August 2023 
Luanda (8°80' S, 13°23' E) 

Luena (11°76' S, 19°91' E) 

Lusaka (15°41' S, 28°29' E) 

NO2 

Humpata (14°95' S, 13°44' E) 

June-August 2023 Luanda (8°80' S, 13°23' E) 

Luena (11°76' S, 19°91' E) 

O3 Ascension Island (7.56 S, 14.22 E) July-August 2017-2019 

 158 
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2.3 Biomass burning emission inventories 159 

In this study, six BB emission inventories were compared: GFED4.1, GFED5, GFAS, QFED2, FINNv1.5, and FINNv2.5. 160 
The GFED4.1 inventory provides dry matter emissions based on the area of BB and vegetation types from MODIS 161 
observations (Marvin et al., 2021; Zhang et al., 2018). The GFED5 is an updated version of GFED4.1 and the GFED5 162 
global burned area is 61 % higher than GFED4.1 (Chen et al., 2023). The GFAS inventory estimates the amount of dry 163 
matter burning based on fire radiative power (FRP) (Vongruang et al., 2017). The QFED2 inventory is based on the FRP 164 
method and draws on the cloud correction method developed in GFAS with the high spatiotemporal resolution. FINNv1.5 165 
calculates dry matter combustion using fire hot spots (FHS) data to calculate the burned area, and FINNv2.5 builds on this 166 
with extensive updates to the burned area, vegetation types, and chemicals emitted. In particular, FINNv2.5 adopted the 167 
active fire detections from the Visible Infrared Imaging Radiation Suite (VIIRS) to better capture small fires, and used 168 
multiple satellite products for daily fire emissions estimates (i.e., MODIS + VIIRS fire detections). The estimated BB NOx 169 
emissions from these inventories will be further discussed in Section 3.2.1.   170 

2.4 GEOS-Chem Model 171 

The atmospheric composition in Africa was simulated by using the nested version of the three-dimensional global chemical 172 

transport model (GEOS-Chem, version 13.3.3; http://acmg.seas.harvard.edu/geos/), which was driven by the Modern-173 

Era Retrospective analysis for Research and Applications version 2 (MERRA-2) meteorological reanalysis dataset. The 174 
model domain was for Africa (35°S - 30°N, 17°W - 50°E) with a horizontal resolution of 0.5° × 0.625° and a vertical 175 
configuration of 47 layers. The chemical boundary conditions for the nested simulation are provided by the global GEOS-176 
Chem simulation with a horizontal resolution of 2° × 2.5°, which was updated every three hours. GEOS-Chem model 177 
includes fully coupled ozone-NOx-hydrocarbon-aerosols chemistry mechanisms. PM2.5 components include sulfate, nitrate, 178 

ammonium, dust, sea salt, organic carbon (OC), and black carbon (BC) (Park et al., 2004).  179 

 180 

In Africa, anthropogenic emissions are from the Community Emissions Data System (CEDS) (Hoesly et al., 2018) and 181 
biogenic emissions are from the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 (Guenther 182 
et al., 2012). We simulated hourly concentrations of ozone, NO2, and other pollutants in Africa using the nested GEOS-183 
Chem model with a set of sensitivity simulations (Table 2). Here we focused our experiments on July-August 2019 for all 184 
sensitivity and benchmark simulations. In order to investigate the effect of BB on tropospheric ozone, we conducted three 185 
model experiments. Firstly, we used GFED4.1 and QFED2 inventories to simulate the hourly air pollutant concentrations 186 
for July-August, 2019 (Run_GFED and Run_QFED), respectively, and validated the model results with satellite 187 
observations. Then, we conducted a sensitivity experiment by scaling down the QFED NOx emissions to be consistent with 188 
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satellite NO2 observation (Run_QFED_66%NOx). We used two different BB inventories and turned off aerosol chemistry 189 

to explore the effect of aerosols on ozone (Run_GFED_no-aerosol and Run_QFED_no-aerosol). We also explored the 190 
effect of emission height on simulated tropospheric ozone by emitting BB pollutants only within the PBL 191 
(Run_QFED_PBL).  192 
 193 
After evaluating the BB emission inventories at the regional scale, we set up a series of experiments to explore the impact 194 
of anthropogenic emissions on tropospheric ozone in Southern Africa. Considering that surface air pollutant measurements 195 
are only available for June-August 2023, and then we used the up-to-date QFED inventory to simulate concentrations of 196 
NO2 and PM2.5 in June-August 2023 (Run_QFED_2023) and compared them with five surface air quality observations. 197 
We also conducted model simulations for January-February 2020 (Run_QFED_2020) to explore the effect of 198 
anthropogenic emissions on tropospheric ozone during the non-fire season. It is noted that we fixed the anthropogenic 199 
emissions from CEDS at 2019 in all these simulations due to the lack of up-to-date anthropogenic emission data. Based on 200 
the underestimation of surface NO2 observations in the model, we explored the sensitivity of ozone and PM2.5 201 
concentrations to anthropogenic NOx changes by a factor of 10 or 20 over the Southern Africa (Run_QFED_Anth10NOx 202 
and Run_QFED_Anth20NOx); at the city scale, we explored the effects of perturbing anthropogenic NOx emissions in 203 
Luanda by a factor of ten for difference sectors (i.e., power plant, industrial, and transportation) (Run_QFED_Anth_10NOx 204 
_Sector). 205 
 206 
Finally, we conducted two set of sensitivity simulations to attribute ozone to different emission sources, by turning off BB 207 
emissions, natural emissions (i.e., biogenic VOC and soil NOx), and anthropogenic emissions, respectively (Table 1). In 208 
particular, we compared the ozone source attribution between the simulations by using the CEDS inventory and 10-fold 209 
CEDS NOx emission.  210 
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   Table 2. GEOS-Chem model simulations 211 

 Experiments BB emissions Anthropogenic emissions 

Impacts of biomass 
burning      

(July-August 2017-
2019） 

Run_GFED GFED4.1 CEDSv2 

Run_QFED QFED2 CEDSv2 

Run_QFED_66%NOx 34% reduction in QFED2 NOx emissions  

Run_GFED_no-aerosol 
Aerosol chemistry was turned off 

Run_QFED_no-aerosol 

Run_QFED_PBL 100% emissions below the PBL* 

Impacts of 
anthropogenic 

emissions  

Run_QFED_2023 

QFED2 

June-August 2023 

 

CEDSv2 

Run_QFED_Anth10NOx 10-fold NOx emissions 

Run_QFED_Anth20NOx 20-fold NOx emissions 

Run_QFED_Anth_10NOx _Sector 

 
10-fold NOx emissions of 

energy, industry, and 
transportation sectors, 

respectively 

Run_QFED_2020 
QFED2 

January-February 2020 CEDSv2 

Ozone source 
attribution 

（July-August 
2019） 

Run_QFED_noBB BB emissions were turned off 

Run_QFED_noNatl BVOC and soil NOx emissions were turned off 

Run_QFED_noAnth Anthropogenic emissions were turned off 

Run_QFED_Anth10NOx_noBB BB emissions were turned off 

Run_QFED_Anth10NOx_noNatl BVOC and soil NOx emissions were turned off 

Run_QFED_Anth10NOx_noAnth Anthropogenic emissions were turned off 

*The baseline simulation follows the vertical distribution of QFED2 emission (i.e., 65% emissions below the PBL and 35% 212 
emissions into the free atmosphere). 213 
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3. Results and discussion 214 

3.1 Emission sources and simulated high ozone over Southern Africa 215 

 216 
Figure 2. Spatial distributions of annual emissions of anthropogenic NOx, soil NOx, biomass burning NOx, anthropogenic 217 
VOC, and BVOC in 2019 (unit: Gg a-1). Anthropogenic NOx and VOC are from CEDSv2 inventory, soil NOx and BVOC 218 
are calculated by the GEOS-Chem model, and biomass burning NOx and VOC are from GFED4.1 and QFED2 inventory. 219 

 220 
We compared the annual emissions of anthropogenic NOx, soil NOx, BB NOx, as well as anthropogenic VOCs (AVOC) 221 
and biogenic VOCs (BVOC) over Southern Africa in 2019, as presented in Figure 2, which were estimated at 220 Gg a-1, 222 
914 Gg a-1, 3551 Gg a-1, 2586 Gg a-1, and 32,232 Gg a-1, respectively. It should be noted that here BB NOx emissions are 223 
from the GFED4.1 inventory. In terms of NOx emissions, BB emission is the largest contributor and is about 16 times of 224 
NOx emissions from anthropogenic sources. The regions with high anthropogenic emissions are mainly Luanda, Kinshasa, 225 
and Lusaka which are the capitals of Angola, the Democratic Republic of the Congo (DRC), and Zambia, respectively. 226 
High vegetation cover in Southern African region leads to high BVOC emissions which are about 12 times of AVOC 227 
emissions.  228 
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Seasonally, Figure 3 presents the monthly variations of ozone precursor emissions averaged over Southern Africa in 2019. 229 
The BVOC emission exhibits a strong seasonal pattern ranging from 2000 Gg month-1 to 4000 Gg month-1, and it peaks in 230 
March and then decreases to the minimum in July-August. This seasonality is consistent with the seasonal variation in 231 
isoprene emissions in Southern Africa in 2006 as reported by Williams et al. (2009). We can also see that NOx from BB 232 
peaks during June-August, which is consistent with the results of Boschetti and Roy (2008). Emissions of BB NOx in 233 
January-April and November-December were relatively small. BB VOC has similar seasonal variability in both inventories, 234 
but the GFED4.1 inventory emits 2-3 times as much as the QFED2 inventory in fire season. The BVOC emissions are 235 
generally higher than BB VOC emissions except for those in July-August months from the GFED4.1 inventory. The 236 
seasonal contrast in BB NOx and BVOC emissions highlights the importance of BB in the production of high summer 237 
tropospheric ozone in this region (Vieira et al., 2023). 238 

 239 
Figure 3. Seasonal variations in anthropogenic NOx (deep blue), soil NOx (grey), biomass burning NOx (red), biomass 240 
burning VOC (red), anthropogenic VOC (blue), and biogenic VOC (yellow) emissions in 2019 (unit: Gg month-1). 241 
Anthropogenic NOx and VOC are from CEDSv2 inventory, soil NOx and BVOC are calculated by the GEOS-Chem model, 242 
and biomass burning NOx and VOC are from GFED4.1 and QFED2 inventory. 243 

 244 

Simulated spatial distribution of MDA8 ozone in Africa from July to August 2019 obtained by using the GEOS-Chem 245 
model and the GFED4.1 inventory (Run_GFED) as in Figure 4a. The regional average of MDA8 ozone in Southern Africa 246 
is about 74 ppb and the maximum can be up to 120 ppb in northern Angola and southwest Congo. Dewitt et al. (2019) 247 
observed a daily ozone maximum of 70 ppb during the dry season in Rwanda, which is adjacent to the DRC, in 2015-2017.  248 
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 249 

Figure 4. Differences in BB NOx emissions and modeled surface ozone from different inventories. (a-b) Surface MDA8 250 
ozone simulated by GEOS-Chem model for July-August 2019 by the GFED4.1 and QFED2 inventories, respectively. (c) 251 
Monthly BB NOx emissions in 2014 averaged over the Southern African region. 252 

 253 

Based on our simulation results, it can be found that the daily maximum ozone during the BB season is 86 ppb for Rwanda 254 
in the Run_GFED run, compared to only 62 ppb in Run_QFED run. Compared to the observed ozone in Rwanda, it may 255 

indicate an overestimation in the baseline simulation (Run_GFED). Figure 5a shows the spatial distribution of simulated 256 

tropospheric column ozone concentrations (TCO), with maximum values of up to 50 DU mainly in northern Angola 257 

and southwest Congo. Higher TCO levels are also seen over the Atlantic Ocean, which are mainly associated with 258 

long-range transport (Williams et al., 2010; Meyer-Arnek et al., 2005). Also, in Figure S2, we find that the GEOS-259 

Chem simulated (Run_QFED) and OMI tropospheric ozone columns are in good agreement over the Atlantic Ocean after  260 
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 261 
Figure 5. The comparison of GEOS-Chem simulated (left and middle panels) and satellite-based (right panels) tropospheric 262 
columns for ozone and its precursors. The simulated TCO, NO2, HCHO, and CO columns in Africa for July-August 2019 263 
were driven by the GFED4.1 and QFED2 inventories, respectively. For CO satellite data, only the July value was used due 264 
to the large amount of missing measurement in August. The numbers in the figure are the mean values in the red boxed 265 
area. 266 
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individually subtracting the background ozone values. Considering the strong seasonal variation of surface ozone in 267 
Southern Africa (Figure S3) and the estimated ozone precursors from different sources in Figure 3, here the large 268 
differences in simulated surface ozone with different BB inventories demonstrate that BB contributes greatly to high ozone 269 
concentrations during the fire season in Southern Africa. As such, a better understanding of the high ozone over Southern 270 
Africa would depend on the accurate estimate of BB emissions. 271 

3.2 Impacts of biomass burning (BB) on tropospheric ozone 272 

3.2.1 Uncertainties in BB emission inventories  273 

Although the GEOS-Chem model has been widely employed for modeling tropospheric ozone globally (Balamurugan et 274 
al., 2021; Li et al., 2023), its evaluation against measurements over Southern Africa is very limited. In order to accurately 275 
evaluate the effects of BB emissions on tropospheric ozone, we need to take the uncertainties from different BB emissions 276 
into account (Wiedinmyer et al., 2023).  277 
 278 
We compared the monthly emissions of BB NOx in 2014 for the Southern Africa from the six emission inventories 279 
(GFED4.1, GFED5, QFED2, GFAS, FINNv1.5, and FINNv2.5), as illustrates in Figure 4c. All of the six BB inventories 280 
share the similar seasonality in NOx emissions, but there are large differences with a factor of 2-3 in estimated emission 281 
intensities, particularly in the dry season. The inventory was divided into two groups based on the level of emissions, with 282 
the high emission groups being FINNv2.5, GFED5, and GFED4.1. FINNv2.5 shows the highest BB NOx emissions, which 283 
are 45% higher than GFED4 emissions and 130% higher than QFED2 emissions, but Wiedinmyer et al. (2023) also suggests 284 
that FINNv2.5 probably tends to overestimate NOx emissions in Africa. GFED5 is an updated version from GFED4.1, and 285 
their difference in NOx emissions is minimum in January-July and enlarged in August. The low emission groups are: 286 
QFED2, GFAS, and FINNv1.5. GFAS and FINNv1.5 resemble in the estimated NOx emissions but both of them are 287 
significantly lower than the other inventories. This lower estimate in the bottom-up FINNv1.5 inventory may be attributed 288 
to the underestimated burned area and emissions (Wiedinmyer et al., 2011) , and the lower top-down GFAS estimate could 289 
be due to a smaller emission factors (Liu et al., 2020). Therefore, in the following, we will use the GFED4.1 and QFED2 290 
inventories to represent the high estimate and low estimate of BB NOx emissions for Southern Africa, respectively. 291 
 292 
Spatially, there are also evident differences among different biomass burning inventories (Figure S4). The spatial 293 
distribution of the high values in GFED4.1 and QFED2 is generally consistent with a spatial correlation coefficient of 0.76, 294 
both showing high emissions in northeastern Angola. In contrast, the GFED5 inventory has high NOx emissions 295 
concentrated in southwestern Congo, and its spatial distribution differs considerably with QFED2. The GFAS inventory 296 
has a similar spatial distribution with QFED2 (a correlation coefficient of 0.84), but GFAS cannot capture the localized 297 



 15 

high emissions as shown in QFED2 and GFED4.1. However, the FINNv1.5 and FINNv2.5 exhibit a very different spatial 298 
distribution compared to other inventories, with low emissions in Angola and high emissions in the Congo region. Their 299 
spatial correlation coefficients with the QFED2 inventory are 0.06 and 0.31, respectively. 300 
 301 
In addition to NOx emissions, the VOC emissions are the highest in GFED5 and FINNv2.5 inventories, and the other four 302 
inventories show much smaller VOC emissions. Each inventory adopts different specific ratios for emitted chemical 303 
species, but they also differ with each other. For example, there is a NOx/OC ratio of 1:0.6 in GFED4.1, 1:1.5 in GFED5, 304 
GFAS, and FINNv1.5, 1:3 in QFED2, and 1:1 in FINNv2.5 (Figure S5). 305 

3.2.2 Simulated tropospheric ozone with different BB emissions 306 

The simulated spatial distribution of MDA8 ozone in Africa during the fire season (July-August) in 2019 by using the 307 
GEOS-Chem model with the GFED4.1 and the QFED2 inventories, respectively (Figures 4a-4b). The simulated surface 308 
MDA8 ozone by the GFED4.1 inventory is 74 ppb over Southern Africa, which is 32% higher than the value of 56 ppb by 309 

the QFED2 inventory.The maximum value of MDA8 ozone by the GFED4.1 inventory can reach up to 120 ppb, but the 310 

maximum value by the QFED2 inventory is only 70 ppb. This remarkable discrepancy suggests that the uncertainties in 311 
BB emissions could play an important role in simulating surface ozone over Southern Africa. This is consistent with 312 
previous work that BB emissions lead to strong ozone increases in Southern Africa during the fire season (V. Clarmann et 313 
al., 2007; Jaffe and Wigder, 2012). For the tropospheric ozone, Figures 5a-5b show the simulated spatial distribution of 314 
TCO by using the GFED4.1 and QFED2 inventories. In contract to surface ozone, the regional average of TCO simulated 315 
by the GFED4.1 inventory is only 4 DU (11%) higher than that simulated by the QFED2 inventory. We will show the 316 
simulated ozone difference between these two inventories is mainly caused by BB NOx emissions, while BB VOC 317 
emissions only impact ozone levels slightly (Figure S6).     318 
 319 
To evaluate the model performance in simulating the vertical profile of tropospheric ozone in Africa, we compared the 320 

model results with ozonesonde observations from Ascension Island, UK (7°96'S, 14°91'W) in Figure 6. As shown in 321 

Figure 1, Ascension Island is located downwind of the high BB area, and ozone and its precursors from BB can be 322 
transported from Southern Africa to the South Atlantic (Mari et al., 2008), leading to ozone enhancement in Ascension 323 
Island (Jenkins et al., 2021). The ozone concentrations modeled by GEOS-Chem respond well to the ozonesonde 324 
observations in terms of vertical distribution, and in particular the model captures the variation in observations with altitude 325 
well. The differences in ozone vertical distribution due to the two BB inventories are notable in the troposphere below 6 326 
km, in particular at the altitude range of 3-6 km (Figure S7). Compared to the ozonesonde observations, this bias can be 327 
also found while GEOS-Chem captures the vertical ozone variations well regardless of which inventory is used. This is 328 
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consistent with the results of small TCO differences in Figures 5a-5b. Compared to the ozonesonde observations, GEOS-329 
Chem captures the ozone variations well regardless of which inventory is used. 330 
 331 

3.2.3 Satellite constraints on BB emission estimates 332 

In order to evaluate the tropospheric ozone simulation in Africa region, in Figure 5 and Table S1 we compared the 333 
simulated columns with GFED4.1 and QFED2 inventories against satellite observations of TCO and ozone precursors (e.g., 334 
NO2, CO, and HCHO). The simulated TCO with GFED4.1 inventory shows high values of up to 50 DU near the fire source 335 
regions in northern Angola and southern DRC, and in the downwind region over Atlantic Ocean. The OMI TCO has the 336 
regional average of 37.4 DU, suggesting an overestimation of 14% in the GFED4.1 simulation relative to OMI. In contrast, 337 
the simulated TCO with QFED2 inventory is strongly spatially consistent with the OMI satellite, with a slight 338 
overestimation of 2.3%.  339 
 340 
We also compared the simulated and observed tropospheric NO2 columns, illustrated in Figures 5d-5e. The GFED4.1 341 
inventory simulation exhibits high value of up to 28 × 1015 molecule cm-2 near the BB source region, but there is a large 342 
overestimation of 87% with respect to the OMI satellite data. Similar conclusions are also from Anderson et al. (2021) that 343 
the model using the GFED4.1 inventory can capture high NO2 in Africa but the bias was as high as 100%. This is in 344 
agreement with previous studies that model simulations trend to produce a high bias towards BB activities in Africa (Souri 345 
et al., 2024). However, the QFED2 inventory simulation can greatly reduce this high bias, with an overestimation of only 346 
34%. In Figure S8, we also compared model results with the TROPOMI satellite, and a similar high bias was also found 347 
in the modeled NO2 columns. If we further have QFED2 NOx emissions reduced by 34%, as shown in Figure S9, it can 348 
effectively reduce the bias for NO2 columns from 34% to 0.4% and reduce the overestimation of the TCO columns to 1.1%. 349 
It is noted that this comparison between the simulated and satellite-based tropospheric columns could be biased due to their 350 
different representativeness in vertical profiles of chemical species. Anyway, this sensitivity simulation demonstrates the 351 
importance role of BB NOx emissions in tropospheric ozone production. In contrast, we find that the BB VOC emissions 352 
from GFED4.1 inventory are about 3 times the QFED2 inventory in fire season, but the regional mean changes are only 353 
2.5 ppb for MDA8 ozone and 0.94 DU for TCO for July-August 2019 in response to a tripled QFED2 VOC emissions 354 
(Figure S6).  355 
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 356 
Figure 6. The comparison of GEOS-Chem simulated and measured vertical ozone distributions over the Ascension Island, 357 
UK, for July-August 2017-2019. The model results by the GFED4.1 (red) and QFED2 (blue) inventories are both given. 358 
 359 
HCHO is one of the important VOCs in the troposphere, and a comparison of simulated and satellite-derived tropospheric 360 
HCHO columns is given in Figures 5g-5i. The HCHO column concentrations simulated by GEOS-Chem and the satellite 361 
observations exceeded 20 × 1015 molecule cm-2 in northern Angola and southwest DRC, and the underestimated HCHO 362 
columns in GEOS-Chem might be due to some missing VOC species (Zhao et al., 2024) and the lower anthropogenic NOx 363 
emissions in Southern Africa that both affect the chemical production of HCHO. Simulated HCHO column concentrations 364 
between the GFED4.1 and QFED2 inventories were consistent spatially, with only a difference of 1 × 1015 molecule cm-2 365 
on a regional basis. The levels and spatial distributions of HCHO are mainly influenced by BVOC and BB emissions. 366 
Firstly, the Congo Basin, as one of the largest tropical rainforests, emits a large amount of BVOCs that can be oxidized to 367 
generate high values of HCHO (Wells et al., 2020). It leads to the spatial distribution of HCHO similar to the distribution 368 
of BVOC sources. Secondly, BB is found to be one of the main sources of HCHO in the African continent (Liu et al., 369 
2020). Differences in VOC and NOx emissions between GFED4 and QFED inventories (Van Der Werf et al., 2017), e.g., 370 
BB VOC emissions in GFED4.1 being two times of the QFED2 inventory in 2019, may account for the slightly different 371 
HCHO columns.  372 
 373 
The simulated CO columns in Figures 5j-5l are spatially similar to MOPPIT retrievals, with high values in the downwind 374 
regions of fire sources. The regional average of CO column concentrations simulated by GEOS-Chem is underestimated 375 
by approximately 10% compared to MOPITT, which reflects a long-lasting issue of CO underestimation in GEOS-Chem 376 
model (David et al., 2019; Ni et al., 2018). Hoelzemann (2006) used a variety of BB emission inventories to drive the 377 
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MOZART model to simulate CO concentrations in Southern Africa in September-October 2000, and they showed that all 378 
simulations exhibited an underestimation against the MOPITT CO. In addition, we also found that the simulated spatial 379 
distribution of CO columns is similar with each other among different BB inventories, and their regional difference is only 380 
1%. This suggests that neither HCHO nor CO is the main reason for the overestimation of ozone production. 381 

 382 

Figure 7. The comparison of GEOS-Chem simulated AOD in Africa in July-August 2019 with the MODIS AOD. The 383 
model results by the GFED4.1 (left) and QFED2 (middle) inventories are both given. 384 

 385 
We compared the spatial distribution of modeled and satellite-based AOD as shown in Figure 7. The simulation results by 386 
both inventories can capture the spatial variability of MODSI AOD. But simulated regional mean AOD by the QFED2 387 
inventory overestimated MODIS AOD by 26%, while the GFED4.1 inventory underestimated MODIS AOD by 37%. Tian 388 
et al. (2019) used GFED4 as an input to drive the GEOS-Chem model and also showed that the model tended to 389 
underestimate the intensity and spatial distribution of AOD in the African region. The inconsistency between these two 390 
inventories may be attributed to the discrepancy in carbonaceous aerosol emissions, since the OC and BC emissions from 391 
GFED4 are only half of the QFED emissions (Chang et al., 2023). In addition, the difference between OC and BC in the 392 
biomass burning emission inventories could affect ozone simulation through aerosol chemistry, and the results are shown 393 
in Figure S10. Aerosol chemistry mainly influences ozone formation by altering photolysis and heterogeneous processes. 394 
On the one hand, aerosol can change the shortwave radiation reaching the ground through scattering and absorption, which 395 
in turn affects the photolysis rate. On the other hand, aerosol can update reactive radicals (e.g., HO2, nitrogen radicals) that 396 
are critical for ozone formation. After turning off aerosol chemistry alone in the model, regional surface ozone was 397 
increased by 10 ppb and TCO by 2 DU using the GFED4.1, while using the QFED2 regional ozone was increased by 14 398 

ppb and TCO by 4 DU. As such, the lower level of aerosols in GFED4.1 may be a reason for the overestimation of simulated 399 

ozone concentrations. 400 
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 401 
In conclusion, the widely-used GFED4.1 inventory has a large bias in simulating tropospheric ozone in Southern Africa, 402 
and the QFED2 inventory exhibit much more consistent with satellite observations in terms of simulated concentration 403 
levels and spatial distributions (Table S1). This bias is mainly due to the overestimation of NOx emissions in Southern 404 
Africa in GFED4.1. Firstly, NOx emissions in GFED4.1 are 38% higher than in QFED2 in Southern Africa. Secondly, the 405 
modeled NO2 column in GFED4.1 shows a high bias compared to QFED2 and satellite observations, while the modeled 406 
HCHO and CO columns are generally consistent between GFED4.1 and QFED2 inventories. Thus, we conclude that the 407 
overestimation of ozone in Southern Africa simulated with GFED4.1 is due mainly to the overestimation of NOx and the 408 
lower aerosol levels in GFED4.1 may be a minor reason for the overestimation of modeled ozone concentrations. We will 409 
use the QFED2 inventory for BB emissions in the following analysis. 410 

3.2.4 Role of BB emission heights in ozone simulation 411 

The representativeness of BB emission injection heights is also an important factor that can impact ozone simulations 412 
(Rémy et al., 2017). We conducted a sensitivity experiment using the QFED2 inventory and allowed all BB emissions 413 
emitting below the PBL. As shown in Figure 8, the impact of this vertical partitioning on surface ozone varies regionally. 414 
At the surface, the changes of MDA8 ozone were within ± 2.4 ppb and the BB source areas showed a decreased ozone. For 415 
TCO, the simulated mean values with this vertical partitioning were 0.2 DU higher than those without vertical partitioning, 416 
but the magnitude of this effect is smaller than the TCO changes (~4 DU) caused by the difference in BB NOx emissions 417 

between GFED4.1 and QFED2 inventories. Thus, our simulations demonstrate that the configuration of BB emission height 418 

has a limited effect on surface ozone level but a moderate influence on TCO columns in this region. 419 

3.3 Impacts of anthropogenic emissions on tropospheric ozone 420 

3.3.1 Uncertainties in anthropogenic emission inventories 421 

Uncertainties may exist in anthropogenic emissions from regional scale to urban cities in Southern Africa. For example, in 422 
Table 3 we compared the differences in NOx emissions between two widely-used global inventories: Community 423 

Emissions Data System (CEDSv2) and HTAPv3. Whether in Southern Africa or Luanda, there is a missing seasonality 424 

in NOx emissions in CEDSv2, whereas NOx emissions in HTAPv3 are much higher in January-February than in other 425 

months. Over the Southern Africa, monthly NOx emissions in the CEDSv2 are about 30% lower than the HTAPv3 in 426 

January-February. For Luanda, the CEDSv2 inventory is 87% lower than HTAPv3 in January-February 2018 and 20-50% 427 
lower in the other months. In addition, the validation of anthropogenic emission in global inventories was barely evaluated 428 
in this region and we will take advantage of recently available surface measurements and satellite retrievals to fill this gap.  429 
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3.3.2 Model evaluation against surface measurements of NO2 and PM2.5 430 

Currently, there are very few surface observations in Southern Africa. However, in the study, there are three cities 431 
(Humpata, Luanda, and Luena) that have continuous surface measurements of NO2 during the period of June-August 2023, 432 
and four cities (Humpata, Luanda, Luena, and Lusaka) with surface measurements of PM2.5. These measurements are 433 
critical to understand the hotspots of urban anthropogenic emissions as indicated in Figure 2a. Luanda is the capital of 434 
Angola with dense population, and the median surface NO2 concentrations observed at this station ranged from 10 ppb to 435 
30 ppb. The 436 

 437 
Figure 8. Effects of vertical partitioning of model BB emissions in surface MDA8 ozone and tropospheric ozone columns. 438 
The baseline simulation follows the vertical distribution of QFED2 emission (i.e., 65% emissions below the PBL and 35% 439 
emissions into the free atmosphere), and the sensitivity simulation allows 100% BB emissions emitted below the PBL. 440 
Here the plots are the differences between the baseline simulation (Run_QFED) and sensitivity simulation 441 
(Run_QFED_PBL). 442 

 443 

 444 

 445 

 446 

 447 
 448 
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 Table 3. Monthly anthropogenic NOx emissions in Southern Africa and Luanda (unit: Gg month-1). 449 

  Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

Southern 
Africa 

CEDSv2 18.2 16.5 18.2 17.6 18.2 17.6 18.2 18.2 17.6 18.2 17.6 18.2 

HTAPv3 27.1 24.9 17.6 17.0 17.3 18.9 19.0 17.1 16.7 17.8 17.0 16.4 

Luanda 
CEDSv2 0.8 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

HTAPv3 6.3 5.2 1.5 1.0 1.2 1.1 1.1 1.2 1.0 1.3 1.2 1.0 

 450 
Humpata station is located at Universidade Privada de Angola, where the observed NO2 concentrations ranged from 5 ppb 451 
to 25 ppb, with large day-to-day variations of up to 20 ppb. The Luena station is located in a residential area of Luena, 452 
where the observed NO2 concentrations were much higher than those of the previous two stations, with a maximum of 50 453 
ppb. Figure 9 shows the comparison of the observed and simulated daily surface NO2 concentrations in Luanda, Humpata, 454 
and Luena, respectively. Compared with the observed values, the modeled NO2 concentrations for all three cities are much  455 
lower than the observed values, underestimated by 90%. There is also a large underestimation of surface NO2 in Luanda 456 
compared to the observations from Campos et al. (2021). This indicates that urban NOx emissions in our model are highly 457 
underestimated in Southern Africa, although the lack of model resolution accuracy is also a reason for the underestimation 458 
at the station scale. 459 
 460 
To test the sensitivity of simulated NO2 concentration to urban emissions, we increased the NOx emissions in the CEDSv2 461 
inventory by a factor of 10, and the model results are shown in Figure 9. In Luanda, the Normalized Mean Bias (NMB) of 462 
simulated NO2 concentrations will be decreased from -94% in the baseline simulation to -55%, while the changes of NO2 463 
in Humpata and Luena are very limited with an improvement of the NMB of only 5%. Even if when NOx emission is scaled 464 
up by a factor of 20, the simulated NO2 concentrations in Humpata and Luena are increased by only 11-21%. For Luanda, 465 
there is a NMB of -50% in modeled surface NO2 with 10-fold NOx emissions. But for Humpata and Luena, the CEDSv2 466 
inventory is not capable to correctly estimate the anthropogenic sources, leading to the small sensitivity of simulated NO2 467 
concentration to perturbed urban emissions.  468 
 469 
 470 
 471 
 472 
 473 
 474 
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 475 

Figure 9. Time series of simulated and observed daily median surface NO2 concentrations in Southern African cities 476 
(Luanda, Humpata, Luena) in June-August 2023. The model was driven by the QFED2 inventory and fixed CEDSv2 477 

inventory in 2019. The "SIM" denotes the baseline simulation (Run_QFED_2023), and "SIM_10NOx", and "SIM_20NOx" 478 

denote the 10-fold and 20-fold increase in NOx emissions from CEDSv2. The dashed lines indicate a 10-fold increase in 479 
NOx emissions from the energy (ene), industry (ind) and transportation (tra) sectors, respectively, in the CEDSv2 inventory. 480 
 481 
Although this study focused on ozone simulation, the comparison of model results against the valuable PM2.5 measurements 482 
will be also meaningful to understand urban emissions in this region. Figure 10 shows the time series of observed and 483 
simulated PM2.5 concentrations in June-August 2023. The PM2.5 concentrations observed at both the Humpata and Luanda  484 
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 485 
Figure 10. Comparison of simulated time series of PM2.5 and its components against with the observed PM2.5 (black line) 486 
during June-August 2023. (a) and (b) are for Humpata and Luanda, respectively, where we removed dust concentrations 487 
from the simulated PM2.5 due to the large uncertainties in the model, and (c) and (d) are for Luena and Lusaka, respectively. 488 
The pie charts show the percentage contributions of each component to total PM2.5 concentrations. 489 
 490 

sites were around 10 µg m-3. The PM2.5 concentrations at the Luena site were slightly higher compared to the other two 491 

sites, with median concentrations ranging from 10 µg m-3 to 70 µg m-3. Lusaka is the capital of Zambia and the observed 492 
site is located within the urban area of Lusaka, where PM2.5 concentrations were about 10 µg m-3 in June-July and then 493 
suddenly increased to about 20 µg m-3 in August. Figure S11 shows the comparison of simulated and observed PM2.5 494 
concentrations, and the model can capture the day-to-day variation in PM2.5 concentrations at Luena as well as Lusaka 495 
sites, with NMBs of -12% and 24% and correlation coefficients of 0.7 and 0.87, respectively. But in Luanda and Humpata, 496 
there is a large overestimation in simulated PM2.5 concentration and a large proportion of PM2.5 components is contributed 497 

by dust, possibly due to the influence of the Namib and Kalahari Deserts (Nyasulu et al., 2023). We excluded dust 498 
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concentration in the calculation of total PM2.5 concentration for the time being, due to its large uncertainties in the GEOS-499 
Chem simulation (Weagle et al., 2018). After removing dust concentration, the NMB in the model will be reduced from 500 
149% to 37% in Luanda.  501 
 502 
In terms of PM2.5 components, the highest contribution of OC to PM2.5 concentrations is found at all the four sites, which 503 
can be attributed to the effects from biomass burning (Nyasulu et al., 2023). Secondary inorganic aerosols account for 504 
about 20% at Luanda and about 10% at other sites. In addition, we also compared the changes in PM2.5 concentrations at 505 
each site after scaling up anthropogenic NOx emissions by a factor of 10, and found that PM2.5 at the Luanda site can 506 
increase by up to 50 µg m-3. In previous studies, changes in PM2.5 concentrations in Southern Africa have often been 507 
attributed to BB (Nyasulu et al., 2023; Booyens et al., 2019). However, this study shows that anthropogenic emissions in 508 
Luanda could also have a great impact on PM2.5 concentrations, highlighting the underappreciated role of anthropogenic 509 
emissions in urban air quality over the Southern Africa. 510 

 511 

We further explored the sensitivity of ozone concentration to perturbed NOx emissions. Figure S12 shows the response of 512 

ozone concentration at each site after anthropogenic NOx was increased by 10 times. Relative to the baseline run, the ten-513 

fold NOx simulation can increase ozone concentrations by 0-10 ppb in the Humpata and Luean regions. However, in Luanda 514 
there was increased ozone in June but decreased ozone in July-August in response to ten-fold NOx emissions, indicating 515 
that ozone chemistry in Luanda may be likely shift into transition regime with increasing emissions. Again, these results 516 
confirm that the underestimation of anthropogenic emissions in the urban areas of Southern Africa now can have an 517 
important impact on local ozone assessment.  518 
 519 
Although there is a lack of surface ozone observations in Southern Africa that can be directly compared with our model 520 
results, we can conclude from the model evaluation against surface NO2 and PM2.5 measurements: 1) the large 521 
underestimation in modeled urban scale NO2 in Southern Africa is mainly due to large low biases of NOx emission in the 522 
CEDSv2 inventory, i.e., a strong underestimation in Luanda and the misrepresentation of anthropogenic emission estimates 523 
in Humpata and Luena, 2) the model is able to capture the observed variations in PM2.5 concentrations in the areas that are 524 
less affected by dust, and 3) the bias in anthropogenic emission inventories can strongly affect the assessment of PM2.5 and 525 
ozone concentrations in urban Southern Africa. 526 

3.3.3 Model evaluation against satellite measurements  527 

Satellite observations were further used to support the deduction of the underestimated urban emissions. As the capital of 528 
Angola, Luanda is of much higher anthropogenic emissions compared to other cities in Southern Africa. In the following, 529 
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we focused on Luanda where satellite signals could be stronger to detect NOx emissions. Figure 11 shows the simulated 530 

and satellite-based NO2 columns for fire season (July-August 2019) and non-fire season (January-February 2020), 531 

respectively. To minimize the effects from background levels, here the NO2 values are the columns at Luanda minus the 532 

mean columns averaged over the sea downwind. For July-August 2019, the urban NO2 enhancement in Luanda simulated 533 
by the model was 26% lower than that observed by the TROPOMI; for January-February 2020, the simulated NO2 534 
enhancement was underestimated by 61% compared to TROPOMI. Due to the decreased contribution from anthropogenic 535 
sources to NO2 columns during the fire season, the moderate underestimation during fire season (July-August 2019) in 536 
Luanda may be due to the long-term transport of pollutants from biomass burning to urban areas. As suggested by 537 
TROPOMI satellite, therefore, NOx emissions from CEDSv2 were underestimated by at least a factor of 2 in urban Luanda. 538 
At the same time, we find that the NO2 enhancement in Luanda observed by OMI was 70% lower compared to TROPOMI 539 
and the OMI instrument cannot detect the high emissions in Luanda, demonstrating the advantage of TROPOMI instrument 540 
in observing regions with significant NOx spatial heterogeneity. 541 
 542 

 543 
Figure 11. Spatial distribution of NO2 columns from the model, OMI, and TROPOMI during the fire season (top, July-544 
August 2019) and non-fire season (bottom, January-February 2020). Circles indicate the Luanda city and numbers around 545 
them indicate NO2 column enhancement in the Luanda city. The dashed boxes indicate the downwind ocean region whose 546 
concentrations were subtracted to obtain the NO2 column enhancement in Luanda. 547 
 548 
To further identify the key emission sectors in Luanda, we perturbed the NOx emissions from three sectors (transportation, 549 
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industrial, and energy) by a factor of 10 in Figure 9a. Surface NO2 concentrations in Luanda responded better to changes 550 
in NOx emissions from the energy and transportation sectors, with NMB reduced by 20% and 11%, respectively. Figure 551 
S13 shows the NO2 column changes in response to the emission perturbations. When all sources of NOx emissions in the 552 
CEDSv2 inventory were increased by a factor of 10, the simulated NO2 column enhancement in Luanda will be 3-4 times 553 
the TROPOMI measurement. Namely, the ten-fold increase in NOx emissions to be consistent with surface measurement 554 
cannot reconcile with satellite measurements. In addition, the response of NO2 column in Luanda to sectoral perturbations 555 
in NOx emissions is mainly linear (Figure S13). These model-satellite comparisons suggest an underestimation of NOx 556 
emissions from CEDSv2 by at least a factor of 2 in urban Luanda. 557 
 558 
To further explore the underestimation of anthropogenic emissions in Southern Africa, we use Luanda as a baseline to 559 
show the difference between anthropogenic NOx emissions and satellite NO2 columns for other cities in Figure 12. The 560 
selected cities are grid cells with high NOx emissions in the CEDSv2 inventory. The tropospheric NO2 during non-fire 561 
season is dominantly contributed by the lower atmosphere (Figure S14), and then we selected March-April 2018-2023 for 562 
comparison in order to exclude the effect of biomass burning. In Kinshasa (the capital of the DRC), anthropogenic NOx 563 
emissions are 76% lower than those in Luanda, but their difference in satellite NO2 columns was only 4-12%, suggesting 564 
that anthropogenic emissions from Kinshasa were also underestimated; In Lusaka (the capital of Zambia), its NO2 columns 565 
were 55 % lower than those in Luanda while the difference is 76% in anthropogenic NOx emissions. Combining satellite 566 
data with CEDSv2 NO2 emissions provides additional evidence of the prevalent underestimation in anthropogenic NOx 567 
emissions in major cities over Southern Africa. 568 
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 569 
Figure 12. Anthropogenic NOx emissions from CEDSv2 and NO2 columns from TROPOMI in typical cities in Southern 570 
Africa. (a) Spatial distribution of NOx emissions from the CEDSv2 inventory in March-April of 2018-2019. (b-d) Spatial 571 
distribution of NO2 columns observed by TROPOMI in March-April, 2018-2023. All of the numbers in the plots are the 572 
percentage changes by taking Luanda as a reference. 573 

4. Conclusions and discussion 574 

In this study, we focused on Southern Africa where tropospheric ozone levels were thought extremely high but have been 575 
less studied. By integrating the nested GEOS-Chem model and the newly-available surface and satellite observations to 576 
evaluate the tropospheric ozone and its main drivers in Southern Africa. In particular, we quantified the impact of biomass 577 
burning (BB) on tropospheric ozone at the regional scale in Southern Africa and the effects of anthropogenic emissions in 578 
urban ozone level. This study provides a better understanding of the impacts of key emission sources on air quality 579 
modeling in Southern Africa, which will be also important for health risk assessment, climate change prediction, and 580 
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sustainable strategy development.   581 
 582 
The anomalously high values of dry-season tropospheric ozone in Southern Africa are mainly caused by BB, but there is a 583 
large discrepancy of a factor of 2-3 in estimated BB emissions among different inventories. Comparison of model 584 
simulations against NO2 satellite observations revealed that the widely-used GFED4.1 inventory tends to strongly 585 
overestimate NOx emissions in Southern Africa, while model results with the QFED2 inventory were more consistent with 586 
observations. This is consistent with the finding by Anderson et al. (2021) that their model driven by the GFED4.1 inventory 587 
tended to overestimate NO2 concentrations in the Africa , with a bias of about 100%. Consequently, the simulated regional 588 
surface MDA8 ozone was decreased from 74 ppb by GFED4.1 inventory to 56 ppb by QFED2 inventory, and accordingly 589 
the model bias in TCO was reduced from 14% to 2.3%. The modeled HCHO and CO columns are consistent between 590 
GFED4.1 and QFED2 inventories. Using the QFED2 inventory, we explored the impact of BB emission heights on ozone 591 
simulations and found that the effect of the vertical emission distribution was in the range of ± 2.4 ppb for surface MDA8 592 
ozone and from -0.4 to 1.6 DU for TCO over Southern Africa; in contrast, the difference in BB aerosol emissions between 593 
the inventories could affect ozone simulation strongly through aerosol chemistry. 594 
 595 
We conducted further sensitivity experiments using the QFED2 inventory to explore the contribution of anthropogenic 596 
emissions. Compared with surface NO2 and PM2.5 observations, we found that the CEDSv2 anthropogenic inventory likely 597 
strongly underestimated anthropogenic emissions in typical Southern African cities and even incorrectly represented 598 
anthropogenic sources in some areas. Our study also found that the TROPOMI performs effectively in these low emission 599 
areas where there is a lack of observational data, and the OMI instrument is unable to capture urban-scale hotspots in NO2 600 
columns over Southern Africa. We also demonstrated that urban ozone and PM2.5 concentrations are strongly influenced 601 
by the underestimated anthropogenic emissions. For example, a ten-fold increase in anthropogenic NOx emissions can 602 
change ozone concentrations by up to 10 ppb and increase PM2.5 concentrations by up to 50 µg m-3 in some cities.  603 
 604 
Although several studies examined high ozone levels in Southern Africa (Meyer-Arnek et al., 2005; V. Clarmann et al., 605 
2007), they only highlighted the role of biomass burning but overlooked the role of anthropogenic emissions. Although 606 
recent findings by Wiedinmyer et al. (2023) have pointed out the large uncertainties in bottom-up BB emissions, they failed 607 
to constrain the uncertainties due to the lack of observational data. Here we found that the difference among BB inventories 608 
can have a great impact on urban air quality assessment. In addition, with combined surface observations, satellite data and 609 
model simulations, we demonstrated for the first time that anthropogenic emission inventories are strongly low-biased in 610 
urban Southern Africa. It suggests the important impacts of anthropogenic emissions in Africa with increasing urbanization. 611 
 612 
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The rapid change in anthropogenic emissions is already affecting air pollution and health risks in Southern Africa (Health 613 
Effects Institute, 2022), as well as might have impacts on regional climate change (Fotso‐Nguemo et al., 2023). Assessing 614 
and predicting the impacts of different emission sources on air quality and human health rely heavily on model simulations. 615 
The performance of these model estimations is significantly influenced by the accuracy of emission inventories. For 616 
example, our finding of overestimated biomass burning emissions and underestimated anthropogenic emissions can 617 
strongly affect the ozone source attribution over Southern Africa due to the nonlinear ozone chemistry. As shown in Figure 618 
S15, in the dry season of 2019, regional surface MDA8 ozone over Southern Africa was contributed by 11 ppb, 8.0 ppb, 619 
and 1.5 ppb from BB emissions, natural emissions (mainly biogenic VOC), and anthropogenic emissions, respectively. 620 
However, when anthropogenic NOx emissions were increased by a factor of 10, estimated contributions from natural and 621 
anthropogenic emissions will be increased to 9.0 ppb and 3.3 ppb, respectively. In particular, the ozone source attribution 622 
spatially varies depending on the levels of anthropogenic NOx emissions (Figure 13). This suggests the ignored but critical 623 
role of anthropogenic emissions in ozone levels over Southern Africa.  624 
 625 

 626 
Figure 13. The simulated source contributions to surface ozone in July-August 2019 using the CEDSv2 emissions (dash 627 
lines) and 10-fold CEDSv2 NOx emissions (solid lines). Here the natural emissions refer to the biogenic VOC and soil NOx 628 
emissions. The x-axis is the anthropogenic NOx emissions in each grid cell and the y-axis the corresponding ozone 629 
contributions estimated from the sensitivity simulations. 630 
 631 
There are also some uncertainties and limitations in our assessment of the major drivers of high ozone over Southern Africa. 632 
Firstly, due to the lack of observational data on surface ozone and VOCs, the effect of anthropogenic emissions on surface 633 
ozone over Southern Africa was explored by only comparing surface NO2 concentrations, which may lead to biases in 634 
determining ozone chemical formation. Secondly, although we have used ozonesonde data from Ascension Island 635 
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downwind of Southern Africa for comparison and the study by Jenkins et al. (2021) suggests that BB plumes in Southern 636 
Africa can have an impact on downwind regions, the long-range effects of BB emission on downwind urban regions were 637 
also not well validated due to the lack of vertical ozone measurement. Thirdly, the comparison between the model and 638 
satellite data could be improved by correcting the vertical profiles of chemical species in the process of satellite data. 639 
Fourthly, although the GEOS-Chem model has been shown to be able to capture spatial and temporal variations of ozone 640 
and its precursors over typical urban regions (Travis and Jacob, 2019), it is still challenging to capture the urban scale air 641 
quality in Southern Africa. Without accurate bottom-up anthropogenic inventories, we highlight the importance of high-642 
resolution satellite observations for understanding air quality in developing regions such as Southern Africa. 643 
 644 
Overall, this work provides a comprehensive understanding of the drivers and uncertainties of tropospheric ozone in 645 
Southern Africa, particularly the overestimation in BB emissions and the underestimation of anthropogenic emission 646 
inventories. More importantly, with more frequent BB and rising anthropogenic emissions in Africa, this study highlights 647 
the urgency of establishing the surface network for air quality measurement over Southern Africa. The more accurate 648 
estimates of anthropogenic emission sources and more regular surface observations are the key to understand atmospheric 649 
chemistry over Southern Africa that is driven by rapidly changing anthropogenic and biomass burning emissions. The 650 
deepened understanding of major emission sources in Southern Africa will not only help us to provide a solid scientific 651 
basis for policymakers to effectively address air quality issues, but also will enhance the model capability to predict future 652 
air quality and climate change. In the future, anthropogenic air pollutants (e.g., NOx emissions) in Southern Africa under 653 
future scenarios are projected to increase all the way by 2060 (Figure S16); along with more fires under a warming future, 654 
Southern Africa will be a hotspot suffering from complex atmospheric chemistry and climate issues, presenting a grand 655 
challenge to realize the Sustainable Development Goals for having a healthy, climate-friendly, and resilient development 656 
in Africa. Our study serves as a baseline understanding of these key emission sources which are key drivers for modelling 657 
future air quality, climate change, and their socioeconomic impacts. 658 
 659 
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