
1 

 

Global flux-based ozone risk assessment for wheat up to 2100 under 

different climate scenarios 

Pierluigi R. Guaita1,8, Riccardo Marzuoli1, Leiming Zhang2, Steven Turnock3,4, Gerbrand Koren5, 

Oliver Wild6, Paola Crippa7, Giacomo Gerosa1 

1Dep. Mathematics and Physics, Catholic University of the Sacred Heart, Brescia, Italy 5 
2Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, 

Canada 
3Met Office Hadley Center, Exeter, UK 
4University of Leeds Met Office Strategic (LUMOS) Research Group, University of Leeds, UK 
5Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands 10 
6Lancaster Environment Centre, Lancaster University, Lancaster, UK 
7Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA 
8Department of Applied Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA 

Correspondence to: Pierluigi R. Guaita (pierluigirenan.guaita@unicatt.it), Giacomo A. Gerosa (giacomo.gerosa@unicatt.it) 

Abstract. The negative effects of tropospheric ozone (O3) on vegetation can lead to reduced photosynthesis, accelerated leaf 15 

senescence, and other negative outcomes which affect crop yields and biodiversity. This study presents a flux-based 

assessment of the global impact of O₃ on bread wheat (Triticum aestivum) for the 21st century, under various climate 

scenarios (Shared Socioeconomic Pathways, SSPs). A dual-sink big-leaf dry deposition model is employed to estimate the 

phytotoxic ozone dose (POD) absorbed by wheat through stomata, integrating data from two Earth System Models (ESMs) 

from the Coupled Model Intercomparison Project 6 (CMIP6). The study explores spatial and temporal variations in O₃ 20 

concentrations and the effects of climate variables on stomatal conductance, explaining changes in POD from the present 

time to the century’s end. The results indicate significant regional disparities in O₃ dose for wheat, particularly under weak 

O3 precursor emissions control scenarios. The most vulnerable regions include Northern Europe, East China, and the 

Southern and Eastern edges of the Tibetan Plateau, where the POD increase by the end of the century is expected to be most 

pronounced. Conversely, POD decreases worldwide under stringent pollution emission control scenarios. However, in some 25 

regions, changes in POD may be driven more by climate variables and their interaction with O3, rather than by O3 

concentrations alone. Therefore, this study emphasizes the need for effective emission mitigation policies of both O₃ 

precursors and greenhouse gases to preserve global food security from O₃ damages. 

1. Introduction 

Tropospheric ozone (O3) is a highly reactive gas that can harm vegetation and ecosystems. O3 damages vegetation by 30 

altering plant biochemistry and physiology after entering leaf stomata, resulting in reduced photosynthesis, accelerated leaf 

senescence, and causing the expression of detoxification systems. This in turn reduces canopy carbon gain and export, yield, 
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and biodiversity, among other negative effects (Fuhrer et al., 2016; Grulke and Heath, 2020; Ramya et al., 2023; Wright et 

al., 2018). Vegetation impacts have consequences for food security, as highlighted by (Emberson, 2020). 

O3 impacts on vegetation have been quantified primarily via two methods: the exposure (concentration)-based or the dose 35 

(flux)-based approach. Comparisons of the two approaches have been performed over different vegetation types (Anav et al., 

2016; Hoshika et al., 2020; Karlsson et al., 2007; Mao et al., 2024; Mills et al., 2018; Paoletti et al., 2019; Pleijel et al., 2022; 

Simpson et al., 2007; Tai et al., 2021; Tang et al., 2014). The flux-based approach, which estimates the phytotoxic ozone 

dose (POD), is more biologically meaningful to estimate O3 damage to vegetation, as it accounts for the actual amount of O3 

entering the plants through the stomata, i.e. the stomatal flux, rather than on the simple O3 concentration surrounding the 40 

plants (Paoletti and Manning, 2007). Existing schemes for estimating O3 stomatal flux to vegetation vary in complexity, e.g., 

as a simple function of temperature and solar radiation (Wesely, 1989), a single leaf Jarvis model (Baldocchi et al., 1987; 

Jarvis, 1976), a sunlit/shade (two-big-leaf) scheme (Emberson et al., 2000; Zhang et al., 2003), a photosynthesis approach 

(Ball et al., 1987; Charusombat et al., 2010), and various combinations of the above (Clifton et al., 2023; and references 

therein).  45 

Regional- to global-scale O3 risk assessments for various vegetation types have been extensively conducted over the past two 

decades, using these schemes or exposure-based approaches, and estimating past and present O3 damage over different 

canopies (Anav et al., 2011; Cheesman et al., 2023; Guaita et al., 2023; Mills et al., 2011; Savi et al., 2020; Sharps et al., 

2021a). Many studies concluded that high O3 concentrations can cause significant crop losses and economic damages 

worldwide. For example, for present-day scenarios, Pleijel et al. (2018) indicated ~8% reduction in wheat production in 50 

Europe, North America and Asia, Tai et al. (2021) estimated globally aggregated yield losses of up to 7% for four staple 

crops, and even higher percentage losses have been reported by other studies as reviewed by Emberson (2020). 

Estimation of future O3 impacts on vegetation have been mostly based on the exposure-based approach (e.g., Chuwah et al., 

2015; Sicard et al., 2017). The few studies that have explicitly made regional flux-based estimates of future O3 impacts, have 

assumed either present-day meteorology with projected emissions, or present-day emissions with future climate (Klingberg 55 

et al., 2014; Simpson et al., 2007; Tang et al., 2014). To our knowledge, a comprehensive, global flux-based analysis of 

future O3 impacts across the 21st century, considering both future climate and emission scenarios, is still lacking.  

The present study was designed within the framework of the Ozone Deposition Focus working group of the Tropospheric 

Ozone Assessment Report initiative, Phase II (TOAR-II), to make a global-scale flux-based assessment of future O3 risks for 

bread wheat (Triticum aestivum), which is one of the world’s most important staple food crops and often regarded as a 60 

reference for species with high O3-sensitivity (Mills et al., 2011; Sitch et al., 2007). More specifically, the objectives of this 

research are: 

1. To estimate future trends of POD for bread wheat to the end of the 21st century under different climate change 

scenarios. 

2. To identify vulnerable regions to future food security threats due to the negative O3 effects on wheat.  65 

3. To inform adaptation and mitigation policies to minimize future O3 risk. 
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To address these objectives, we employ a dual-sink big-leaf dry deposition model (Guaita et al., 2023), using meteorology 

and O3 concentrations inputs from Earth System Models (ESMs) participating in the Coupled Model Intercomparison Project 

6 (CMIP6; Eyring et al., 2016). To generate a set of future climate simulations, these ESMs use the forcing datasets 

associated with the so-called “shared socioeconomic pathways” (SSP; Riahi et al., 2017), which are future pathways 70 

combining different trends in social, economic and environmental developments with different assumptions about 

anthropogenic emission mitigation applied on top of these to meet pre-defined climate targets (radiative forcing).  

In the following sections, we describe the adopted methodology, including the analyzed CMIP6 models and the dry 

deposition model used to calculate the POD. We present the main results – i.e. POD trends and maps – and we quantify the 

interaction of O3 risk with climate and O3 concentrations. Finally, we discuss the confidence in our results, contextualizing 75 

them in the broader SSP framework. 

2. Methodology 

This section describes the CMIP6 models and experiments involved in this study, along with associated information on 

sowing dates, plant available water and global region definitions used in this study. Then, we summarize the main features of 

the O3 dry deposition model for wheat (Guaita et al., 2023) that is employed to calculate the POD metric, as well as the 80 

parameterization of the stomatal conductance module. Finally, we outline the methods adopted to present the model outputs 

and describe the statistical tools used for the interpretation of the results.  

2.1 Selection of CMIP6 models and SSPs  

A subset of models from the CMIP6 experiment is selected as input to this work. Specifically, we apply the following 

criteria to identify the model runs suitable for our study: (i) an online/coupled-chemistry framework (AerChemMIP; Collins 85 

et al., 2017) to include the feedback of O3 on climate and (ii) sub-daily temporal resolution of meteorological variables to 

enable O3 flux calculations. According to these criteria, we identify GFDL-ESM4 (Dunne et al., 2020) and UKESM1-0-LL 

(Sellar et al., 2019) for this study. UKESM1-0-LL and GFDL-ESM4 are both fully-coupled global ESMs, which include a 

physical atmosphere-ocean model coupled with additional interactive earth system components including; ocean 

biogeochemistry, stratosphere-troposphere chemistry and aerosol scheme and terrestrial carbon cycles coupled to interactive 90 

vegetation (Table 1). They both have a horizontal grid resolution of between 100 to 140 km in the mid-latitudes, with 

vertical levels extending to the upper stratosphere. Comprehensive chemistry schemes are included within both ESMs 

simulating the reactions and transport of the major chemical species (odd-oxygen Ox, nitrogen NOy, hydrogen HOx = OH + 

HO2, carbon monoxide CO, methane and short-chain non-methane volatile organic compounds) involved in ozone 

formation. In this way the ESMs are able to simulate the interaction between changes in climate and chemistry in both the 95 

historical period and future scenarios.  
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Output from GFDL-ESM4 and UKESM1-0-LL simulations is publicly available from the ESGF metagrid site (Cinquini et 

al., 2014). The model variables required for this study are as follows: surface upward sensible heat flux (hfss, in ESGF 

Metagrid notation), near-surface specific humidity (huss), surface downwelling/upwelling longwave/shortwave radiation 

(rlds, rlus, rsds, rsus, respectively), precipitation (pr), surface air pressure (ps), near-surface wind speed (sfcWind), and near-100 

surface air temperature (tas). O3 concentrations at the lowest model level (sfo3) are requested to be provided at an hourly 

resolution by models participating in AerChemMIP. Additionally, 3D air temperature and specific humidity (ta and hus, 

respectively) are used to convert model level height (Pa) of GFDL-ESM4 to geometric height (m above ground), which is a 

requirement of the dry deposition model used in this study (Guaita et al., 2023). On the other hand, UKESM1-0-LL uses a 

hybrid-height coordinate system, and therefore such conversion is not required for this model. See Appendix for details. 105 

 

Table 1: Key features of the GFDL-ESM4 and UKESM1-0-LL runs used in this study: horizontal nominal resolution, vertical 

atmosphere resolution, atmosphere and chemistry modules wth the corresponding references, variant indicating configurations 

(r=realization of the ensemble, i=initialization method, p=physics version, f=forcing), output frequency (hfss=surface upward 

sensible heat flux, hus= specific humidity, huss=near-surface specific humidity, rlds=surface downwelling longwave radiation, rlus 110 
=surface upwelling longwave radiation, rsds=surface downwelling shortwave radiation , rsus=surface upwelling shortwave 

radiation, pr=precipitation, ps=surface air pressure, sfcWind=near-surface wind speed, sfo3=O3 concentrations at the lowest 

model level, ta=air temperature and tas=near-surface air temperature), and citations for documentation and datasets. 

 GFDL-ESM4 UKESM1-0-LL 

Horizontal resolution 

(lon × lat) 

 Land  

 Ocean 

 

 

1°×1.250° 

0.5° tripolar 

 

 

1.250° × 1.875° 

1° tripolar 

Vertical atmosphere resolution  49 levels to 1Pa (~80km) 85 levels to ~85km 

Atmosphere module GFDL-AM4.1 (Horowitz et al., 

2020) 

HadGEM3-GC3.1 (Kuhlbrodt et 

al., 2018; Williams et al., 2018) 

Chemistry module GFDL-ATMCHEM4.1 (Horowitz 

et al., 2020) 

UKCA-StratTrop (Archibald et 

al., 2020; Mulcahy et al., 2018) 

Variant r1i1p1f1 r1i1p1f2 

Output 

frequency 

1 hour psa, tasa, sfo3 ps, sfo3 

 3 hours psa, tasa, huss, rlds, rlus, rsds, 

rsus, pr 

rlds, rsds, rsus, pr, tas, hfss 

 1 day sfcWind  

 

huss, rlus, sfcWind 
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 1 month hfss, hus, ta  

Documentation Dunne et al. (2020) Sellar et al. (2019) 

Dataset citation Horowitz et al. (2018); Krasting 

et al. (2018) 

O’Connor (2020); Tang et al. 

(2019) 
aps and tas output frequencies are 1 hour for the historical experiment and SSP3-7.0, 3 hours for SSP1-2.6 and SSP5-8.5. 

O3 risk for wheat cultivation up to 2100 is quantified with respect to a POD baseline value, which is calculated as the 115 

average for the period 2000-2014. The POD over the baseline years is derived from the ‘historical’ experiment of CMIP6 

(Eyring et al., 2016, p.201), which is an experiment performed by every CMIP6 model using standardized input data. Future 

O3 risk is estimated based on climate and emission scenarios described by the SSPs (Riahi et al., 2017), which were 

developed for the CMIP6, and results were used in the IPCC Sixth Assessment Report (Intergovernmental Panel On Climate 

Change (IPCC), 2023). Specifically, we focus on the scenarios SSP1-2.6 (Van Vuuren et al., 2017), SSP3-7.0 (Fujimori et 120 

al., 2017), and SSP5-8.5 (Kriegler et al., 2017), as they represent contrasting characteristics in terms of future climate change 

and emission policies for air quality that impact O3 concentrations from 2015 to 2100. Herein we classify SSP1-2.6 as a low-

emissions and low radiative forcing scenario, SSP3-7.0 as a high-emissions and high radiative forcing scenario, while SSP5-

8.5 as a high radiative forcing and partial emission control scenario, with controls beginning in the second half of the 21st 

Century (see Table 2).  Thus, from an O3 concentration perspective, SSP5-8.5 can be broadly considered as an intermediate 125 

scenario, with end-of-century pronounced climate change and O3 concentrations akin to those observed in the historical 

baseline (Turnock et al., 2020). Simulations for these SSPs are available from both GFDL-ESM4 and UKESM1-0-LL 

include the aforementioned SSPs. Further, the SSP3-7.0pdSST experiment (present-day Sea Surface Temperature; Zanis et 

al., 2022) is available from UKESM1-0-LL and is included in this study to assess the effect of changing O3 concentrations 

only in a high-emission/present-day climate scenario.  130 

2.2 Sowing dates and soil hydraulic properties 

The O3 stomatal flux model requires wheat coverage and annual sowing date maps to simulate plant growth. Qiao et al. 

(2023) produced a global dataset of sowing dates and wheat coverage for T. aestivum averaged over specific multi-year 

periods (1990-2000, 2020-2029, 2040-2049, 2090-2099) with a resolution of 0.5° × 0.5° for SSP1-2.6 and SSP3-7.0. In this 

work, these dates are linearly interpolated to obtain yearly maps of sowing dates for the whole globe. The results obtained 135 

for SSP3-7.0 are also used for SSP5-8.5, as the two scenarios have comparable radiative forcing. This dataset is upscaled to 

the resolution of the CMIP6 models. 

Contextually, O3 stomatal flux model requires also wilting point and field capacity soil maps, to simulate plant available 

water during the growing season. Wilting point is defined as the minimum amount of water in the soil that plants require not 

to wilt. On the contrary, field capacity is the maximum amount of water contained in the soil after it has been thoroughly 140 

saturated and allowed to drain. Both of them are expressed as m3 of water to m3 of soil and they vary according to soil 
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texture. Zhang et al. (2018) developed maps of wilting point and field capacity with a resolution of 1 × 1 km2. The value of 

field capacity at each CMIP grid node is obtained by averaging all the 1 × 1 km2 nodes provided by Zhang et al. (2018) that 

belong to the nodes that Qiao et al. (2023) indicated as wheat area. The same is done for the wilting point maps. 

2.3 Dry deposition model for wheat 145 

In this work we apply the O3 dry deposition model developed by Guaita et al. (2023) to compute POD6 values over the entire 

globe. This model is a dual-sink big-leaf model that simulates crop geometry, phenology, plant available water in the soil, 

light penetration within the canopy, and calculates stomatal conductance (gs) and O3 uptake by plants, following the DO3SE 

paradigm originally developed by Emberson et al. (2000). The O3 stomatal flux model receives as input meteorological and 

chemical data from the CMIP6 models under the different SSPs. The model code is developed in MATLAB (version 150 

R2023a). 

O3 deposition from the lowest model level to the vegetated surface is calculated with a resistive network of three resistances 

in series: an atmospheric resistance Ra representing turbulent mixing from the lowest model level to near-surface height, a 

quasi-laminar sublayer resistance Rb representing diffusive transport to the surface, and a surface resistance Rc. The latter 

consists of three resistances in parallel: a cuticular resistance Rcut, a stomatal resistance Rstom and a ground resistance 155 

composed of an intra-canopy resistance Rinc and a soil resistance Rsoil, in series. Ra is calculated following the assumptions of 

the Monin-Obukhov similarity theory, Rb is calculated with the formulation of Hicks et al. (1989), Rcut and Rsoil are assumed 

as constant values of 1500 and 200 s m-1 respectively, and Rinc was calculated following the formulation of Erisman et al. 

(1994). 

The Rstom was calculated as the inverse of gs by applying the empirical Jarvis-Stewart approach (Jarvis, 1976; Stewart, 1988), 160 

which is based on the limitation effect of the main environmental variables on the maximum stomatal conductance to water 

(gmax) of wheat: 

𝑔𝑠 = 𝑔𝑚𝑎𝑥 ⋅ 𝑚𝑖𝑛{𝑓𝑝ℎ𝑒𝑛 ,  𝑓𝑂3} ⋅ 𝑓𝑙𝑖𝑔ℎ𝑡 ⋅ 𝑚𝑎𝑥{𝑓𝑚𝑖𝑛 ,  𝑓𝑡𝑒𝑚𝑝 ⋅ 𝑓𝑉𝑃𝐷 ⋅ 𝑓𝑠𝑜𝑖𝑙}       (1) 

where the f functions (all ranging between 0 and 1) describe the limiting effect on gmax due to environmental variables such 

as light (flight), temperature (ftemp), air water Vapour Pressure Deficit (fVPD) and plant available water in the soil (fsoil), and to 165 

phenological growth (fphen) and O3 dose received by the plants (fO3). The fmin term represents a constant value of 0.01 

indicating the minimum gs expressed relative to gmax during daylight hours. For this study an 𝑓𝑐𝑙𝑖𝑚term is defined, which 

represents the product  (𝑓𝑡𝑒𝑚𝑝 ⋅ 𝑓𝑉𝑃𝐷 ⋅ 𝑓𝑠𝑜𝑖𝑙) and combines the effect of the main climatic factors on gs.  

The O3 dry deposition model considers both sunlit and shaded leaves and varies the crop geometry according to the growth 

and phenology of wheat plants. Further details on the model can be found in Guaita et al. (2023). 170 

For the simulations of this work, different parameterizations of gs for T. aestivum are adopted depending on the different 

biogeographical regions. Contextually to sowing dates, Qiao et al., (2023) categorized wheat-growing areas into four 

climatic zones (temperate, cold, warm, and monsoon) based on the intensity and seasonality of temperature and precipitation. 
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According to this classification, we use the following wheat parameterizations of the gs model, depending on the climatic 

zone: spring wheat (Grünhage et al., 2012) in the cold region, winter wheat (Grünhage et al., 2012) in the temperate region, 175 

and mediterranean wheat (González-Fernández et al., 2013) in the warm and monsoon regions. The only difference 

between the spring wheat and winter wheat parameterization is in the fphen limiting function, which considers the different 

temperature sums used to calculate the mid-anthesis date (the middle of the flowering period of a plant) and the 

corresponding flux accumulation period.  

The gs model for the Mediterranean region was originally parameterized based on field gs measurements collected in Spain 180 

(González-Fernández et al., 2013, currently adopted in the Mapping Manual of the Convention of Long Range Transport of 

Air Pollution of the UN Economic Convention for Europe, LRTAP Convention, 2017). In this study, however, it is also used 

for warm and monsoon climatic zones. Although parameterizations exist for specific regions within these zones, these were 

found to be incomplete for the application in our study (Feng et al., 2012) or very similar to the one by González-Fernández 

et al. (2013) (Yadav et al., 2021).  185 

Once gs is obtained, the seasonal O3 stomatal dose received by wheat plants can be calculated as the phytotoxic O3 dose 

above the Y threshold accounting for plants detoxification capacity (PODY; mmol O3 m-2 of projected leaf area) by 

integrating the hourly O3 stomatal flux (𝐹𝑠𝑂3,𝑖; nmol O3 m-2 s-1) over the flux accumulation period (𝑖 = 0, … 𝑡, i-th hour of 

the accumulation period):  

PODY = ∑ max{𝐹𝑠𝑂3,𝑖 − 𝑌, 0} ⋅ 3600 ⋅ 10−6t
i=0          (2) 190 

where the 𝐹𝑠𝑂3,𝑖 is obtained from the O3 concentration at top canopy height (see Eq. 51, 52 in the Appendix of Guaita et al., 

2023b). For T. aestivum a detoxifying threshold of 6 nmol O3 m-2 s-1 (POD6) is recommended by the (LRTAP Convention, 

2017), while the accumulation period for POD6 calculation runs from the beginning of the anthesis to the plant’s maturity, 

which depends on the phenology limiting function (fphen). In our case, plant’s maturity is set at 1775, 2325 and 2400 °C day 

for spring wheat, winter wheat and Mediterranean wheat, respectively (González-Fernández et al., 2013; Grünhage et al., 195 

2012).  

A well-established dose-response relationship for T. aestivum based on POD6 and relative grain yield (Grünhage et al., 2012; 

LRTAP Convention, 2017; Pleijel et al., 2007) can be used to calculate the relative yield loss (RYL; %): 

RYL = 3.85 ⋅ POD6            (3) 

This relationship predicts a 5% decrease of grain yield for each increment of O3 dose of 1.3 mmol m-2 (PLA, plant leaf area), 200 

and this is defined as the ‘Critical Level’ (CL).  

Compared to the original model described in Guaita et al. (2023), in this exercise (i) pressure and sensible heat flux are 

provided as CMIP6 input, (ii) vapor pressure is calculated from specific humidity by 𝑒 [kPa] = 𝑝 ⋅ 𝑞/0.622, with 𝑝 air 

pressure [kPa] , and 𝑞  the specific humidity [kg H2O (kg air)−1] , and (iii) net radiation is calculated by summing the 

radiation components provided by the CMIP6 models. 205 
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2.4 Assumptions and description of dry deposition model runs 

The O3 stomatal flux model uses output from the ESMs at their native spatial resolution and runs at an hourly timestep. 

However, the CMIP6 models a have different output frequency (Table 1) and, to make full use of the the hourly O3 

concentrations provided by the CMIP6 models, other variables at coarser resolutions are interpolated in time by nearest 

neighbor interpolation, which, compared to linear interpolation, avoids excessive underestimation of the diurnal peaks. Any 210 

output produced in this study has the same spatial resolution as the input data from the CMIP6 model used for the 

simulations. 

Global annual POD6 maps from 2000 to 2099 are produced for each SSP considered. The maps produced are masked with 

the land-use maps of Qiao et al. (2023). Every node where wheat does not reach maturity before the next prescribed sowing 

date (according to González-Fernández et al., 2013 and Grünhage et al., 2012) is excluded from the POD6 map for that year. 215 

The model assumes that soil water content is at field capacity at the sowing date every year. Then, to evaluate the effect of 

soil water on O3 uptake, two contrasting runs are presented: (i) a run that dynamically simulates soil water availability to 

plants, with precipitation as the only source of water (henceforth rain-fed run), and (ii) a run that removes any limitation due 

to soil water content, by assuming plant available water at field capacity, i.e. with 𝑓𝑠𝑜𝑖𝑙 = 1 at every timestep (henceforth FC 

run).  220 

2.5 ANOVA 

A two-way ANalysis Of VAriance (ANOVA; Table 2; von Storch & Zwiers, 1999) is applied to the POD6 values computed 

at the end of the century in order to assess the areas of the globe where the changes of POD6 with respect to the baseline 

period are statistically significant. We consider radiative forcing and control emission policies as the two factors, each one 

applied at two levels, i.e. low/high for radiative forcing (RF), and weak/strong for emission policy (EP). These levels are 225 

determined by the different SSPs, as described by Table 2.  

ANOVA was performed only on the POD6 output produced through the UKESM1-0-LL, since the GFDL-ESM4 is 

incomplete, i.e. does not include the SSP3-7.0pdSST experiments. ANOVA is performed independently in every grid node 

of the map with POD6>0 and a Bonferroni correction is applied to the p-values to account for multiple tests and for multiple 

locations ( #tests × #(nodes with POD6 > 0)  = (8 ⋅ 7/2)  ×  2751 =  77028 ). Furthermore, this analysis allows to 230 

calculate the fraction of explained total variance by each factor, defined as 𝑅2, according to the definition by von Storch and 

Zwiers, 1999. The ANOVA analysis was performed with MATLAB. 

 

Table 2: Configuration for ANOVA by SSPs, classified by emission control policies (EP) and radiative forcing (RF). 

 Emission control policies (EP) 

Strong Weak 
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Radiative 

forcing 

(RF) 

Low SSP1-2.6 SSP3-7.0pdSST 

High SSP5-8.5 SSP3-7.0 

3. Results 235 

3.1 Spatio-temporal patterns of O3 and climate variables and their impacts on stomatal conductance 

Figure 1 shows the O3 mean concentration during the baseline years (2000-2014), and its change (ΔO3) at 2100. O3 

concentrations are expressed at the wheat canopy height (see Eq. 51 in the Appendix of Guaita et al., 2023) and averaged 

over the accumulation period of the stomatal flux. During the baseline years, both GFDL-ESM4 and UKESM1-0-LL show 

similar global O3 mean concentration and standard deviation (Table 3). The Northern Hemisphere presents higher O3 240 

concentrations than the Southern Hemisphere, with the Middle East and Asia the regions with the highest O3 around the 

globe (Figure 1a,b). Nevertheless, UKESM1-0-LL shows stronger latitudinal and elevation gradients compared to GFDL-

ESM4, and generally reports higher concentrations than the latter for latitudes <45°, with the only exception of the Eastern 

Indian peninsula. Turnock et al. (2020) showed that all CMIP6 models tend to overestimate climatological surface ozone 

concentrations in the 2005 to 2014 when compared to observations. The simulated difference of ozone to observations and 245 

also between models could be due to a number of different reasons including uncertainties in the input datasets (emission 

inventories), output processes (deposition) or vertical mixing (Wild et al., 2020). UKESM1-0-LL simulates the strongest 

seasonal cycle in Northern Hemisphere surface ozone out of all of the CMIP6 models, potentially due to excessive NOx 

titration of ozone in this model (Turnock et al., 2020).  

Despite these differences, the two models show similar changes across different SSPs. SSP1-2.6 – which assumes the 250 

implementation of strong policies to reduce air pollution – indicates a decrease in O3 concentrations by the end of the century 

for both models (Figure 1c,d). However, the global mean O3 reduction is 3.1 ppb greater in GFDL-ESM4 than in UKESM1-

0-LL. On the contrary, under scenario SSP3-7.0, which is characterized by weaker air pollution control policies, O3 

concentrations generally increase by 2100, even though some parts of Europe and eastern U.S. show similar or lower 

averages than the baseline (Figure 1e,f). SSP5-8.5 shows the same spatial patterns as SSP3-7.0, but with lower O3 values at 255 

the end of the century, which is consistent with the implementation of strong air quality control policies from 2050 onward, 

despite the strong climate change signal (Figure 1g,h).  

The limiting function 𝑓𝑐𝑙𝑖𝑚 combines the effect of the main climatic parameters (air temperature, VPD and plant available 

water) on stomatal conductance. 𝑓𝑐𝑙𝑖𝑚 ≈ 1 indicates very little limitation to the gs, while descreases in 𝑓𝑐𝑙𝑖𝑚 towards zero 

denote a progressive stomatal closure associated with a decrease in O3 uptake. During the baseline years, the 𝑓𝑐𝑙𝑖𝑚 over the 260 

accumulation period is greater than 0.5 over large areas of Eastern North America, Europe, and East Asia, while widely 

limiting conditions (𝑓𝑐𝑙𝑖𝑚 < 0.2) are mostly in arid regions of the globe (Figure 2a,b). Figure 2c-h shows the changes in 𝑓𝑐𝑙𝑖𝑚 
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at 2100 compared to the baseline (Δ𝑓𝑐𝑙𝑖𝑚). From an O3 risk perspective, negative Δ𝑓𝑐𝑙𝑖𝑚 values (in blue) correspond to a 

stronger limitation of gs and thus, potentially, lower POD6 and O3 damage. On the contrary, positive Δ𝑓𝑐𝑙𝑖𝑚 values (in red) 

correspond to a weaker limitation of gs and higher POD6 and O3 damage. SSP3-7.0 and SSP5-8.5 indicate overall similar 265 

magnitude of Δ𝑓𝑐𝑙𝑖𝑚 across the globe at the end of the century, while SSP1-2.6 shows weaker changes, as expected from the 

weaker RF of this scenario. However, some regional differences across models can be identified. For instance, a higher 

Δ𝑓𝑐𝑙𝑖𝑚  in GFDL-ESM4 is observed over the U.S. and Europe, and across the whole Asia in UKESM1-0-LL. The only 

consistent pattern in 2100 changes across both models and all SSPs is the large positive shift at latitudes greater than 45°, 

which indicates higher stomatal conductance (and better growing conditions) for wheat at higher latitude. This is due to 270 

increased 𝑓𝑡𝑒𝑚𝑝 values, i.e. temperatures closer to the optimum for stomatal conductance (Figure 3a-d). The function  𝑓𝑉𝑃𝐷  

(Figure 3e-h) has non-limiting conditions (𝑓𝑉𝑃𝐷 > 0.9) over most of the globe, with the only exception in desert regions, 

indicating that 𝑓𝑐𝑙𝑖𝑚 is only marginally affected by this component. This function becomes generally more limiting at the end 

of the century, especially for UKESM1-0-LL, because of a general decrease in relative humidity, which is a feature 

frequently observed in future climate simulations (e.g., Fang et al., 2022). The spatial patterns of 𝑓𝑐𝑙𝑖𝑚 appear to be largely 275 

affected by 𝑓𝑠𝑜𝑖𝑙 , because where 𝑓𝑠𝑜𝑖𝑙  is limiting stomatal conductance, 𝑓𝑐𝑙𝑖𝑚 becomes also limiting (Figure 3i-l). 𝑓𝑠𝑜𝑖𝑙  grows 

considerably at the end of the century over arid regions, especially for the SSP3-7.0 and the SSP5-8.5. Maps for SSP1-2.6 

and SSP5-8.5 may be found in the appendix (Figure A1-3). 

 

Table 3: Global means (±SD) for O3 concentrations and Jarvis functions, during the baseline period and at 2100 over wheat-280 
growing regions, for two climate models (GFDL-ESM4 and UKESM1-0-LL) under three different SSP scenarios (SSP1-2.6, SSP3-

7.0 and SSP5-8.5).  

Variable Model Baselinea 
2100a 

SSP1-2.6 SSP3-7.0 SSP5-8.5 

O3 [ppb] 

GFDL-ESM4 35.0 ±  9.1 23.7 ±  7.6  38.1 ± 12.0 36.2 ± 10.9 

UKESM1-0-

LL 
36.3 ± 10.4 28.1 ±  8.3  39.2 ± 10.7 37.3 ±  9.4 

𝑓𝑐𝑙𝑖𝑚 [0,1] 

GFDL-ESM4 0.27 ± 0.24 0.30 ± 0.24 0.35 ± 0.26 0.36 ± 0.26 

UKESM1-0-

LL 
0.30 ± 0.23 0.32 ± 0.24 0.37 ± 0.23 0.34 ± 0.24 

𝑓𝑡𝑒𝑚𝑝 [0,1] 

GFDL-ESM4 0.58 ± 0.27 0.62 ± 0.25 0.71 ± 0.19 0.71 ± 0.17 

UKESM1-0-

LL 
0.58 ± 0.21 0.68 ± 0.18 0.68 ± 0.17 0.71 ± 0.14 

𝑓𝑉𝑃𝐷 [0,1] GFDL-ESM4 0.89 ± 0.16 0.89 ± 0.16 0.86 ± 0.18 0.85 ± 0.19 
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UKESM1-0-

LL 
0.89 ± 0.14 0.84 ± 0.17 0.81 ± 0.20 0.76 ± 0.22 

𝑓𝑠𝑜𝑖𝑙 [0,1] 

GFDL-ESM4 0.60 ± 0.37 0.60 ± 0.36 0.59 ± 0.35 0.60 ± 0.35 

UKESM1-0-

LL 
0.62 ± 0.36 0.57 ± 0.36 0.69 ± 0.34 0.64 ± 0.36 

aBaseline indicates the mean between 2000 and 2014, and 2100 indicates the mean between 2090-2099.  
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Figure 1: Ozone mean concentrations over the baseline period (a,b), and ΔO3 at 2100 with respect to the baseline across the 285 
different SSPs for GFDL-ESM4 (c,e,g) and UKESM1-0-LL (d,f,h). O3 values are expressed at canopy height and over the POD6 

accumulation period. Baseline indicates the mean between 2000 and 2014, and 2100 indicates the mean between 2090-2099.  

https://doi.org/10.5194/egusphere-2024-2573
Preprint. Discussion started: 30 August 2024
c© Author(s) 2024. CC BY 4.0 License.



13 

 

 

Figure 2: 𝒇𝒄𝒍𝒊𝒎 mean values over the baseline period (a,b), and 𝚫𝒇𝒄𝒍𝒊𝒎 at 2100 with respect to the baseline across the different SSPs 

for GFDL-ESM4 (c,e,g) and UKESM1-0-LL (d,f,h). 𝒇𝒄𝒍𝒊𝒎 = 𝒇𝒕𝒆𝒎𝒑 ⋅ 𝒇𝑽𝑷𝑫 ⋅ 𝒇𝒔𝒐𝒊𝒍  summarizes the limitations to stomatal 290 

conductance due to temperature, VPD and plant available water, with values ranging from 0 to 1 depending on whether they are 

limiting or not. Positive or negative 𝚫𝒇𝒄𝒍𝒊𝒎 correspond to higher and lower O3 risk, respectively (red and blue, in c-h). Baseline 

indicates the mean between 2000 and 2014, and 2100 indicates the mean between 2090-2099.   
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Figure 3: Jarvis limiting functions for gs over the baseline period and the changes at 2100 with respect to the baseline under SSP3-295 
7.0 for 𝒇𝒕𝒆𝒎𝒑 (a-d), 𝒇𝑽𝑷𝑫 (e-h) and 𝒇𝒔𝒐𝒊𝒍 (i-l), for GFDL-ESM4 (a,c,e,g,i,k) and UKESM1-0-LL (b,d,f,h,j,l). Baseline indicates the 

mean between 2000 and 2014, and 2100 indicates the mean between 2090-2099.  
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3.2 POD6 trends by region 

Figure 4 displays yearly POD6 values averaged over different geographical regions under different SSPs. These values are 

calculated individually for each model (thin lines), and for each region (different panels). In this analysis, wheat areas with 300 

potential O3 risk are identified considering only the nodes where POD6 was greater than 0.65 mmol m-2 – which is half the 

CL for grain yield loss (LRTAP Convention, 2017) – for at least one year of the century. Then, the ΔPOD6 is calculated as 

the difference of each year and the baseline. Finally, the ΔPOD6 timelines of both CMIP6 models are averaged to get the 

regional mean trend (thick line). Table 4 lists the mean ΔPOD6 at 2050 (2045-2054) and at 2100 (2090-2099) region by 

region. ΔPOD6 follows a decreasing trend under SSP1-2.6 in every region, which is the result of decreasing POD6 down to 305 

near-zero values well before 2100. Trends of ΔPOD6 generally do not decrease under SSP3-7.0, with 9 out of 12 regions 

displaying increasing POD6 values at the end of the century. Under SSP5-8.5, ΔPOD6 timelines show a characteristic 

downward concave shape (raising and then falling), usually reaching their maxima between 2050 and 2080, before returning 

closer to the baseline values (ΔPOD6≈0). This reflects the air quality improvement policies explicitly assumed by this 

scenario starting from the mid-of the century (Kriegler et al., 2017).  310 

South Asia shows the greatest POD6 increase across the three scenarios (+0.51 mmol m-2). This area reports the maximum 

increase at mid-century both under SSP3-7.0 and SSP5-8.5, and the highest absolute increase at the end of the century under 

SSP3-7.0. Furthermore, it is one of the two regions with increased POD6 at 2100 for SSP5-8.5, even though not statistically 

significant (Table 4). Sub-Saharan Africa is the region with the second highest POD6 increase across SSPs (+0.43 mmol m-2 

PLA). The final POD6 at the end of the century is 2.9 times the baseline value under SSP3-7.0, the largest relative difference 315 

observed across regions and scenarios. South-East Asia and Central America also emerge as regions with distinctive positive 

changes both at mid-century for SSP5-8.5 (+0.58/+0.61), and at the end of the century for SSP3-7.0 (+0.66/+0.45). 

Furthermore, South-East Asia is the region with the highest POD6 interannual standard deviation across SSPs (mean SD: 

0.27 mmol m-2; data not shown), most likely reflecting the largest interannual variability of O3 concentrations and 𝑓𝑐𝑙𝑖𝑚 

among all regions (mean SD: 1.74 ppb and 0.06, respectively). Noticeably, East Asia is the region with the highest baseline 320 

POD6 value (1.49 ± 0.84 mmol m-2). It experiences an increment of +0.41 and +0.52 mmol m-2 at mid-century under SSP3-

7.0 and SSP5-8.5 respectively, and a significant decrease of -0.45 mol m-2 at 2100 under SSP5-8.5. Central Asia and Middle 

East also display a higher POD6 at 2050 and 2100 with respect to the baseline, especially under SSP3-7.0, although only 

UKESM1-0-LL shows nodes with POD6>0.65 mmol m-2 for at least one year of the century. Arguably, South America and 

North Africa are subject to fairly similar POD6 changes compared to the baseline under SSP3-7.0 and SSP5-8.5 (Table 4), 325 

even though only under SSP1-2.6 South America displays statistically significant changes. North America is the only region 

with significantly negative POD6 trends in all the considered scenarios, while Russia-Belarus-Ukraine has negative ΔPOD6 

under any scenario, even though the change is not significant under SSP3-7.0. On the other hand, it should be noticed that 

Europe has non-significant negative changes under SSP3-7.0 and SSP5-8.5, which is the result of opposing trends between 

Southern and Northern Europe (see Figure 5). 330 
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Figure 4: ΔPOD6 across the century with respect to the baseline average over different SSPs, divided by region; only nodes with 

POD6>0.65 mmol m-2 in at least one year of the timeline are considered. Bold lines indicate the mean between the results from 

GFDL-ESM4 and UKESM1-0-LL, thin lines indicate the results from the individual models. In some cases (d,f,i,l), only UKESM1-

0-LL had nodes with POD6>0.65 mmol m-2. The number in the upper-left corner of each panel is the mean POD6 over the baseline 335 
± spatial SD (mmol m-2). These results are from the rain-fed simulation.  
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Table 4: Means ΔPOD6 by region and SSP (mmol m-2 PLA) at 2050 (2045-2054) and 2100 (2090-2099) with respect to the baseline 

(2000-2014). The POD6 regional means are calculated only over the nodes with POD6>0.65 mmol m-2 PLA during at least one year 

of the century. These results are from the rain-fed simulation. Starred numbers indicate significant (p<0.05) differences. 340 

Regionb 

Baseline POD6 

[mmol m-2] 

2050 ΔPOD6 

[mmol m-2] 

2100 ΔPOD6 

[mmol m-2] 

historical SSP1 SSP3 SSP5 SSP1 SSP3 SSP5 

East Asia 1.49 -0.64* +0.41* +0.52* -1.22* +0.21 -0.45* 

South-East Asia 0.96 -0.16* +0.61* +0.58* -0.59* +0.66* -0.20* 

South Asia 0.97 -0.01 +1.12* +0.74* -0.46* +1.36* +0.28 

Central Asiaa 0.55 -0.25* +0.65* +0.27* -0.38* +0.58* -0.06 

North America 1.48 -1.30* -0.75* -0.63* -1.37* -0.98* -0.58* 

Central America 0.83 -0.50* +0.35* +0.61* -0.71* +0.45* -0.24* 

South Americaa 0.78 -0.47* +0.29 +0.22 -0.60* +0.31 -0.33 

Russia-Belarus-Ukrainea 0.92 -0.71* -0.15 -0.27* -0.81* -0.22 -0.30* 

Europe 1.07 -0.89* -0.20 -0.13 -0.97* -0.25 -0.05 

North Africa 0.85 -0.49* +0.35* +0.19* -0.64* +0.39 -0.11* 

Sub-Saharan Africa 0.49 +0.06* +0.35* +0.78* -0.24* +0.93* +0.57* 

Middle Easta 0.79 -0.33* +0.63* +0.10 -0.64* +0.68* -0.05 

a Only UKESM1-0-LL has nodes with POD6>0.65 mmol m-2 PLA during at least one year of the century. 
b Region definitions are based on those established by the Hemispheric Transport of Air Pollutants (HTAP2; Huang et al., 2017). 

3.3 Global POD6 estimates and intermodel comparison 

Figure 5 shows POD6 global maps obtained with the O3 stomatal flux model for the baseline period and at the end of the 

century. During the baseline years, POD6 exceeded 0.65 mmol m-2 over the 8.6% and 34.1% of the global wheat area using 345 

GFDL-ESM4 and UKESM1-0-LL, respectively (Figure 5a,b). Despite this difference, which is most likely due to the 

intermodel difference in O3 concentrations, both models identified Eastern North America, Southern Europe and East Asia as 

hotspots for O3 risk at the beginning of the century. Furthermore, UKESM1-0-LL pinpoints some areas of Sub-Saharan 

Africa and South America potentially at risk for O3. 

Under SSP1-2.6, O3 risk decreases across the whole globe at the end of the century (Figure 5c,d), likely due to declining O3 350 

concentrations (Figure 1c,d), with POD6 exceeding the 0.65 mmol m-2 threshold over the 1.8% and the 13.9% of the global 

wheat area using GFDL-ESM4 and UKESM1-0-LL. Under SSP3-7.0 and SSP5-8.5 (Figure 5e-i), changes are not as 

straightforward, and they need to be considered region by region, and model by model. The three regions that the baseline 

https://doi.org/10.5194/egusphere-2024-2573
Preprint. Discussion started: 30 August 2024
c© Author(s) 2024. CC BY 4.0 License.



18 

 

analysis identified as hotspots follow different paths and dynamics in the remaining part of the century. Eastern North 

America is the only region with an evident decreasing O3 risk under any scenario, which is due to decreasing O3 355 

concentrations (Figure 1) in a fairly constant 𝑓𝑐𝑙𝑖𝑚  (Figure 2). For Eastern China, POD6 either lowers or remains fairly 

similar to the baseline at the end of the century under both scenarios. The decreasing POD6 is especially evident for SSP5-

8.5, comparatively to SSP3-7.0, revealing that the policies controlling O3 precursors emissions (Fujimori et al., 2017) might 

have a large impact over this region. In Europe, O3 risk hotspots shift from Southern to Northern Europe, following less 

limiting temperatures for stomatal O3 uptake at high latitudes (Figure 3c,d). Both GFDL-ESM4 and UKESM1-0-LL 360 

recognize an increased risk in the southern and eastern edges of the Tibetan plateau (region from Kashmir to Sichuan) by the 

end of the century. Within this region, Nepal, Bhutan, and East India reach the POD6 peak value of 8.7 mmol m-2 PLA for 

SSP3-7.0 and 6.3 mmol m-2 PLA for SSP5-8.5 at 2100. Furthermore, UKESM1-0-LL identifies areas with increased O3 risk 

also in Sub-Saharan Africa, Central and South America, especially under scenario SSP3-7.0. 

Using the Eq.             (3, the POD6 in 365 

Figure 5 can be converted to relative yield losses (RYL). Based on the POD6 values calculated using UKESM1-0-LL, the 

highest RYL values (95th percentile) over Europe are estimated about 8.5-9.1%, both at the beginning and at the end of the 

century under SSP3-7.0 and SSP5-8.5. On the other hand, under SSP1-2.6, the 95th percentile of RYL is substantially lower 

(1.6%). 

Over the entire East Asia, the highest values of RYL are around 16% at the present time, with no relevant decrease for the 370 

end of the century under SSP3-7.0 (14.9%). Under SSP5-8.5 and SSP1-2.6 these peak values decrease to 9.8% and 3.9%, 

respectively, by the end of the century. 

Across the southern and eastern edges of the Tibetan plateau, the present-day maximum RYL value is 25.4%, reached in the 

Sichuan province (China). Over this region, only under SSP1-2.6 the maximum RYL value falls to 18.7% by end of the 

century, while it increases to 28.6% and to 31.3% under SSP5-8.5 and SSP3-7.0, respectively.  375 

From the present day to the end of century, the maximum RYL in South America increase from 9.8% to 10.2% under SSP3-

7.0, in Sub-Saharan Africa from 8.5% to 12.3% and 15.4% under SSP3-7.0 and SSP5-8.5, and in Central America from 

11.2% to 13.8% under SSP3-7.0. 

Figure 6 shows the agreement between the two models GFDL-ESM4 and UKESM1-0-LL using the Pearson’s correlation 

coefficient (𝜌), calculated in every node for each SSPs. This indicator shows that the two models rarely disagree on the 380 

POD6 changes across SSPs, as highlighted by the very few areas with negative correlation coefficients. However, while the 

correlation for SSP1-2.6 is relatively strong everywhere, for the other scenarios the correlation is high only in East China and 

in a few spot areas (e.g. Ethiopia 𝜌 > 0.75). However, lower correlation coefficients (0.15 < 𝜌 < 0.45) are found for 

Eastern US under SSP3-7.0, and for Europe and South America under SSP5-8.5. 
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 385 

Figure 5: Mean POD6 over the baseline period (a,b), and ΔPOD6 at 2100 with respect to the baseline across the different SSPs for 

GFDL-ESM4 (c,e,g) and UKESM1-0-LL (d,f,h). These results are from the rain-fed simulation. 

Note: Baseline indicates the mean between 2000 and 2014, and 2100 indicates the mean between 2090-2099. 
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Figure 6: Pearson correlation coefficient (𝝆) between ΔPOD6 at 2100 calculated from GFDL-ESM4 and UKESM1-0-LL. These 390 
results are fromthe rain-fed simulation. 
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3.4 POD6 under assumption of field capacity 

The plant available water in the soil is commonly set to non-limiting conditions in the simplified flux calculations for 

integrated assessment modelling (PODYIAM; LRTAP Convention, 2017). This approach estimates PODY to provide an 

indicative O3 risk assessment at large scale. Due to its assumptions, PODYIAM indicates the damage under the worst-case 395 

scenario, i.e., the potential damage to plants when soil water is not a limiting factor for gs and O3 uptake. Our ‘field capacity’ 

run assumes the same soil water hypothesis as this framework, and the comparison with the results of the rain-fed run offers 

an estimate of the O3 risk uncertainty related to water availability for plants. In this context, the POD6 under the FC 

assumption represents the maximum possible O3 risk.  

Figure 7 shows the differences between POD6 calculated with the ‘field capacity’ run, and POD6 calculated with the ‘rain-400 

fed’ run. Differences between the POD6 calculated through the two runs are shown at each time window – for the baseline 

and for the end of the century – and for each SSP. Southern Europe (lat.<45°) and South Asia are the regions experiencing 

the most extensive increase of POD6 in field capacity condition with respect to the rain-fed ones. On average, POD6 under 

field capacity is 0.74 ± 0.30 mmol m-2 greater than POD6 under rain-fed conditions in Southern Europe, and 0.76 ± 0.21 

mmol m-2 greater in South Asia, over the whole century, and across SSPs and models. POD6 under field capacity in South-405 

East Asia and in North Africa increases by 1.68 ± 0.47 mmol m-2, and 1.07 ± 0.39 mmol m-2. However, only small fractions 

of these regions are affected, since most of the land-use does not include wheat.  Other regions with increased POD6 under 

the FC assumption are: Middle East (+0.90 ± 0.35 mmol m-2), Central America (+0.90 ± 0.39 mmol m-2), and Sub-Saharan 

Africa (+0.81 ± 0.19 mmol m-2).  

It is important to underline that wheat cultivation under strong water limitations (𝑓𝑠𝑜𝑖𝑙 < 0.1; Figure 3i-l) would need 410 

additional water sources besides rain. In this case, the ‘field capacity' run might be more suitable to assess the potential O3 

risk, because POD6 over widely irrigated regions would be underestimated using the rain-fed condition approach. The results 

in this section (Figure 7) suggest that, regardless of the considered scenario, there would be more potential hotspots 

worldwide than previously highlighted (Figure 5). For instance, South Asia consistently has the highest O3 concentrations 

across the globe (Figure 1), but the rain-fed simulation indicates that gs is strongly limited by soil water availability, 415 

preventing any O3 risk in a region with major wheat production (Monfreda et al., 2008). However, since this region requires 

extensive irrigation (Brauman et al., 2013; Chiarelli et al., 2020), the POD6 calculated through the field capacity simulation 

might be more suitable to quantify the O3 risk, indicating that this area might be a further hotspot for O3 damage and food 

security. Similar conclusions can be drawn for any areas with large differences between field capacity POD6 and rain-fed 

POD6, as long as irrigation is supplied for wheat production.  420 
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Figure 7: Mean differences between POD6,FC calculated under FC conditions and the POD6 calculated under rain-fed conditions 

over the baseline period (a,b), and at 2100 across the different SSPs for GFDL-ESM4 (c,e,g) and UKESM1-0-LL (d,f,h). Baseline 

indicates the mean between 2000 and 2014, and 2100 indicates the mean between 2090-2099. 
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3.5 The contribution of radiative forcing and pollutant emissions to POD6 425 

Here we perform an ANOVA (see details in Section 2.5) to estimate which factor among EP, RF and their interaction (I), has 

the most significant impact on POD6 changes at the end of the century around the globe. The different levels of EP and RF 

are described in Table 2 for each SSP, and are responsible for the different O3 concentrations and 𝑓𝑐𝑙𝑖𝑚 values reported in 

Figure 1, Figure 2, and Figure A6. Figure 8a shows for each node the factor with the most significant effect (i.e. the lowest 

p-value among the significant ones) among EP, RF, or their interaction (I), obtained from the two-way ANOVA, while 430 

Figure 8b-d display the total variance explained by each factor (R2), allowing further quantification of their contributions to 

the POD6 changes. The ANOVA highlights different regions where the POD6 changes are mostly driven by the same factor. 

For example, in East China the decrease of POD6 under SSP1-2.6 and SSP5-8.5 (Figure 4; Figure 5; Table 4) significantly 

depends on EP. In South America POD6 changes are controlled by EP too. In Eastern U.S. and in Japan the large decrease in 

the POD6 under any SSP (Figure 5) is controlled by the combined effect of EP and RF (interaction), i.e. the effect of a 435 

change in emission policies on the POD6 depends on the given specific climate change signal and viceversa. In Russia-

Belarus-Ukraine and in Northern Europe (lat.>45°), changes in POD6 are driven by RF, which largely determines 𝑓𝑐𝑙𝑖𝑚 

differences across scenarios, with decreases over Russia-Belarus-Ukraine, and increases over Northern Europe. This finding 

suggests that regions where RF controls POD6 changes could experience an increase in POD6 even under strong EP. This 

may happen, for instance, not only because of increased 𝑓𝑐𝑙𝑖𝑚, but also because O3 increases more as a result of the RF 440 

enhancement rather than due to precursors emissions, which would be a climate penalty effect on O3 concentrations (for 

instance, see Northern Europe under SSP5-8.5, Figure 5h). In regions where POD6 decreases the ANOVA identifies the 

factors that are mainly responsible for this decrease, such as in East China, Eastern U.S. and Japan. In contrast, where POD6 

increases the ANOVA suggests the policies that should be adopted to mitigate O3 risk for crops. For instance, in Northern 

Europe, where RF is responsible for the POD6 increase, the adoption of stricter reduction policies on greenhouse gases 445 

emissions, rather than only the adoption of local EP, could lead to reduction of O3 risk for crops as a climate co-benefit.  

However, this ANOVA is performed using the data from UKESM1-0-LL only, because GFDL doesn’t include the scenario 

SSP3-7.0pdSST. Including more models could lead to different results, especially for the climate change component (RF), 

since it is known that UKESM1-0-LL simulates higher warming compared to many other CMIP6 models (McBride et al., 

2021; Scafetta, 2023). 450 
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Figure 8: Map of the factor with the minimum significant p-value (p<0.05, corrected with Bonferroni), determined by the two-way 

ANOVA (a). Explained variance R2 associated with each factor in each node, with black dots indicating significant p-value (b-d). 

EP=Emission Policy, RF=Radiative Forcing, I=Interaction, NS=Not Significant. 

4. Discussion 455 

This study highlights how wheat in different areas of the globe may be affected by O3 damage in the future. Our results may 

be associated with different degrees of confidence depending on the agreement between the two available CMIP6 models, 

and whether an O3 risk is predicted under rain-fed conditions, or just under the FC assumption. Under the rain-fed simulation 

(and therefore in the FC simulation as well), both the GFDL-ESM4 and UKESM1-0-LL models, consistently identify 

Europe, East Asia, and the southern and eastern edges of the Tibetan plateau as the main areas at risk throughout the 21st 460 

century, despite discrepancies in the estimated POD6 values (Figure 5). The Eastern U.S. is currently among the most critical 

regions for O3 damage to wheat, but both models project lower POD6 values under all scenarios at the end of the century, 

suggesting that this area should not be a future concern. Additionally, the FC run indicates that South Asia might be 

extensively affected by O3 damage in the future. Given the region’s widespread need for irrigation (Brauman et al., 2013; 

Chiarelli et al., 2020), the FC simulation might give a better estimate of POD6 changes over this area, although the POD6 465 

calculated under the FC assumption represents the maximum possible O3 risk and is therefore associated with higher 

uncertainty. The Indian peninsula and the southern and eastern edges of the Tibetan plateau, being major wheat producers 
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(Monfreda et al., 2008), should be considered among the areas at highest O3 risk globally across the 21st century. South 

America, Central America and Sub-Saharan Africa are identified only by UKESM1-0-LL as regions subject to O3 damage to 

wheat. The increases in POD6, particularly in Central America and Sub-Saharan Africa, are relatively large compared to the 470 

baseline and could grow larger under the FC assumption. This fact is particularly concerning for Sub-Saharan Africa, where 

intense population growth and development is expected during the 21st century (Kc and Lutz, 2017; United Nations 

Department of Economic and Social Affairs, Population Division, 2022).  

Some external sources of uncertainty in this study should also be discussed and are mainly related to the spatiotemporal 

resolution and the bias of the input variables. The coarser temporal resolution from the CMIP6 models can lead to 475 

underestimation of O3 flux peaks and POD6 values (Guaita et al., 2023). Additionally, the coarse spatial resolution of ESMs 

fails to capture local meteorological features influenced by topology and land cover, and it can misrepresent chemical 

processes (Brands, 2022). More generally, the coarse resolution is related to biases for any variable, which have been 

partially evaluated in past literature (e.g. temperature Sellar et al., 2019, O3 in Turnock et al., 2020). Bias correction is 

beyond the scope of this research; however, we performed a sensitivity analysis by perturbing input variables to evaluate the 480 

effect of potential biases on the final POD6 estimates. For the sake of this, we altered separately temperature (±2°C), vapor 

pressure (±0.2 kPa), and O3 concentrations (±5 ppb) in the rain-fed simulation over the baseline for the UKESM1-0-LL 

model. The results of these simulations reveal that the standard deviation of the POD6 differences between the perturbed and 

the original POD6 simulations is smaller than the critical level (1.3 mmol m-2 PLA), with temperature the factor contributing 

the most to the perturbed POD6 response (Figure A5). A more detailed analysis of the sensitivity of POD to ozone and 485 

meteorological variables under present-day conditions is being undertaken in a companion study comparing different 

stomatal ozone flux models [Emmerichs et al., in prep]. 

Past studies, although using different modelling approaches, generally show good agreement with our results in spatial 

patterns and identified hotspots of O3 damage (Lombardozzi et al., 2015; Schauberger et al., 2019; Sitch et al., 2007; Tai et 

al., 2021). More specifically, they identified the eastern U.S., Europe, and East Asia as hotspots, with substantial overlaps. 490 

However, there are differences with the available present-day regional assessments that evaluated O3 effects on wheat. For 

example, POD6 was estimated to reach values up to 8.5 mmol m-2 in the Iberian Peninsula (De Andrés et al., 2012), while 

our results indicate potential threats without reaching such extreme POD6 values. Mills et al. (2011) found that central 

Europe and Mediterranean coasts are the areas most affected by O3, which is a feature that is only partially represented in our 

results. On the other hand, our findings are consistent with past estimates of POD3IAM in Sub-Saharan Africa under the field 495 

capacity assumption (Sharps et al., 2021b), and with the identified areas most affected by O3 in China (Cao et al., 2024; 

Qinyi et al., 2023; Wang et al., 2022). The observed differences are likely due to the different spatial resolutions adopted in 

these regional assessments. Therefore, it is important to emphasize the need of bias-corrected high-resolution spatio-

temporal projections of O3 concentrations and meteorology for future regional-scale assessments (Liu et al., 2022). 

The most recent literature (Zhou et al., 2024) used ModelE2-YIBs to estimate the O3 effect on GPP, both for the present 500 

(2010) and future times (2060) under SSP1-2.6 and SSP5-8.5 scenarios. Their identified spatial patterns are quite similar to 
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ours, with only minor differences in Western Africa and South America which are likely due to our focus on wheat crops 

rather than vegetation in general. However, their coarser spatial resolution (2° × 2.5°) might mask some of the spatial 

patterns identified in our results. 

Our results and their consequences for food security can be interpreted in the broader context of the SSPs. Under SSP1 there 505 

is a clear decline in O3 risk everywhere, implying a relatively unaffected crop production at the end of the century (globally, 

95th percentile of RYL: 2.2%), which would favor food sovereignty, and thus easing adaptation challenges. On the other 

hand, under SSP3, POD6 would increase throughout the century. This will imply higher crop losses at 2100 for regions with 

high population growth, particularly South Asia and Sub-Saharan Africa (95th perc. of RYL: 20.0% and 9.3%, respectively). 

Since this scenario also includes barriers to trade and to international cooperation, these high food security threats would 510 

exacerbate adaptation challenges. With respect to O3 threats, SSP5 is classified as an intermediate scenario, since O3 risk 

rises to about 2050 in many regions (globally, 95th perc. of RYL: 10.9%) and then reverts to levels similar to or lower than 

the baseline by the end of the century (7.7%), depending on the area. However, this scenario describes a world that 

emphasizes technological development, which might also include effective adaptations to food security threats.  Ultimately, 

SSP3 raises an environmental injustice issue, because it implies that the most affected nations facing food security threats 515 

would be the ones with lower resources to address adaptation challenges. On the contrary, a large mitigation effort, such as 

the one implied within SSP1, would guarantee environmental justice by avoiding food security issues worldwide. 

5. Conclusions 

This study quantified the global and regional evolution of the risk to wheat from O3, expressed as POD6, under different 

Shared Socioeconomical Pathways (SSPs) up to 2100.  The results show that for SSP1-2.6, the O3 risk will decrease 520 

worldwide by the end of the century. Under SSP5-8.5 the POD6 will increase by mid-century before reverting to present-day 

levels by 2100 in most of the considered regions. On the other hand, under SSP3-7.0, there will be an increase in POD6 over 

many regions by the end of the century.  

In this latter scenario, both CMIP6 models (UKESM1-0-LL and GFDL-ESM4) agree that Northern Europe, East China, and 

the southern and eastern edges of the Tibetan Plateau will be the most extensively at risk for future food security, both under 525 

rain-fed and field capacity conditions, with POD6 values that will be about six times greater than the current critical level for 

grain yield loss over the latter region. However, for other regions, like South Asia and Sub-Saharan Africa, the predicted 

adverse O3 effects on wheat are more uncertain, as they are shown only by one of the CMIP6 models or only occurring under 

field capacity conditions. Analysis of these regions would benefit from employing finer spatio-temporal resolutions, as 

revealed by the comparison made with other regional-scale studies. Finally, although the dry deposition model employed in 530 

this research allows explicit evaluation of the O3 risk for wheat, it does not account for any vegetation feedback to O3 

concentrations and climate beyond what is already embedded in the CMIP6 models. 
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More stringent policies to reduce radiative forcing and O3 precursor emissions, as expressed in SSP1-2.6, would lead to 

almost complete removal of the O3 risk for wheat, thus avoiding O3-induced food security issues worldwide. Conversely, the 

control policies directed to limit solely O3 precursors but not greenhouse gases (SSP5-8.5) does not necessarily lead to 535 

benefits, as observed for instance in Northern Europe. Finally, the SSP3-7.0 simulations highlight that enhanced radiative 

forcing and uncontrolled O3 precursor emissions may raise environmental justice issues, as food security threats would 

exacerbate adaptation challenges for low-income nations. 
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Appendix A

 

Figure A1: 𝒇𝒕𝒆𝒎𝒑 mean values over the baseline period (a,b), and 𝚫𝒇𝒕𝒆𝒎𝒑 at 2100 with respect to the baseline across the different 

SSPs for GFDL-ESM4 (c,e,g) and UKESM1-0-LL (d,f,h). 𝒇𝒕𝒆𝒎𝒑 ranges from 0 to 1 depending on whether it is limiting or not. 855 

From this study’s perspective, positive or negative 𝚫𝒇𝒕𝒆𝒎𝒑 correspond to higher and lower O3 risk respectively (red and blue, in c-

h). 

Note: Baseline indicates the mean between 2000 and 2014, and 2100 indicates the mean between 2090-2099. 
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Figure A2: 𝒇𝑽𝑷𝑫 mean values over the baseline period (a,b), and 𝚫𝒇𝑽𝑷𝑫 at 2100 with respect to the baseline across the different 860 
SSPs for GFDL-ESM4 (c,e,g) and UKESM1-0-LL (d,f,h). 𝒇𝑽𝑷𝑫 ranges from 0 to 1 depending on whether it is limiting or not. From 

this study’s perspective, positive or negative 𝚫𝒇𝑽𝑷𝑫 correspond to higher and lower O3 risk respectively (red and blue, in c-h). 

Note: Baseline indicates the mean between 2000 and 2014, and 2100 indicates the mean between 2090-2099.  
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Figure A3: 𝒇𝒔𝒐𝒊𝒍 mean values over the baseline period (a,b), and 𝚫𝒇𝒔𝒐𝒊𝒍 at 2100 with respect to the baseline across the different 865 
SSPs for GFDL-ESM4 (c,e,g) and UKESM1-0-LL (d,f,h). 𝒇𝒔𝒐𝒊𝒍 ranges from 0 to 1 depending on whether it is limiting or not. From 

this study’s perspective, positive or negative 𝚫𝒇𝒔𝒐𝒊𝒍 correspond to higher and lower O3 risk respectively (red and blue, in c-h). 

Note: Baseline indicates the mean between 2000 and 2014, and 2100 indicates the mean between 2090-2099.   
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Figure A4: Mean POD0 over the baseline period (a,b), and ΔPOD0 at 2100 with respect to the baseline across the different SSPs for 870 
GFDL-ESM4 (c,e,g) and UKESM1-0-LL (d,f,h). These results are fromthe rain-fed simulation. 

Note: Baseline indicates the mean between 2000 and 2014, and 2100 indicates the mean between 2090-2099.  

https://doi.org/10.5194/egusphere-2024-2573
Preprint. Discussion started: 30 August 2024
c© Author(s) 2024. CC BY 4.0 License.



41 

 

 

Figure A5: Standard Deviation (SD) of yearly differences of POD6 over the baseline between all the perturbed simulations and the 

rain-fed simulations (a). Mean differences of POD6 over the baseline between the perturbed simulations and the rain-fed 875 
simulations for each variable (b-g). 

Note: Baseline indicates the mean between 2000 and 2014. 
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Figure A6: values at 2100 for the experiment SSP3-7.0pdSST with respect to the baseline of (a) ΔPOD6, (b) ΔPOD0, (c) Δfclim, (d) 

ΔO3. These results are from the rain-fed simulation. 880 

Appendix B 

The conversion from model levels to geometric height above the ground is achieved using the hydrostatic assumption and 

integrating the following equation from the surface pressure to the actual pressure at the model level: 

𝑑𝑧 =
𝑅𝑑𝑇𝑣(𝑝)

𝑔𝑝
𝑑𝑝             (B1) 

Here, 𝑝 denotes pressure, 𝑅𝑑 = 287 J kg−1K−1 is the specific gas constant of dry air, 𝑔 = 9.81 m s−2 is the acceleration due 885 

to gravity and it is assumed constant since calculations are performed for the model levels closest to the ground, and thus 

there is no need to incorporate geopotential height. 𝑇𝑣(𝑝) [K]   denotes the virtual temperature profile, obtained by 

interpolating between model levels after converting the values from air temperature 𝑇 [K] through 𝑇𝑣 = 𝑇(1 + 0.609133𝑞), 

with 𝑞 being the specific humidity [kg H2O kg−1 air].  

UKESM1-0-LL explicitly indicates that the near-surface model level for O3 concentration is at 20 m above the ground, and 890 

therefore no calculation for geometric height is required. 
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