
This paper presents calculations of POD6 from current conditions to the year 2100. 
Although changes in crop yield due to ozone over this period are of interest, I find it 
difficult to know what to make of the results when I have not been given any impression 
about whether the models can actually predict ozone and especially POD6 to any 
satisfactory degree in the base run. The lack of comparison with measurements is even 
more surprising given that this manuscript was submitted to the TOAR-II Special issue! I 
am afraid I find this omission to be too significant to be ignored, and therefore cannot 
recommend this manuscript for publication. More detailed comments follow. 

Here we clarify key features of our modeling choices and tools used and summarize key 
results of the new analyses performed to address the issues raised. Detailed answers can be 
found in the point-by-point responses and in the newly written Supplementary materials. 

The skill of CMIP6 models (UKESM1-0-LL and GFDL-ESM4) in predicting ozone concentration 
during the baseline period has been evaluated against TOAR ozone data in Turnock et al. 
(2020) study, which we reference. That study underwent peer review and was published in 
Atmospheric Chemistry and Physics, so we believe it provides reliable results that we 
confidently reference.  

Therefore, our work acknowledges and builds on those findings and assumes those bias 
estimates as valid, with the noted uncertainties. Namely, Turnock et al. (2020) reported that 
CMIP6 models generally overestimate O3 concentrations, although their comparison is 
performed between the O3 concentrations at the lowest model level (roughly between 15 and 
20 m above the ground), and the measured O3 concentrations in the TOAR database (typically 
between 2 and 3 meters). Since O3 concentrations are lower the closer to the ground, and 
since our dry deposition model scales O3 concentrations from the lowest model level to the 
canopy height, this overestimation would reasonably be mitigated. Furthermore, it should be 
noticed that, despite the acknowledged uncertainties, the ozone data used in this study 
represent the only currently available coupled-chemistry datasets offering both hourly 
resolution and the required time span. 

Although we believe that further evaluation is unnecessary for the outlined reasons, we 
provide an additional assessment of the bias between the ozone concentrations predicted by 
CMIP6 models (scaled from lowest model level to the canopy height) and those measured at 
stations in the TOAR-II database (scaled to the canopy height as well), according to the 
reviewer's request. This comparison shows that, as expected, the O3 concentrations 
modelled by the CMIP6 models have a smaller bias (global averages: +1.31 and +0.88 ppb in 
GFDL-ESM4 and UKESM1-0-LL, respectively; see supplementary materials attached at the 
end of this document for details), compared to the overestimation reported by Turnock et al. 
(2020). Furthermore, we estimate the effect of the O3 bias on the POD6 estimate, and show 
that it is relatively small on average, due to climate limiting stomatal conductance.  

While regional differences in O3 concentrations and associated bias against observations are 
present, East Asia shows the largest bias, but, in fact, the propagated bias leads to relatively 



low overestimation of POD6 (mean: +0.28 and +0.33 mmol m-2, for GFDL-ESM4 and UKESM1-
0-LL respectively). Therefore, the biases found in the modelled O3 concentrations are 
acceptable for the purposes of of our study. The main findings regarding the bias will be 
mentioned in the manuscript, both in the results and in the discussion section, and the 
supplementary materials will be referenced therein.  

Regarding the POD6 metric used to compute the O3 damage, we clarify that it is calculated 
based on a modified version of the DO3SE model and following the same formulation (as 
stated in the manuscript). As this model is widely accepted as reliable for predicting ozone 
deposition against field measurements (as affirmed by the reviewer and the literature), results 
in our study will be similarly valid as based on a fundamentally analogous deposition model. 

Nevertheless, we provide additional evidence on the validity of our dry deposition model  by 
assessing its performances against data from a measurement campaign over a wheat field 
(Gerosa et al., 2003) Specifically, we compare modelled and observed values of total O3 flux, 
latent heat flux and friction velocity on a half-hour basis, as detailed in the Supplementary 
Material and responses below. These variables were chosen because they are directly 
measured, while on the contrary stomatal conductance and stomatal ozone fluxes are 
derived from water and O3 fluxes under some assumptions using an indirect inferential 
methodology. Our results indicate high skills in reproducing the latent heat flux (R2=0.74, and 
MAE =0.02 W/m2; see supplementary materials attached at the end of this document for 
details), which is a key proxy for the stomatal conductance, and thus of stomatal fluxes. 
Therefore, this further supports the appropriateness of using our model. These results are 
comparable with the ones reported by Mills et al. (2018, with R2=0.63, also cited by the 
reviewer in the major comments). This similarity was expected, since Mills et al. (2018) 
employed the DO3SE model, of which our dry deposition model is a modified version. 

Moreover, a companion TOAR-II paper will evaluate specifically the performances and the 
sensitivity to input variables of different stomatal models, including the DO3SE (Emmerichs et 
al., in prep). We remark that the main objectives of this work are to evaluate the POD for bread 
wheat across the 21st century, and to identify the regions vulnerable to future food security 
threats, and that the evaluation of the sensitivity to input variables, and an in-depth 
evaluation of the performances of the CMIP6 models are beyond the scope of this work. 

 
 
Major comments 
 

1. The major weaknesses of this paper are that the authors have chosen to model a very 
difficult ozone metric (POD6), and they present no evidence to show that the models 
used have any ability to model that metric (or indeed any other), even for present day 
conditions. 



The POD6 metric is indeed more difficult to calculate, especially in comparison to exposure-
based metrics. However, flux-based metrics are frequently referred to as the correct approach 
to study O3 risk to vegetation (Emberson, 2020; Mills et al., 2011). As mentioned above, our 
model follows the same paradigm of the DO3SE model, which is widely employed in ozone 
risk assessments to vegetation, and constitutes the O3 dry deposition scheme within of the 
EMEP chemical transport model (Simpson et al., 2012), which is cited as a positive example 
by the reviewer in the Major comment #4. An evaluation of the dry deposition model is now 
presented in the supplementary materials, which are also attached at the end of the 
response. 

 

2. First, about the metric itself. Why was POD6 chosen?  It is well known that ozone 
metrics such as PODY can be very difficult to estimate, especially when the Y threshold 
is very high (e.g. Sofiev and Tuovinen et al, 2001, Tuovinen 2000, Touvinen et 
al,  2007).  POD is also a difficult metric to obtain from observations because its 
calculation requires a large number of parameters, assumptions and auxiliary 
measurements that are usually not available. Such problems explain why the otherwise 
comprehensive TOAR database of vegetation-relevant ozone metrics (Lefohn et al, 2018, 
Mills et al, 2018a) did not include estimates of POD. 

The reviewer seems to refer to TOAR-I. In the current TOAR version (TOAR-II), POD is fully 
recognized as the only metric effectively bridging atmospheric chemistry with plant 
physiology (e.g., Emberson, 2020; Mills et al., 2011). The harmful effects of ozone on 
vegetation are not due to the mere exposure to high ozone concentrations, but to the ozone 
uptake through stomatal pores. The concept of dose, therefore, augment the one of exposure 
(reflected in metrics like M7, AOT40, etc.), as documented by the ICP Vegetation (LRTAP 
Convention, 2017) and extensively reported in related papers. This distinction is explicitly 
noted in the mapping manual, which is cited by the reviewer: “Scientific evidence suggests 
that observed effects of O3 on vegetation are more strongly related to the uptake of O3 through 
the stomatal leaf pores (stomatal flux) than to the concentration in the atmosphere around 
the plants (Mills et al., 2011b).”  (see chapter II.3.1.2 of the Mapping manual, whose insert is 
reported below). This is the main reason we chose to use POD, specifically POD6, as 
recommended by the mapping manual for wheat. 

 

 



3. Further, the LRTAP mapping manual makes it clear that the so-called PODYSPEC 
metrics (including POD6SPEC) are intended for situations where ozone and 
meteorological variables can be accurately estimated at the flag leaf of a wheat plant.   

Ozone and meteorological variables are indeed estimated and referenced at canopy height 
and flag leaves for wheat fields. This was accounted for by applying a resistive network and 
the big-leaf approach, as done in DO3SE and also described in detail in our previous paper 
(Guaita et al., 2023). 

 

Global scale model simulations are not at all well suited to making accurate predictions 
of POD6. Indeed, the LRTAP manual suggests that large-scale simulations make use of 
the a lower Y threshold, and some simpler parameter settings, which they denoted 
POD3IAM. 

We disagree, as the LRTAP manual explicitly advocates for using our approach. Specifically, 
text Box 9 on page 45 (reported below, LRTAP Convention, 2017) explicitly recommends using 
PODYSPEC for climate change contexts: “For applications in a climate change context, the 
PODYSPEC method is recommended as key factors such as phenology and soil moisture are 
not included in the parameterization of PODYIAM.” 

 

The PODYIAM model is indeed a simplification of more detailed flux models (such as those 
based on PODYSPEC), suitable only when the data required for PODYSPEC application is 
unavailable. Additionally, PODYIAM does not specify any particular plant species, unlike our 
study, that is specifically designed to target wheat.  

Finally, we would like to highlight that PODYSPEC for wheat and PODYIAM for crops have 
precisely the same parameterization (see the table reported below, LRTAP Convention, 2017), 



with the sole exception that PODYIAM does not account for soil moisture or phenology—
factors that are indeed essential in the context of climate change. 

POD3IAM definition POD6SPEC definition 

 

 

 

 
 

 

4. For these reasons the global scale POD assessments of Mills et al. (2018b,c) made use 
of POD3IAM metric. And although neither of the Mills papers was able to evaluate even 
this POD3 metric globally, they did show that the EMEP chemical transport model that 
was used was able to satisfactorily reproduce some basic statistics, namely mean of 
daily maximum ozone and M7, at sites from around the globe (Mills et al., 2018b, SI), and 
that model had been extensively tested against field data relevant to ozone deposition 
and fluxes. 

Mills et al. (2018a, b) assessed metrics relevant to TOAR-I. In the current TOAR-II framework, 
the Ozone Deposition Focus working group focuses on metrics such as PODY, as will be seen 
in other papers that will be submitted to the TOAR-II special issue. 

Regarding the reviewer’s claim that the models were extensively tested against field data 
relevant to ozone deposition and fluxes, this deserves further discussion. As we understand it, 
the EMEP model reproduces ozone fluxes by coupling with the DO3SE model (Simpson et al., 
2012). If, as the reviewer suggests, this model reliably reproduces ozone deposition and 
fluxes, our deposition model—which is based on the DO3SE—should also be capable of 
doing so, and this was demonstrated even at fine temporal resolution as reported in the 
previously cited comparison exercise described in the supplementary materials.  

To our knowledge, no published studies directly compare the ozone fluxes or POD metrics 
predicted by the DO3SE model against direct measurements of ozone fluxes in crop fields. If 
the reviewer is aware of such studies, we welcome references. 



For instance, Mills et al. (2018b) compared satellite-estimates of evapotranspiration (i.e. 
latent heat flux, LE) in the US with the modelled POD3IAM, under the assumption that both 
POD3IAM and evapotranspiration are driven by stomatal conductance. However, their 
approach presents clear limitations: (i) there was no discussion on the temporal resolution of 
the satellite measurements; (ii) assuming 10% wheat cover in a grid cell does not ensure 
representativeness of the grid cell’s ET for wheat’s water exchange; (iii) using three-year 
averages excessively smooths and ease the comparison; (iv) the comparison was indirect, 
making claims of validation difficult. Therefore, we decided to directly validate our model 
against flux measurements obtained over a wheat field (the aim of this manuscript) with the 
eddy covariance technique and show that our model satisfactorily represents LE fluxes on a 
half-hourly basis. Please refer to the supplementary materials for detailed analyses and 
results. 

 

5. The usual problems of accurately modeling O3 and its metrics are exacerbated when 
climate models are used. In this case the meteorology is not constrained by reanalysis, 
and hence diverges more from the real-world than usually seen in current day chemical 
transport models. So, how well can your models predict O3, M7, and AOT40 for example 
(ie the metrics which can be derived from global observations), and indeed the hourly 
frequency distribution of O3? 

The reviewer suggests that meteorology might be distorted in climate models due to the lack 
of reanalysis constraints, potentially affecting the prediction of photochemical ozone 
production. While this could be theoretically valid, CMIP climate models undergo extensive 
testing and continuous refinement to address meteorological distortions, both in terms of 
biases and in terms of trends. At each stage of CMIP model development, evaluations of key 
meteorological variables (including biases, trends, and seasonal variability) is routinely 
conducted. These assessments are consistently reported in the literature associated with 
CMIP model documentation, to which we refer the reviewer (e.g., Dunne et al., 2020; Horowitz 
et al., 2020; Sellar et al., 2019). Furthermore, it is important to mention that in order to make 
future projections of ozone damage, it is not possible to use reanalysis products, but climate 
models are the only possibility, even with the obvious uncertainties attached. 

In the supplementary material attached to this reply we present an evaluation of the O3 bias 
only for the daylight hours and over the accumulation period for POD (please refer to it), and 
show that the O3 concentration bias is small on average, and that, even for the regions where 
the bias is larger (such as East Asia), the effect on the POD6 is relatively small.  

 

6. A related issue is also that this paper seems to use quite short slices of meteorology. 
The base simulation is for 15 years (2000-2014), and the climate runs seem to be for 10 
years (though I am a little confused by the 10 year slices given on L134 and the 15-year 
slice mentioned on L116).  With short time-slices there is an increased risk that changes 



seen are due to random variations rather than to a true climate signal. Even with 20 year 
time-slices Langner et al. (2012) showed that the changes seen in summertime ozone 
were not significant at the 95% level over large parts of Europe. 

The 10-year time slices used for projecting variable fields in 2050 and 2100 are an established 
approach in climate change studies, especially for air quality studies, as supported by several 
papers (e.g., Griffiths et al., 2020; Ronan et al., 2020; Sellar et al., 2019; Turnock et al., 2020). 
Furthermore, a 10-years slice seems adequate to capture the rate of change of precursor 
emissions. A 30-years average, while being a conventional averaging period for climate, will 
not be appropriate to reflect the rapid changes in ozone precursor emissions. In any case, the 
interpretation of the regional POD changes, the shown spatial and temporal trends for POD6 
over the century (Figure 4), and the statistical significance of the results (Table 4), indicate 
that a signal exists and that the shown trends reflect real tendencies rather than random 
fluctuations.  

In any case, following the comments in the review of Owen Cooper, we added specific p-
values and confidence intervals in the manuscript (section 3.3) where appropriate, in order to 
point out uncertain results. Furthermore, the supplementary materials will contain, in their 
final form, a table with p-values and 95% confidence intervals corresponding to table 4 in the 
manuscript, and a map of the p-value associated with the ANOVA (i.e. Figure 8). 

 

7. In the manuscript here, there is no discussion of these key issues.  Instead we are 
referred to Turnock et al. (2020) for information about model skill, but that paper states 
that "CMIP6 models consistently overestimate observed surface O3 concentrations 
across most regions and in most seasons by up to 16 ppb, with a large diversity in 
simulated values over Northern Hemisphere continental regions". 

The “up to 16 ppb” value the reviewer mentions indicates the maximum mean bias, and thus 
does not apply universally across all stations. While CMIP6 models are found to generally 
overestimate O3 (Turnock et al., 2020), this overestimation is neither uniform nor pervasive 
across all models, and moreover does not account for the deposition processes that we 
consider in our study (please see the new supplementary materials attached below). As 
mentioned above, an O3 bias evaluation tailored to our case-study is provided now in the 
supplementary materials, where O3 concentrations are found to be modelled adequately for 
the purposes of our study. 

 

8. Given such issues with surface O3 and the modeling in general, I have no reason to 
believe that the POD6 values have satisfactory values, or that trends in this metric are 
any more reliable. 

 



In conclusion, we emphasize that the limitations and uncertainties of our study were 
adequately reported and quantified in the manuscript, and that the evaluation requested by 
the reviewer does not affect the validity of our study nor its conclusions. Following the 
reviewer’s request, we performed an additional evaluation of the O3 concentrations simulated 
by the CMIP6 models, which represents an extension of was what performed in Turnock et al. 
(2020), and we also tested the performances of our deposition model in reproducing the half-
hourly latent heat flux. 

Regarding the choice of the POD6 metric, we believe that the POD6 metric is the most 
appropriate for climatic studies like ours, as supported by both the mapping manual 
(referenced by the reviewer, though) and the cited relevant literature. 

In any case, we want to highlight that combining different approaches (i.e., exposure-based 
approaches in most earlier studies and dose-based approach in this study) in assessing O3 
damage on vegetation may better constrain the uncertainties in the modeled results, as has 
been demonstrated in ensemble modeling air-quality and climate studies in literature. 
Therefore, since existing dose-based studies of O3 damage on vegetation are very rare, our 
study is an important contribution to the current knowledge, despite known model 
uncertainties mentioned above. 

Other comments 
 
p2, L48. Strange not to mention the Mills et al. papers here, or that of Van Dingenen et al., 
2009; these papers both offer both global-scale assessments which involved a lot of 
work (including comparison with observations) and are widely cited. 

Thanks for the suggestion. We read the papers and the citations were added. 
 

p4, Table 1. This table should also include the thickness of the lowest model, as this is 
the important for deriving crop-height O3 concentrations. 

Yes. The height of the lowest model level (cell centre) was added in the table 

 

p5. on L116, we read that the baseline is calculated for 15 years, over 2000-2014. How 
many years are used for the 2100 simulations?  

The POD6 was calculated every year from 2015 to 2100. Each individual year was compared 
to the baseline average. To avoid possible confusion, the beginning of that sentence has been 
rephrased as: “Yearly O3 risk for wheat cultivation from 2015 to 2100 is quantified with respect 
to a POD baseline value,…” 

 

p5, L139. What does "Contextually" mean here? It sounds odd. 



Thanks. “Contextually” was substituted with “moreover”. 

 

P5. Sect.2.2 The text suggests that wilting point and field capacity are needed, and 
derived as volumetric soil moisture (VSM) values. One issue is that the ESMs will have 
their own systems for dealing with soil water, and their calculations of near-surface 
ozone and resistances in general will presumably reflect their interpretation of soil-water 
effects. Possibly more serious is the use of volumetric soil water (VSM).  The same VSM 
can represent very wet conditions in some soils, but very dry in others, but as far as I can 
tell the methods don’t distinguish between different soils at all. 

Indeed, the ESMs do represent soil water and offer the corresponding output. However, the 
soil water values from the ESMs at a given node are influenced by various land covers and 
land uses within both the grid node itself and its surrounding areas, and for this reason they 
are not intended to be referred to a single wheat field, but rather to the average soil water 
content of a large area. On the contrary, we wanted to simulate the soil water content only in a 
wheat field, without taking into account other land covers. Therefore our deposition model 
uses an online water soil module, following the approach of Mintz and Walker (1993). This is 
described in detail in our previous paper (Guaita et al., 2023) that we refer to. 

Further, we note that different soil types have different associated wilting point and field 
capacity values. Therefore, these parameters effectively distinguish between soil types 
(please, see the dataset referenced in the manuscript, Zhang et al., 2018).  

 

p6. The text here omits any mention of the difference between leaf and canopy scale 
resistances, but this is a key part of the DO3SE methodology (e.g. Tuovinen et al., 2009) 

Our model uses the same approach as the DO3SE methodology. This was thoroughly 
discussed in the paper Guaita et al., 2023, which is frequently cited across the manuscript 
(Please see eq. 46-52 in Guaita et al., 2023).  

According to the reviewer’s remark, in the revised paper we clarify the difference between the 
bulk resistances (upcase R) used to scale the ozone concentration from the lowest model 
level to the canopy height, and the leaf-level resistances (lowcase r), which are used to 
calculate the ozone stomatal flux for an upper canopy leaf as prescribed by the DO3SE 
methodology. 

 

p7, L173. Again the word contextually is used. It fits better here than in the above 
example, but I think it is better to say “In the context of…”. 

Thanks, the sentence was modified as suggested.  

 



p7, L174. The word parameterizations is a bit vague, and readers cannot be expected to 
know what this means. Please make a table with the parameter values. 

Ok, we have now included a table in the supplementary materials which we refer to in the 
main manuscript. 

 

p7, L184. In what way are the Feng et al. (2012) parameterizations incomplete? I would 
have thought that methods developed from China were more appropriate for global 
approaches than those from Spain. 

The parameterization proposed by Feng et al. (2012) did not consider limitations to stomatal 
conductance from temperature and soil water content. Since these variables are important in 
a climate change context, we preferred to exclude this parameterization in our study. In fact, 
Feng et al. (2012) adopted the following formulation for the Jarvis model: 

 

 

Since temperature and soil moisture are important in a climate change context, in our study 
we preferred to exclude the parameterization of Feng et al. (2012). On the contrary, the 
parameterization from González-Fernández et al. (2013) includes the effect of soil water and 
temperature as well, and was based on field measurements datasets. 

 

p7, L195 "A well-established dose-response relationship...". Is this so well established? 
The mapping manual states "the percentage effect due to O3 impact on crop yield 
estimated in large-scale modeling should be calculated as follows: 

  (PODYIAM – Ref10 PODYIAM) * (% reduction per mmol/m2 PODYIAM.POD3) 

And indeed, Mills et al (2018c) used: 

      RYL = (POD3IAM-0.1)*0.64 

but this manuscript uses POD6 rather than the recommended POD3IAM for unexplained 
reasons, and  makes no mention of the "Ref10" correction. 

 

We removed the adjective “well-established”. However, as discussed in the major comments 
above, POD6 is indeed the right approach in our case (LRTAP Convention, 2017, pag. 45). 
Following the mapping manual, the relative yield loss in this case is given by: 



RYL = (PODYSPEC – Ref10 PODYSPEC) * % reduction per mmol m-2 PODYSPEC 

However, the Ref10 PODYSPEC is null in the case of wheat (see the Table III.10 of the Mapping 
Manual, LRTAP Convention, 2017, reported below), and therefore it was omitted. 

 

 

P7, L202—204. This sentence seems out of place compared to the preceding text. 

Yes. The sentence was moved to the Appendix B, and it was referenced within the section 2.3. 

 

p24, L456. Given all the uncertainties I mentioned in the major comments section, I 
wonder what the phrase “Our results may be associated with different degrees of 
confidence depending on the agreement between the two available CMIP6 models,” 
means? The paper has barely mentioned the main sources of uncertainty I think. 

Different physics-based models displaying similar features suggest that their results are 
associated with a greater degree of confidence, as opposed to the two models disagreeing. Of 
course, considering more models would improve the study, but the UKESM1-0-LL and GFDL-
ESM4 remain to date the only models within CMIP6 that are suitable for our study. This is now 
clarified in the manuscript. 

As shown in the newly written supplementary materials, the effect of the O3 bias on POD6 is 
found to be negligible for average climatic conditions in two of the main areas impacted by O3 
risk at the present time (North America and Europe). As for the other region (East Asia), the O3 
bias could lead to an 0.28-0.33 mmol m-2 overestimation of POD6 on average, which however 
would not be enough to classify this region as not at risk, and therefore such possible 
overestimation does not affect our main conclusions. A discussion on this has been added to 
the discussion section. 

 

p42, L890 UKESM  - 20m. Is that cell depth, or cell-center? 



It’s the cell-center. Thanks. This has been added to the Appendix. 
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1. O3 mean bias and its effect on POD6 

The bias of the O3 concentrations (Table S1, Figure S1) taken as input data by our dry deposition model are evaluated 

against the surface O3 observations taken from the TOAR-II dataset (Schröder et al., 2021) for the baseline years (2000-

2014). For each measurement station, the mean bias (MB) is defined as: 

𝑀𝐵(𝑥) =
∑ 𝑀(𝑥,𝑡)−𝑂(𝑥,𝑡)𝑛

𝑡=1

𝑛
           (S1) 

where 𝑥 indicates the location, and 𝑡 = 1, … , 𝑛 are the considered timesteps (daylight hours, over the accumulation 

period for that location). 𝑀(𝑥, 𝑡) is the O3 output from the considered CMIP6 models (sfo3 in CMIP6 notation, 

indicating the O3 at the lowest model level), scaled at the canopy height by means of the dry deposition scheme used in 

this study (Guaita et al., 2023), and 𝑂(𝑥, 𝑡) is the observed surface O3 concentration (also scaled to canopy height). The 

ground stations are selected to be representative of the agricultural context, and therefore only rural, background or crop 

locations are included. Since the dry deposition model of this study scales O3 from the height of the lowest model level 

of the CMIP6 models to the crop canopy height, only ground stations with measurements height below 3 meters are 

considered. Furthermore, only stations with more than 10 years long timeseries are included. In this regard, an 

exception is made for China, as the stations that could represent wheat fields have timeseries in that region are shorter 

than 10 years. 

To estimate the effect of the O3 bias on the O3 risk, the yearly POD6 was regressed (with interaction) against O3 

concentration and 𝑓𝑐𝑙𝑖𝑚 averaged over the accumulation period: 

𝑃𝑂𝐷6 = 𝛽0 + 𝛽1[𝑂3] + 𝛽2𝑓𝑐𝑙𝑖𝑚 + 𝛽3[𝑂3]𝑓𝑐𝑙𝑖𝑚 + 𝜖        (S2) 

where 𝛽𝑖 (𝑖 = 0, … ,3) are the regression coefficients, and 𝜖 ∈ 𝑁(0, 𝜎2) is the error. The regression is calibrated over the 

whole globe, using both the baseline and the three scenarios considered in this study (SSP1-2.6, SSP3-7.0, SSP5-8.5). 

In the eq. (S2), 𝛽1 + 𝛽3 ⋅ 𝑓𝑐𝑙𝑖𝑚 is the mean POD6 increment per ppb given a certain value of 𝑓𝑐𝑙𝑖𝑚. Therefore, the 

expression (𝛽1 + 𝛽3 ⋅ 𝑓𝑐𝑙𝑖𝑚) ⋅ 𝑀𝐵 represents the effect of the O3 MB on the POD6. In other words, when 𝑓𝑐𝑙𝑖𝑚 is equal 

to the regional (or global) average (𝜇(𝑓𝑐𝑙𝑖𝑚)), the resulting value is the average effect of the O3 MB on the POD6 over 

the specified region under mean 𝑓𝑐𝑙𝑖𝑚 conditions, while, when 𝑓𝑐𝑙𝑖𝑚 = 1, the resulting value is the average MB effect on 

POD6 under climatic conditions optimal to the stomatal conductance (Table S1). 

Table S1: MB of O3 at canopy height, POD6 increments per ppb of O3 concentration conditional to 𝒇𝒄𝒍𝒊𝒎 equal to 

its regional mean (𝜷𝟏 + 𝜷𝟑 ⋅ 𝝁(𝒇𝒄𝒍𝒊𝒎)), and to 𝒇𝒄𝒍𝒊𝒎 = 𝟏 (𝜷𝟏 + 𝜷𝟑 ⋅ 𝟏), and the corresponding projected effect on 

POD6 for average climatic conditions and optimal conditions to the stomatal conductance. 



Region 

# 

station 

MB ± SD  

[ppb] 

𝛽1 + 𝛽3 ⋅ 𝜇(𝑓𝑐𝑙𝑖𝑚)  
(95%CI) 

[mmol m-2/ppb] 

𝛽1 + 𝛽3 ⋅ 1  

(95%CI)  

[mmol m-2/ppb] 

(𝛽1 + 𝛽3 ⋅ 𝜇(𝑓𝑐𝑙𝑖𝑚)) ⋅

𝑀𝐵 ± SD 

[mmol m-2] 

(𝛽1 + 𝛽3 ⋅ 1) ⋅ 𝑀𝐵  

± SD  

[mmol m-2] 

GFDL-ESM4 

Global 1330 1.31 ± 7.36 0.0154 (0.0153,0.0155) 0.0582 (0.0581,0.0584) 0.02±0.03 0.08±0.37 

N. America 579 -2.8 ± 4.96 0.0188 (0.0186,0.0189) 0.0493 (0.049,0.0496) -0.05±0.02 -0.14±0.14 

Europe 480 2.09 ± 5.59 0.0152 (0.015,0.0154) 0.0573 (0.0567,0.0579) 0.03±0.02 0.12±0.22 

East Asia 283 8.02 ± 8.53 0.0351 (0.0348,0.0354) 0.0913 (0.0907,0.0918) 0.28±0.26 0.73±1.76 

UKESM1-0-LL 

Global 1350 0.88 ± 7.61 0.0316 (0.0313,0.0318) 0.1192 (0.1186,0.1198) 0.03±0.12 0.1±1.67 

N. America 579 -3.27 ± 5.91 0.0441 (0.0436,0.0446) 0.1289 (0.1276,0.1302) -0.14±0.16 -0.42±1.35 

Europe 486 3.13 ± 5.58 0.0401 (0.0393,0.0409) 0.1614 (0.1579,0.165) 0.13±0.12 0.51±1.93 

East Asia 276 5.59 ± 9.34 0.0588 (0.058,0.0597) 0.164 (0.162,0.1659) 0.33±0.72 0.92±5.61 

 

Figure S1: MB of O3 at canopy height for GFDL-ESM4 (a), and UKESM1-0-LL (b), obtained by scaling O3 in 

output from the CMIP6 models (at the lowest model level height), to the canopy height, by means of the resistive 

network of the dry deposition model. O3 is compared with ground measurements from the TOAR-II database.  

2. Evaluation of the performance of the dry deposition model used for POD6 calculations 

The dry deposition model used in this study (Guaita et al., 2023) is compared to the ozone flux measurements made on 

a wheat field wheat in Comun Nuovo (Italy) (Gerosa et al., 2003). 

The model is tested for its capability to reproduce the total O3 flux (FO3) over the wheat field which corresponds to 

testing the resistance network altogether, and the latent heat flux (LE, W/m2) which is a proxy for stomatal conductance 

(and therefore a proxy for stomatal resistance). Namely, the total stomatal flux is calculated as follows: 

𝑭𝑶𝟑 =
𝑶𝟑(𝒛𝒎𝑶𝟑)

𝑹𝒂𝑯(𝒅+𝒛𝟎𝒎)+𝑹𝒃𝑶𝟑+𝑹𝒔𝒖𝒓𝒇,𝑶𝟑
           (S3)  

where 𝑧𝑚𝑂3 is the measurement height, 𝑑 is the displacement height, 𝑧0𝑚 is the roughness length for momentum, 

𝑂3(𝑧𝑚𝑂3) is the ozone concentration at measured height, 𝑅𝑎𝐻(𝑑 + 𝑧0𝑚, 𝑧𝑚𝑂3) is the aerodynamic resistance between 

𝑑 + 𝑧0𝑚 and 𝑧𝑚𝑂3, 𝑅𝑏𝑂3 is the quasi-laminar resistance, and 𝑅𝑠𝑢𝑟𝑓,𝑂3 is the bulk overall surface resistance to deposition. 

For details on the calculation for each of these variables, see the Appendix A in Guaita et al. (2023). 



Figure S2 shows the timeseries of FO3 and LE from the beginning of flowering to the harvest. Table S2 shows statistics 

for the model performance over the daylight hours (6 am-6 pm). The reported values are obtained by simply regressing 

the modelled values against the observed ones. 

 

Figure S2: Timeseries for modelled and observed FO3 (a), and LE (b) 

Table S2: Statistics for the comparison between observed and measured FO3, and LE. The regression uses the 

modelled data as predictand and the observations as predictor. 

 FO3 (nmol m-2 s-1) LE (W m-2) 

Regression intercept (p-

value) 

4.3377 (1.8448e-24) -0.0209 (3.5875e-14) 

Regression slope (p-value) 1.0481 (1.3058e-101) 1.1438 (1.0069e-197) 

Mean Bias 3.3298 -0.0089 

Mean Absolute Error 4.0317 0.0200 

Root Mean Square Error 5.8807 0.0308 

R-squared 0.4965 0.7403 

 

 


