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Abstract. The role played by environmental factors in the functioning of forest ecosystems is relatively well known. 8 

However, the potential of the elemental composition of trees (i.e., elementomes) as a predictor of forest functioning remains 9 

elusive. We assessed the predictive power of elemental composition from different perspectives: testing whether whole-plant 10 

element stocks or concentrations explain forest production and productivity (i.e., production per unit of standing biomass) 11 

better than leaf elements or environmental factors; identifying the optimal set (combination and quantity) of elements that 12 

best predicts forest functioning. To do so, we used a forest inventory of 2000 plots in the northeast of the Iberian Peninsula, 13 

containing in-site information about the elementomes (C, Ca, K, Mg, N, Na, P, and S) of leaves, branches, stems and barks, 14 

in addition to annual biomass production per organ. We found that models using leaf element stocks as predictors achieve 15 

the highest explained variation in forest production. The optimal dimensionality was achieved by combining the foliar stocks 16 

of C, Ca, K, Mg, N, P, and interactions (C×N, C×P, and N×P). Forest biomass productivity was best predicted by forest age. 17 

Hence, our results indicate that leaf element stocks are better predictors of forest biomass production than element 18 

concentrations or stocks of the whole trees, suggesting that analyzing leaves alone is a good enough approach to study 19 

ecosystem functioning. 20 

 21 

1 Introduction 22 

Environmental conditions influence the assembly of tree communities, thus forming different forest types across 23 

distinct environmental gradients (Chu et al., 2019; Sardans et al., 2016). Such gradients encompass specific niches (e.g., 24 

climatic conditions) that drive functional adaptations of the species (e.g., morphology or physiology traits) (Lavorel et al. , 25 

2007; Wang et al., 2022). As the backbone of functional adaptations to such niches, the concentration of elements (e.g., C, 26 

N, and P, amongst others) in organisms is a key factor driving ecosystem structure and functioning (Fernández-Martínez, 27 

2022; Peñuelas et al., 2019). Element concentrations in tree biomass vary along environmental gradients, species, and forest 28 

age, which are key drivers of forest functioning (Santiago et al., 2004; Sardans and Peñuelas, 2014).  Therefore, investigating 29 

the combination and concentration of distinct elements is vital to better understanding forest functioning.  30 

https://doi.org/10.5194/egusphere-2024-2572
Preprint. Discussion started: 12 September 2024
c© Author(s) 2024. CC BY 4.0 License.



2 

 

The multi-dimensional concentration of elements of an organism has been defined as the elementome (Peñuelas et 31 

al., 2019). Assessing the elementomes of different species allows for a better understanding of how they withstand 32 

contrasting environmental conditions, since their ecological strategies rely on different element concentrations and functional 33 

traits (Peñuelas et al., 2019; Fernández-Martínez, 2022; Reich and Oleksyn, 2004). Further, considering that elementomes 34 

differ across species and populations in response to environmental gradients, forest ecosystems distributed over climatic 35 

gradients are expected to vary in both their species composition and elementomes (Sardans et al., 2021; Vallicrosa et al., 36 

2022). 37 

Most studies analyzing ecosystem functioning found significant correlations with leaf elementomes (Fernández-38 

Martínez et al., 2020; Šímová et al., 2019; Yan et al., 2023). However, whole organism elementomes should be more 39 

strongly correlated with ecosystem functioning (e.g., forest production in biomass) since they encompass information about 40 

several functional traits other than those related to leaves (Schreeg et al., 2014; Xing et al., 2022; Zhang et al., 2018a). For 41 

example, positive relationships between N and P concentrations in different plant organs (e.g., stems, branches, and leaves) 42 

are essential for tree growth and productivity (Ding et al., 2022). Thus, to consider the concentrations of whole-organism 43 

elementomes, one should calculate them by weighing the elementomes of different organs by their relative biomass 44 

(Fernández-Martínez, 2022). However, to date, no study has assessed and compared the performance of leaf versus whole 45 

organism elementomes in predicting ecosystem functioning. 46 

Considering the elementome concentration and element stocks at the whole plant and at the leaf level may 47 

contribute to enhancing the understanding of ecosystem processes (Luo et al., 2020; Rocha et al., 2011). For instance, tree 48 

elementomes’ concentration significantly impacts ecosystem productivity (Bitomský et al., 2023; Elser et al., 2010). Forest 49 

biomass productivity is affected by the variation of elementomes in different stand ages, e.g., limited N and P content in 50 

older stands (Zhang et al., 2018a; Zhang et al., 2022). Different stand ages also shape the tree element stocks (i.e., elements 51 

stored within the biomass) in tree organs (Hoover and Smith, 2023; Rodríguez-Soalleiro et al., 2018). Nevertheless, the 52 

predictive performance of elementomes compared to element stocks in explaining ecosystem functioning remains scarcely 53 

understood. Furthermore, it remains unexplored whether elementomes and element stocks predict forest functioning better 54 

than environmental factors (e.g., climate) and stand age. 55 

Finally, the optimal elemental set (OES) — the minimum set (number and combination) of elements — for 56 

achieving the best prediction of organism and ecosystem functioning remains elusive. Most studies investigating 57 

elementomes in forested ecosystems only focused on C, N, P, and K (Sardans et al., 2017; Schreeg et al., 2014; Vallicrosa et 58 

al., 2022; Xing et al., 2022; Zhang et al., 2018b), while fewer ones have also included other important elements for the 59 

functioning of organisms and ecosystems, like Ca, S, and Mg (Sardans et al., 2016; Sardans et al., 2021, 2015) (Bai et al., 60 

2019; Huang et al., 2019). Acquiring knowledge on forest ODs can improve predictions of forest ecosystem functioning by 61 

increasing our mechanistic knowledge of how organisms and ecosystems work. 62 

In this study, we used a database including forest element composition and biomass growth in the northeast of the 63 

Iberian Peninsula. This region is a suitable model for investigating topics related to OES (optimal elemental set) since it is 64 
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composed of an environmental gradient reflected in distinct forest formations. We aimed to answer four questions: Are the 65 

whole-plant elements (elementomes and stocks) better predictors of forest functioning (production and productivity) than 66 

only leaf elements? Do element stocks better explain forest functioning than elementomes? What is the OES that best 67 

predicts forest functioning? Do element stocks and elementomes (leaf and whole plant) explain better forest functioning than 68 

environmental factors and stand age? We departed from three central hypotheses: H1: whole-plant elements (elementomes 69 

and stocks) are better predictors of forest functioning (biomass production and productivity) than only leaf elements; H2: 70 

element stocks better explain functioning than elementomes, as the former incorporates the effect of age in forest 71 

functioning; H3: OES effects in forest biomass production and productivity models are greater in models using whole 72 

organisms than leaf elementomes. 73 

 74 

2 Material and Methods 75 

 76 

2.1 Study Area 77 

 78 

 This study was conducted across the northeast of the Iberian Peninsula (ca. 31,900 km2), bounded in the north by 79 

the Pyrenees and in the east by the Mediterranean Sea. We chose this region due to its heterogeneous climatic conditions 80 

associated with large ranges in altitude (i.e., 0 to > 3000 m) and distance from the sea, which together result in wide 81 

variations in mean annual temperature (from 1 °C to 28 °C) and precipitation (annual mean from 350 to >1500 mm) (Martín 82 

Vide et al., 2008). The Mediterranean climate is mostly characterized by mild winters, dry and warm summers, and a high 83 

degree of interannual variability in precipitation. These pronounced climatic gradients allow for the establishment of three 84 

predominant forest types: Mediterranean evergreen angiosperm forests (dominated by Quercus ilex trees), Mediterranean 85 

gymnosperms (stands of Pinus halepensis, Pinus nigra, Pinus pinea, Pinus sylvestris, Pinus uncinata, and often with 86 

Quercus petraea and Q. ilex among them), and wet temperate deciduous angiosperms (with Fagus sylvatica, Quercus 87 

faginea, Quercus robur, Q. petraea, Abies alba, and P. sylvestris dominating at altitudes from 800 to 1500 m and P. 88 

uncinata from 1600 to 2400 m) (García et al., 2004; Bolòs i Capdevila, 1991). 89 

 90 

2.2 Forest Inventory and Elemental Data 91 

 92 

 We used the Ecological and Forest Inventory of Catalonia (IEFC) database (Gracia et al., 2004) 93 

(http://www.creaf.uab.es/iefc). This database includes tree diameters, basal area, biomass, and annual forest production of 94 

leaves, branches, barks, and stems, as well as the corresponding elemental composition of these organs. The forest sites from 95 

which we compiled the data represent sampling plots (10 m radius) distributed throughout Catalonia. The sampling was 96 

conducted at a density of one plot per square kilometer (sq km) of natural or managed forest (Gracia et al., 2004). For plots 97 

having more than five tree species, only the five most abundant ones (DBH > 5 cm) were recorded, and a tree core sample 98 
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was used to calculate the stand age and annual tree growth over the last five years (Vilà et al., 2003). The estimation of 99 

branch and leaf biomass was based on normalized dimensional analysis (Duvigneaud, 1971; Wittaker and Woodwell, 1969). 100 

The concentrations of the elements, i.e., elementomes (N, C, P, K, S, Mg, and Ca), of the individuals of each species were 101 

measured for samples of wood, bark, branches, and leaves by drying and grinding them to obtain homogeneous samples 102 

(Vayreda et al., 2016). Then, from an anhydrous subsample (oven-dried at 75 ºC) and of known weight, the concentration of 103 

nutrients was determined. The concentrations of C and N were determined by gas combustion chromatography in a C.E. 104 

elemental analyzer INSTRUMENTS (Wigan, UK), while the concentrations of P, S, Mg, Ca, and K were determined by 105 

Inductively Coupled Plasma (ICP) in a Jobin Yvon JI-38 spectrophotometer (Edison, USES) (Vayreda et al., 2016). A 106 

complete description of the methods employed in this forest inventory (e.g., sampling procedures, allometric equations, data 107 

processing, etc.) can be found in Gracia et al. (2004). 108 

From the IEFC dataset, we extracted the data regarding forest stand ages, biomass of tree individual organs, forest 109 

biomass production, and concentration of N, C, P, K, S, Mg, and Ca available for 2227 tree individuals (with a diameter at 110 

breast height (DBH) > 5 cm) from 48 species located in 2000 plots. The stand age is expressed in years and was obtained 111 

from the growth rings of tree wood cores in each plot (Gracia et al., 2004). In each plot, a core was taken from a tree that 112 

represented the center of the size class (diametric class), which was defined from 5 to 5 cm DBH (e.g., 5–10 cm; 15-20 cm; 113 

20–25 cm, etc.). Finally, it was calculated as the weighted average of the stand age based on the number of trees per DBH 114 

class. The elementomes of the trees were obtained for each organ: leaves, branches, barks, and stems (except for roots, which 115 

are missing in the inventory). To access the procedures, parameters, and allometric equations used to calculate the biomass 116 

of each organ, please see the methodological details of the IEFC described in Gracia et al. (2004). In our analyses, we used 117 

forest biomass production calculated considering the following equation: P = (Bt2 – Bt1)/5, where Bt2 is the current biomass 118 

(t ha-1: tons per hectare) per area and Bt1 is the biomass 5 years before (Vayreda et al., 2005; Vilà et al., 2003). Thus, forest 119 

production responds to the net increase in biomass in the ecosystem per year (t ha-1 y-1). Further, to obtain forest productivity 120 

(production per unit of standing biomass, y-1), we summed the biomass of tree organs (leaves, branches, bark, and stem 121 

wood) to get the whole aboveground tree biomass. Then, we divided forest production by the whole tree biomass. 122 

For our analyses (see section Statistical Analyses), we used values of concentration (g/100 g) and stocks of N, C, P, 123 

K, S, Mg, and Ca for only leaves and the whole organism. The whole-organism elementome was calculated as the weighted 124 

average of the elemental concentration (g 100 g-1) of the different plant organs. The stocks (t ha-1) of the elements per organ 125 

were calculated as the biomass of the organ multiplied by the concentration of the element. Finally, we summed the stocks of 126 

each element from the different organs to obtain the whole plant stock. 127 

 128 

2.3 Climatic Data 129 

For each forest plot, we acquired data on the 19 bioclimatic variables provided by the WorldClim database version 130 

2 at a very high spatial resolution (approximately 1 km2) (Fick and Hijmans, 2017). From the 19 variables, we selected only 131 

the ones with coefficients of correlation < 0.70 (Dormann et al., 2013) to avoid biasing the statistical models (see the section 132 
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Statistical Analysis) due to multicollinearity. Our final set of climatic variables was composed of temperature seasonality, 133 

mean temperature of the wettest quarter (three months), precipitation of the wettest month, precipitation of the driest quarter, 134 

precipitation of the warmest quarter, and precipitation of the coldest quarter. 135 

 136 

2.4 Statistical Analysis 137 

 138 

To test our hypothesis on the highest performance of elementomes and element stocks of the whole tree for 139 

predicting forest functioning (biomass production and productivity) compared to leaves or to environmental variables 140 

(climate) and stand age, we first constructed gaussian GAMMs (generalized additive mixed models) using the R package 141 

“mgcv” (Wood, 2017). For predicting forest biomass production, we used five different models characterized by the 142 

following sets of predictors: i) elementomes of the whole plant; ii) element stocks of the whole plant; iii–iv) the same as 143 

items i and ii but for the leaves; and v) the environment (climate) and stand age. To predict forest productivity, we used three 144 

different models with the following sets of predictors: i) elementomes of the leaves; ii) of the whole plant; and iii) the 145 

environment and stand age. The predictors representing elementomes and element stocks were N, C, P, K, S, Mg, Ca, and 146 

the interactions C×P, C×N, and N×P. For forest productivity, stocks were not included as predictors to avoid statistical 147 

redundancy since the productivity calculation involves the sum of organ biomass and stocks also use organ biomass (details 148 

in the Forest Inventory and Elemental Data section). 149 

To adequately fit the GAMMs and eliminate spatial autocorrelation effects on the residuals, we included the 150 

coordinates (longitude and latitude) of the forest plots as fixed smoothed terms with Duchon splines (Duchon, 1977; Wood, 151 

2003), while also adding species as random effects. This approach guaranteed that the degrees of freedom of the splines 152 

(Edf) were correctly fitted according to the required number of knots (k) for the GAMMs to reach residual independence. To 153 

verify whether potential spatial effects were sufficiently eliminated, the residuals extracted from the GAMMs were modeled 154 

in spatial variograms using the function “fit.variogram” of the R package “gstat” (Pebesma, 2004). We found no significant 155 

remaining spatial effect on the residuals of the models. Further, to achieve the normality of the residuals, we transformed the 156 

target forest production into its natural logarithm in all models. For the proper fit and convergence of the models regarding 157 

forest biomass productivity, we normalized (mean divided by the standard deviation) all elementomes using the built-in 158 

“scale” R function. 159 

To find the optimal elemental set (OES) of the elementome for predicting forest production and productivity and to 160 

discern whether leaf or whole plant elementomes work better for this purpose, we performed a model selection procedure 161 

based on the Akaike information criterion (AIC) (Burnham and Anderson, 2002). Such procedure consisted of including the 162 

global GAMMs (with the same eight models above described: five for production and three for productivity) in the function 163 

“dredge” of the “MuMIn” package (Bartoń, 2023) in R programming environment version 4.3.3 (R Development Team 164 

Core, 2024). The use of the minimum AIC selection procedure allowed us to extract the best combinations (subsets) of 165 

predictors from our global models to predict forest functioning. We applied the same selection procedure to models with the 166 
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environment and age as predictors. In all selections, we considered the subsets with the lowest AIC values as the best 167 

models. 168 

We also considered all subsets of selected models with delta (ΔAIC) < 4 as equally robust and statistically reliable, 169 

thus allowing us to retain relevant and valuable information beyond single-best models (Burnham et al., 2011). From these 170 

subsets (ΔAIC < 4), we extracted information on the performance of the models (R-squared) and the number of variables 171 

they selected. Then, we assessed the predictive performance (R-squared: R2) by accessing the models’ outputs in two ways: 172 

by the subset models according to the number of selected predictors and by the overall performance only of the single best 173 

models. This two-way performance ranking allowed us to compare the performance of only the single best models (lowest 174 

AICs) with sets of models equally reliable (ΔAIC < 4). 175 

Finally, to obtain a reliable overview of which were the most important variables for explaining forest functioning, 176 

we performed model averaging for models with ΔAIC < 4 using the function “model.avg” of the “MuMIn” package (Bartoń, 177 

2023) in R 4.3.3. We used the argument “beta=TRUE” to standardize the coefficients, allowing for a comparison of the 178 

relative importance of each predictor variable in the average models. Model averaging computes an average model output 179 

from the estimates of a set of models and weights their relative importance by their AIC (Burnham and Anderson, 2002). 180 

Therefore, this approach allowed us to obtain information on the importance of predictor variables extracted from the best 181 

model subsets (i.e., ΔAIC < 4). 182 

The complete routine with the codes used to execute the models described and presented in this study can be 183 

accessed in Diniz (2024). 184 

 185 

3 Results 186 

 187 

By assessing the predictive performance of the best single models (lowest AIC; Table A1, Appendix A), we 188 

answered the questions regarding the performance of the whole plant (elementomes and stocks) vs. leaves and of the 189 

elementomes vs. stocks for explaining forest functioning. Our results indicated that leaves (rather than whole plants) and 190 

stocks (rather than elementomes) are the best predictors of forest functioning. We found that the best model of forest 191 

biomass production using leaf element stocks as predictors explained 58% of the variance and had nine variables: C, Ca, K, 192 

Mg, N, P, C×N, C×P, and N×P (Fig. 1a). Conversely, the best model, including as predictors the whole-plant element stocks 193 

(Fig. 1a), explained a lower portion (28%) of the variance of forest biomass production and had three predictors (C, N, and 194 

C×N). Regarding the best models of forest production, including elementomes as predictors, we found that leaf elementomes 195 

also explained more variance (22%) than whole plant elementomes (13%) Fig. 1a). The best leaf elementome model 196 

included six variables (C, Ca, N, P, C×P, and N×P), and the best whole plant elementome model included only one (Ca). 197 

Similarly, leaf elementomes were the best predictors of forest biomass productivity (Fig. 1b; 28% of variance explained), 198 

and the best model included three variables (Ca, K, and N). The best whole plant elementome included only K and explained 199 

a lower variance (15%) of biomass productivity.  200 
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 201 

Figure 1: R2 and AIC of the best models for explaining forest biomass production (a, b) and productivity (c, d), 202 

considering as predictors the stocks and the concentration of elements only for the leaves and for the whole plant, and 203 

climate and forest age. Numbers within the bars show the number of variables selected. Plant concentration = whole-204 

plant elementomes. 205 

 206 

Our subsets of models equally robust (ΔAIC< 4) showed that the optimal elemental set (OES) for predicting forest 207 

biomass production from leaf element stocks (Fig. 2a) was nine variables (C, Ca, K, Mg, N, P, C×N, C×P, and N×P). This 208 

model subset explained an average of 58% of the variance in forest biomass production. The subset of models using whole-209 

plant element stocks exhibited the second-best predictive performance for forest biomass production (R2 = 0.29; Fig. A1, 210 

Appendix A). Differently, the subset of models using climatic variables and whole plant elementomes as predictors 211 

displayed the lowest prediction of forest biomass production (Fig. A1). The variance of forest productivity was moderately 212 

explained (28%) by models selecting three variables (Ca, K, and N) of leaf elementomes (Fig. 1c, d) and poorly explained 213 

(15%) by models with whole-plant elementomes (Fig. A2, Appendix A). Forest productivity was best explained (R2 = 0.68) 214 

with the subset of models that included two variables (temperature seasonality and stand age) (Fig. A2).  215 

We also found that climate and stand age (Fig. A1, Appendix A) explained 21% of the variance in forest biomass 216 

production, while leaf element stocks explained 58% (Fig. 1a and 2a). On the other hand, the best subset of models that had 217 
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forest age and temperature seasonality as predictors displayed the best performance and explained 62% of the variance in 218 

forest biomass productivity (Fig. A2, Appendix A). 219 

 220 

Figure 2: Forest biomass production (a, b) and productivity (c, d) predicted by leaf element stocks (a, b) and leaf 221 

element concentration (c, d). Results demonstrated by the performance (AIC and R2) of the most robust subsets of 222 

models (ΔAIC < 4). 223 

 224 

The average models are based on different subsets of variables (i.e., leaves vs. whole plant elementomes and stocks, 225 

and elementomes vs. stocks; Table A2, Appendix A) and demonstrated that P, Ca, and N — from both models based 226 

exclusively on leaf element stock and models only with leaf elementomes — are the most important predictors for explaining 227 

spatial variability in forest production (Fig. 3 a, c; Fig. A3, Appendix A). Conversely, the whole plant elementomes and 228 

element stocks of the P exerted a low and non-significant influence on forest biomass production (Fig. 3 b, d). N stocks 229 

(leaves and whole plant) and N leaf concentration were positively correlated to forest biomass production (Figures 3 a, b, 230 
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and c, respectively; Fig. S3). On the other hand, in leaves, the interactions N×P (Fig. 3a) and C×P (Fig. 3c) and the 231 

concentration of C (Fig. 3 c) exerted a significant and negative effect on biomass production. The negative interaction of 232 

N×P indicated that the higher the value of P, the lower the effect of N on biomass production. Similarly, the negative 233 

interaction of C×P implied that higher values of P reduce the effect of C on biomass production. The average models using 234 

leaf and whole-elementome predictors were unable to predict forest biomass productivity (Fig. 4). 235 

 236 

Figure 3: Standardized coefficients from the model averaging (ΔAIC< 4) for the prediction and explanation of forest 237 

biomass production, considering as predictors the stocks (a, b) and the concentration (c, d) of elements only for the 238 

leaves (a, c) and for the whole plant (b, d). R2 is the average of R-squared derived from all models with ΔAIC < 4. 239 

Plant element concentration = Whole plant element concentration. * Indicates significant coefficient.  240 

 241 

Climatic variables also displayed significant effects on forest biomass production. Temperature seasonality and 242 

precipitation in the coldest quarter were negatively correlated with biomass production (Fig. 5a). Conversely, precipitation in 243 

the driest quarter correlated positively with biomass production (Fig. 5a). However, forest biomass productivity was not 244 

influenced by climate but decreased significantly with stand age (Fig. 5b). 245 
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 246 

 Figure 4: Standardized coefficients from the model averaging (ΔAIC < 4) for the prediction of forest biomass 247 

productivity, considering as predictors the concentration of elements only for the leaves (a) and for the whole plant 248 

(b). R2 is the average of R squared derived from all models with ΔAIC < 4. Plant element concentration = Whole 249 

plant element concentration. * Indicates significant coefficient.  250 

 251 

 252 

 Figure 5: Standardized coefficients from the model averaging (ΔAIC < 4) for the prediction of forest biomass 253 

production (a) and productivity (b), considering as predictors climate variables and stand age. Temp. Wet. Quarter: 254 

Mean temperature of the wettest quarter; Temp. Seasonality: Temperature Seasonality; Precip. Cold. Quarter: 255 

Precipitation of Coldest Quarter; Precip. Warm. Quarter: Precipitation of Warmest Quarter; Precip. Dry. Quarter: 256 

Precipitation of Driest Quarter; Precip. Wet. Month: Precipitation of Wettest Month. R2 was averaged from all 257 

models with ΔAIC < 4. * Indicates significant coefficient. 258 

 259 

 260 
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4 Discussion 261 

 262 

We refuted the hypothesis that using whole plant elementomes and element stocks predicts forest biomass 263 

production better than leaf elementomes and element stocks alone. Models including nine leaf element stocks (C, Ca, K, Mg, 264 

N, P, C×N, C×P, and N×P) displayed the highest performance in predicting forest biomass production. On the other hand, 265 

stand age was the best predictor of forest biomass productivity. Altogether, these findings suggest that forest production can 266 

be best predicted by foliar element stocks and biomass productivity by stand age. Further, our average models indicate that 267 

changes in forest biomass production are mostly explained by concentrations and stocks of Ca, P, and N. 268 

Our finding that leaf element stocks are the main predictors of forest biomass production was unexpected. Since the 269 

whole plant considers different parts of the plant (e.g., stems, branches, bark) that require different nutrient concentrations to 270 

exert distinct functions (e.g., uptake, transport, storage), it could be expected that using concentrations and stocks of 271 

elements of the whole plant would have higher predictive performance (Zhang et al., 2018; Delpiano et al., 2020; Sardans et 272 

al., 2023) than only using elements of leaves. However, even though the leaves do not encompass the whole functional space 273 

of a tree, they represent the essential photosynthetic part of a plant and are capable of rapid nutrient cycling and 274 

responsiveness to environmental conditions (Foster & Bhatti, 2020). For instance, N and P, the most important elements 275 

limiting plant growth, are more readily available in leaves for use in metabolic (e.g., growth) and ecosystem processes (e.g., 276 

biomass production) than in other organs (Liu et al., 2019; Roth-Nebelsick & Krause, 2023; Töpfer, 2021). Thus, the 277 

practical implication of our results for further studies is that foliar element stocks may hold sufficient information to derive 278 

robust predictions of forest functioning.  279 

Foliar nutrient stocks are crucial for enhancing plant fitness by enhancing photosynthesis and thus biomass 280 

production (Gilliham et al., 2011; Taiz et al., 2014; Beechey-Gradwell et al., 2020). Sufficient reserves of macronutrients 281 

such as K, Ca, and Mg in specific leaf cell types are also vital for plant growth (Gilliham et al., 2011). The positive effect of 282 

the combination of stored elements on growth is indicated by our best model for biomass production, which had as predictors 283 

the foliar stocks of C, Ca, K, Mg, N, P, C×N, C×P, and N×P. Further, our average models also indicated the leaf stocks of 284 

Ca, P, and N as the most important predictors of forest biomass production. 285 

The superior performance of leaf element stocks, compared to whole-plant element stocks and concentrations, also 286 

might be due to suitable environmental conditions resulting in increased foliar biomass (Rodríguez-Soalleiro et al., 2018b; 287 

Urbina et al., 2011). In suitable climatic conditions (e.g., high precipitation), plant growth might be positively affected by 288 

high concentrations of foliar N and P (Kerkhoff et al., 2005; P. Reich and Oleksyn, 2004; Sardans and Peñuelas, 2014). We 289 

found a positive effect of precipitation in the driest quarter, N and P, on forest biomass production. Since the summer in most 290 

of the territory addressed in this study coincides with temperatures and marked water stress (Martín Vide et al., 2008), plants 291 

may invest in a strategy of retaining larger foliar nutrient reserves to cope with drought (Waring, 1987.; Gessler et al., 2017). 292 

Therefore, our observed increased precipitation concomitantly with high temperature seasonality might favor foliar nutrient 293 

storage and consequently biomass production (Fernández-Martínez et al., 2017; Lie et al., 2018; Roa-Fuentes et al., 2012). 294 
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The highest predictive performance was achieved by using foliar stocks including C, Ca, K, N, Mg, and P as 295 

predictors, which is congruent with the known high influence of the uptake and redistribution of these elements in forest 296 

biomass production (Bond, 2010; Whittaker et al., 1979). Such an optimal set of elements is influenced by the effects of 297 

climate and stand age on their uptake, redistribution, and storage (Woodwell et al., 1975; Augusto et al., 2008; Rodríguez-298 

Soalleiro et al., 2018; Dynarski et al., 2023; Li et al., 2021). Thus, the driving role of climate in the optimal elemental set is 299 

expected to influence forest functioning ultimately. Indeed, we found that climate (precipitation in the driest quarter and 300 

temperature seasonality) correlated positively and significantly with biomass production. These findings suggest climate as 301 

the main factor that influenced the optimal combination of foliar stocks of C, Ca, K, Mg, N, P, C×N, C×P, and N×P in 302 

predicting biomass production (X. Wang et al., 2022; Yang et al., 2019; Q. Zhang et al., 2021).  303 

Among the elements in the abovementioned optimal combination for predicting forest biomass production, N and P 304 

stand out. We found that higher leaf stocks of N and P were related to higher biomass production. Plant growth is highly 305 

influenced by the proportions of N and P, and particularly by the ratios N:P (Ågren, 2008; Gusewell, 2004; Sardans et al., 306 

2011; Willby et al., 2021). The plant N:P ratio reflects the balance between uptake and loss of N and P (Gusewell, 2004). 307 

Our negative interaction with N×P indicates that the higher the leaf stocks of P, the lower the effect of N leaf stocks on 308 

biomass production. Such a higher importance of P compared to N for biomass production might be due to the typically 309 

higher foliar resorption of P than of N (Vergutz et al., 2012; Mulder et al., 2013). 310 

The highest importance attributed to P for explaining forest biomass production is probably an outcome of its 311 

continuous storage in the forest biomass (Sardans and Peñuelas, 2015; Y. Wang et al., 2022). Thus, the observed prominent 312 

role of P might be representing a long-term adaptative strategy of trees to store it in biomass and slow its loss from 313 

ecosystems (Sardans and Peñuelas, 2015). Sardans and Peñuelas (2015) using data from the Catalan Forest Inventory, found 314 

that trees with high woody biomass (branches plus stems) hold a higher P content than N and a higher P:N ratio with forest 315 

ageing. 316 

Aside from N and P, Ca also displayed a positive effect on forest biomass production and productivity, which is 317 

congruent with the importance of this element for photosynthesis, nutrient absorption, and plant growth (Hirschi, 2004; 318 

Ågren, 2008; Hochmal et al., 2015). However, the average models indicated that the concentration of elements (e.g., Ca and 319 

N in leaves and whole- plants) and climate were not significantly influential on biomass productivity. Rather, we observed a 320 

significant negative relationship between stand age and forest biomass productivity, probably explained by the increase of 321 

forest biomass and the decrease of forest nutrient availability with age (Fernández-Martínez et al., 2014; Goulden et al., 322 

2011). 323 

Finally, the smaller importance of C compared to other elements in our average models might also partially explain 324 

the decrease in forest biomass productivity. Productivity reduction might be caused by the predominance of leaf and fine-325 

root turnovers in carbon allocations compared to other plant parts (Yu et al., 2017). The availability of foliar nutrients, 326 

particularly P, strongly affects photosynthetic carbon gain in forests, contributing to variations in biomass productivity 327 

https://doi.org/10.5194/egusphere-2024-2572
Preprint. Discussion started: 12 September 2024
c© Author(s) 2024. CC BY 4.0 License.



13 

 

(Mercado et al., 2011). Consequently, the production of living biomass in other parts (i.e., stems and barks) reduces, and 328 

overall productivity tends to decrease (Jonsson et al., 2020; Ryan et al., 1997; Schoonmaker et al., 2016; Yu et al., 2017).  329 

In this study, we bring new insights into the effects of the optimal elemental sets, compared to climate and stand 330 

age, on both forest biomass production and productivity. As practical implications for future research, our results indicate 331 

that using only data on leaf elements, especially stocks, allows us to achieve robust predictions of variations in forest 332 

biomass. Such information contributes to decision-making by researchers and forest managers about the types of data 333 

(elements of the whole plant or just leaves) they should prioritize collecting when assessing forest growth. 334 

 335 

5 Conclusions 336 

 337 

 We found that elemental concentrations and stocks of leaves predict forest biomass production and productivity 338 

better than those of the whole plant. Leaf stocks explained the highest amount of variance in forest biomass production, thus 339 

suggesting that element stocks are better predictors than element concentrations. The optimal elemental set for predicting 340 

forest biomass production can be achieved using leaf elemental stocks of C, Ca, K, Mg, N, P, C×N, C×P, and N×P as 341 

predictors. Among these elements, N and P stocks and concentrations were the most positively correlated with biomass 342 

production. Conversely, the concentration of elements and climate did not significantly influence forest biomass 343 

productivity, which was mainly driven by stand age. Altogether, our results indicate that focusing on the use of leaf 344 

elements, especially stocks, as predictors is sufficient for predicting forest biomass variation. 345 
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 761 

Appendix A: Model Performance 762 

 763 

Table A1: Performance of the best models (lowest AIC) showed in Figure 1 and the numbers (N) of predictors they 764 

selected for predicting forest production and productivity. Response = dependent variable. Leaf Conc. and Plant 765 

Conc. are leaf element concentration and whole plant element concentration, respectively. Clim. Age are climatic 766 

variables and stand age. Temp. Season = Temperature Seasonality; Temp. Wet. Quart. = Mean Temperature of 767 

Wettest Quarter; Prec. Dr. Quart. = Precipitation of Driest Quarter; Prec. Cold.Quart. = Precipitation of Coldest 768 

Quarter; Age = Stand age. 769 

Response Predictors N  R2 AIC Selected variables 

Production Leaf Stock 9 0.58 64.7 

C, Ca, K, Mg, N, P, C×N, C×P, and 

N×P 

      

Production Plant Stock 3 0.28 1369.2 C, N, and C×N 

      

Production Leaf Conc. 6 0.22 2019.4 C, Ca, N, P, C×P, and N×P 

      

Production Plant Conc. 1 0.13 2326.2 Ca 

      

Production Clim. Age 1 0.21 2066.1 

Temp. Season., Temp. Wet. Quart., 

Prec. Dr. Quart., Prec. Cold.Quart. 

      

Productivity Leaf Conc. 3 0.28 152.2 Ca, K, and N 

      

Productivity Plant Conc. 2 0.15 155.5 K 

      

Productivity Clim. Age 2 0.62 48.1 Temp. Season., Age 

      

 770 
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Table A2: Total number (Total N) of models’ subsets produced by the selection with “dredge” using different 772 

predictors’ set for predicting forest production and productivity. N (ΔAIC<4) is the number of models equally robust 773 

under ΔAIC < 4 and used to calculate the average models. 774 

Target Predictors Total N N (ΔAIC<4) 

Production Leaf Stock 575 10 

Production Plant Stock 575 10 

Production Leaf Concentration 852 10 

Production Plant Concentration 852 8 

Production Climate and Age 511 7 

Productivity Leaf Concentration 850 7 

Productivity Plant Concentration 850 8 

Productivity Climate and Age 511 7 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 

 792 

 793 

 794 

 795 

 796 

https://doi.org/10.5194/egusphere-2024-2572
Preprint. Discussion started: 12 September 2024
c© Author(s) 2024. CC BY 4.0 License.



28 

 

 797 

 798 

Figure A1: Performance (AIC and R2) of the most robust models (ΔAIC < 4) in predicting forest production 799 

according to the number of selected predictors. The models’ performance demonstrated by their AIC and R2: Plant 800 

stocks (a, e); Leaf elemental concentration (b, f); climate and stand age (c, g); Whole-plant elemental concentration 801 

(d, h).   802 
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 816 

Figure A2: Performance of the most robust models (ΔAIC < 4) in predicting forest productivity according to the 817 

number of selected predictors. The models’ performance demonstrated by their AIC and R-squared: climate and 818 

stand age (a, c); Whole-plant elemental concentration (b, d).  819 
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 830 

Figure A3: Partial residuals plots showing the estimated effects of the elemental concentrations and stocks of Ca, P, 831 

and N on forest biomass production. SE: Standard error. 832 
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