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Text S1. Methane emission signal (ΔR) retrieval 12 

Similar to (Ehret et al. 2022; Irakulis-Loitxate et al. 2022), we derived ΔR by comparing the 13 

ratio of band12 and band11 with a reference background without enhanced methane concentrations. 14 

The reference background is predicted by multivariate linear regression (MLR) models by pixel. 15 

For that, a sliding time window of T (60) dates was set and the patches in the time continuum were 16 

extracted (Ehret et al. 2022). To obtain optimal training set of MLR, we firstly introduced an image 17 

structural similarity index measure (SSIM) algorithm (Zhou et al. 2004) to discard the n (15) images 18 

that were most dissimilar to the date of interest t in the time series. Most of the discarded images 19 

contained opaque or circus clouds as shown in Fig. S1. SSIM estimated image distances considering 20 

the combination of structure, contrast, and luminance in band11. Band11 is ideal for comparison as 21 

it belongs to SWIR range like band12 but the methane absorption is much weaker to present 22 

anomalous absorption signal. Then, the proposed LRAD algorithm was deployed to detect and mask 23 

the potential artifacts in the SSIM-optimized data continuum. Within the data cube, patches of the 24 

past T-n-1 dates were employed to train MLR model and generate band11 and 12 references. If the 25 
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coefficient of determination (R2) of the MLR was lower than 0.5, the date of interest t was skipped 26 

and the S2L1C data was classified as cloudy observations. The calculation formular of ΔR is shown 27 

as follows:  28 

∆R =
band12

t band12
ref⁄

band11
t band11

ref⁄
  29 

Considering that band12 exhibits a significantly higher methane absorption capacity compared 30 

to band11, any pronounced methane emission event would lead to a noticeable reduction in the pixel 31 

values within the ΔR range of 0-1. Consequently, we applied a threshold range of [0, 1] to ΔR in 32 

order to mask anomalies and then a threshold of the 5th percentile value was applied to ΔR in order 33 

to remove background. In the end, we applied a colormap to map the unitless ΔR matrix into RGB 34 

imagery, so the input to the plume detection algorithm conforms to the structure of ResNet50 in 35 

order to use ImageNet-based pre-training parameters, and also can provide more hierarchical 36 

features to avoid potential accuracy degradation (Shorten and Khoshgoftaar 2019). 37 

Text S2. Emission flux quantification and uncertainty estimation 38 

Emission flux rates (Q, kg h-1) are calculated for each detected plume-containing ΔR image. 39 

Firstly, we employed the radiative transfer model by (Varon et al. 2021) to convert unitless ΔR to 40 

methane column enhancements (mol m-2). Secondly, we manually defined a plume mask based on 41 

the enhancement image. Background enhancement (mean enhancement outside the mask) is 42 

subtracted for pixels in the mask. Finally, the emission flux rate Q is computed using the integrated 43 

mass enhancement (IME) method (Frankenberg et al. 2016; Varon et al. 2018): 44 

𝑄 =
𝐼𝑀𝐸 × 𝑈𝑒𝑓𝑓

𝐿
                            (S1) 45 

where IME is computed as the sum of methane mass enhancements within the plume mask. 𝑈𝑒𝑓𝑓 46 

(m s-1) is the effective wind speed, which is computed based on the GEOS-FP 1 hour average 10-m 47 
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wind speed 𝑈10 following the calibration equation developed in (Varon et al. 2021). L (m) is the 48 

plume length which is computed as the square root of the plume area. 49 

 To estimate the uncertainty for the emission flux rate, we consider three dominant error terms 50 

in Eqs. (S1). The random error of IME, mainly originated from retrieval noise, is estimated as the 51 

standard deviation of methane column mass enhancement outside the plume mask (Cusworth et al. 52 

2020). The error of GEOS-FP 𝑈10 is assumed to be 50%, consistent with the ~1.5 m s-1 standard 53 

deviation given by (Varon et al. 2020). Following (Sánchez-García et al. 2022), an error of 0.01 is 54 

assumed for both the slope and intercept of the 𝑈𝑒𝑓𝑓 calibration function. We add the above errors 55 

in quadrature to derive the total uncertainty (1σ) of the emission flux. 56 

Text S3. Labeling decision rule of ΔR imagery 57 

We categorized the ΔR images into two classes, plume-containing and plume-free, following 58 

the procedure in Fig. 5. The determination is mainly based on visual inspection of ΔR images. We 59 

first look for the presence of methane plumes in ΔR images. If present, we then examine whether 60 

the potential methane plume signal is roughly aligned with wind direction and is free from surface 61 

and cloud interference. We use Goddard Earth Observing System-Fast Processing (GEOS-FP) 10 62 

m wind reanalysis data as main information of wind direction (Varon et al. 2020). Since we find that 63 

the wind direction in the GEOS-FP 10-m wind data often does not align with the plume direction, 64 

the difference between plume and wind direction tolerated by this labeling process is less than 90°. 65 

Nonetheless, there are still a few cases where the plume morphology is distinct but the difference in 66 

wind direction is greater than 90°. To this end, the visual inspection of plume is supplemented by 67 

directions of nearby smoke plumes (if available) seen in RGB images. Subsequently, we use SWIR 68 

and RGB images to rule out potential interference by surface and cloud. It is noted that artifacts 69 
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originate from low reflectivity surface features, so we focus on the least reflective pixels in the 70 

SWIR images. If the “plume” morphology in ΔR image presents to be the low-reflectivity region in 71 

SWIR images, then we discriminate it as a false signal. 72 

 73 

Figures 74 

 75 

Fig. S1. RGB images of the S2L1C observations discarded by SSIM (take 20180525 as an example) 76 

 77 
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 78 

Fig. S2. Architecture of residual blocks in DSAN. 79 

 80 

 81 

Fig. S3. Architecture of MethaNet proposed by (Jongaramrungruang et al. 2022). 82 

 83 

Fig. S4. Models were trained and assessed on two kinds of transfer tasks. “1→1”: single source 84 

domain to single-target domain and “5→1”: multi-source domain to single-target domain (multi-85 

source domain is a fusion of all the datasets except for the target dataset). 86 
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 87 

Fig. S5. Emission flux (kg/h) and uncertainty quantification of the methane plumes in Dataset#1-6 88 



7 

 

 89 

 90 

Fig. S6. Examples of the adaptive denoising masks over the six methane point sources generated by 91 

the LRAD algorithm. White color represents pixels that are filtered out as artifacts. 92 

 93 

 94 

Fig. S7. Comparison of the averaged signal-to-noise ratios (SNRs) of the six ΔR datasets before and 95 

after deploying the LRAD algorithm. 96 

 97 

 98 
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 99 

Fig. S8. False negative detection in source P(2), and the corresponding RGB images extracted from 100 

Sentinel-2 L1C product. 101 

 102 

 103 

Fig. S9. Top row shows RGB images of flaring at P(1) and P(2), which are extracted from Sentinel-104 

2 L1C product. Bottom row presents the flare and smoke (red pixels) masks detected by the LRAD 105 

algorithm. Yellow pins indicate the locations of flaring facilities. 106 

  107 
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Tables 108 

Table S1 Performances of MethaNet, ResNet-50, and DSAN models on test sets of the ‘1→1’ 109 

transfer tasks. 110 

Task

# 
Class 

MethaNet ResNet-50 DSAN 

Precis

ion 
Recall 

Accur

acy 

Precis

ion 
Recall 

Accur

acy 

Precis

ion 
Recall 

Accur

acy 

1-2 
contain 0.74  0.55  

0.76  
0.70  0.80  

0.80 
0.80  0.86  

0.87  
free 0.77  0.89  0.87  0.80  0.92  0.87  

1-3 
contain 0.85  0.59  

0.87  
0.64  0.89  

0.84 
0.76  0.97  

0.91  
free 0.87  0.96  0.96  0.83  0.99  0.89  

1-4 
contain 0.78  0.71  

0.86  
0.71  0.92  

0.87 
0.81  0.95  

0.92  
free 0.89  0.92  0.97  0.85  0.98  0.91  

1-5 
contain 0.76  0.20  

0.65  
0.78  0.78  

0.81 
0.86  0.87  

0.89  
free 0.64  0.96  0.84  0.84  0.90  0.90  

1-6                         
contain 0.36  0.50  0.90  0.19  0.71  

0.77 
0.36  0.67  0.89  

free 0.96  0.93   0.97  0.77  0.97  0.91   

2-1 
contain 0.74  0.84  

0.80  
0.80  0.82  

0.83 
0.93  0.90  

0.93  
free 0.86  0.76  0.85  0.83  0.92  0.95  

2-3 
contain 0.78  0.59  

0.85  
0.57  0.92  

0.80 
0.82  0.91  

0.92  
free 0.87  0.94  0.97  0.75  0.97  0.93  

2-4 
contain 0.87  0.73  

0.89  
0.77  0.92  

0.90 
0.84  0.90  

0.92  
free 0.90  0.96  0.97  0.89  0.96  0.93  

2-5 
contain 0.86  0.15  

0.65  
0.80  0.80  

0.83 
0.88  0.81  

0.87  
free 0.63  0.98  0.85  0.85  0.87  0.92  

2-6 
contain 0.38  0.28  

0.91  
0.18  0.71  

0.75 
0.45  0.72  

0.91  
free 0.94  0.96  0.97  0.76  0.98  0.93  

3-1 
contain 0.87  0.77  

0.84  
0.82  0.91  

0.87 
0.97  0.85  

0.92  
free 0.83  0.90  0.92  0.83  0.89  0.98  

3-2 
contain 0.84  0.57  

0.80  
0.68  0.79  

0.79 
0.81  0.83  

0.87  
free 0.79  0.94  0.87  0.79  0.90  0.89  

3-4 
contain 0.94  0.64  

0.88  
0.63  0.92  

0.83 
0.88  0.92  

0.94  
free 0.87  0.98  0.96  0.79  0.97  0.95  

3-5 
contain 0.77  0.30  

0.68  
0.77  0.76  

0.81 
0.91  0.81  

0.88  
free 0.66  0.94  0.83  0.84  0.87  0.94  

3-6 
contain 0.45  0.56  

0.92  
0.24  0.76  

0.81 
0.55  0.67  

0.93  
free 0.96  0.95  0.98  0.81  0.97  0.95  

4-1 
contain 0.85  0.78  

0.84  
0.87  0.94  

0.91 
0.94  0.84  

0.90  
free 0.83  0.89  0.94  0.89  0.88  0.95  

4-2 
contain 0.55  0.84  

0.69  
0.68  0.76  

0.78 
0.75  0.83  

0.83  
free 0.87  0.60  0.85  0.79  0.90  0.84  

4-3 
contain 0.66  0.73  

0.83  
0.68  0.85  

0.86 
0.85  0.76  

0.90  
free 0.90  0.87  0.94  0.86  0.92  0.95  

4-5 contain 0.64  0.22  0.62  0.83  0.72  0.82 0.91  0.78  0.88  
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free 0.62  0.91  0.82  0.89  0.86  0.94  

4-6 
contain 0.33  0.44  

0.89  
0.21  0.71  

0.79 
0.53  0.56  

0.93  
free 0.95  0.93  0.97  0.80  0.96  0.96  

5-1 
contain 0.64  0.81  

0.71  
0.85  0.92  

0.89 
0.91  0.94  

0.93  
free 0.80  0.63  0.93  0.86  0.95  0.92  

5-2 
contain 0.49  0.79  

0.63  
0.62  0.84  

0.76 
0.75  0.89  

0.85  
free 0.81  0.53  0.89  0.71  0.93  0.83  

5-3 
contain 0.53  0.70  

0.76  
0.62  0.94  

0.83 
0.79  0.92  

0.92  
free 0.88  0.78  0.97  0.80  0.97  0.91  

5-4 
contain 0.48  0.84  

0.70  
0.73  0.90  

0.88 
0.80  0.94  

0.91  
free 0.91  0.64  0.96  0.87  0.97  0.91  

5-6 
contain 0.17  0.61  

0.75  
0.29  0.82  

0.85 
0.33  0.72  

0.87  
free 0.96  0.76  0.98  0.85  0.98  0.88  

6-1 
contain 0.88  0.53  

0.76  
0.88  0.56  

0.77 
0.99  0.67  

0.85  
free 0.71  0.94  0.73  0.94  0.79  0.99  

6-2 
contain 0.52  0.53  

0.64  
0.73  0.40  

0.73 
0.82  0.61  

0.81  
free 0.72  0.71  0.73  0.91  0.80  0.92  

6-3 
contain 0.84  0.24  

0.79  
0.75  0.37  

0.80 
0.90  0.67  

0.89  
free 0.79  0.98  0.81  0.96  0.89  0.97  

6-4 
contain 0.94  0.34  

0.81  
0.90  0.65  

0.88 
0.96  0.84  

0.94  
free 0.79  0.99  0.88  0.97  0.94  0.99  

6-5 
contain 0.96  0.18  0.67  0.90  0.48  

0.76 
0.97  0.55  0.81  

free 0.64  0.99   0.72  0.96  0.75  0.99   

 111 

Table S2 Performances of the MethaNet and ResNet-50 on test sets (30%) on validation sets of 112 

the non-transfer tasks. 113 

Dataset# Class 
MethaNet ResNet-50 

Precision Recall Accuracy Precision Recall Accuracy 

1 
contain 0.80 0.95 

0.88 
0.97  1.00  0.99 

free 0.96 0.82 1.00  0.98  

2 
contain 0.76 0.72 

0.83 
0.85  1.00  0.94 

free 0.86 0.88 1.00  0.90  

3 
contain 1.00  0.67  

0.90  
0.83  0.95  0.93 

free 0.88  1.00  0.98  0.93  

4 
contain 0.95 0.87 

0.94 
0.90  1.00  0.97 

free 0.93 0.98 1.00  0.96  

5 
contain 0.81  0.75  

0.81  
0.95  0.92  0.95 

free 0.81  0.85  0.95  0.96  

6 
contain 1.00 0.80 

0.98 
0.83  1.00  0.99 

free 0.98 1.00 1.00  0.99  

 114 

Table S3 Performances of MethaNet, ResNet-50, and DSAN models on test sets of the ‘5→1’ 115 

transfer tasks. 116 

Task# Class MethaNet ResNet-50 DSAN 
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Precisi

on 

Reca

ll 

Accu

racy 

Preci

sion 

Reca

ll 

Accu

racy 

Preci

sion 

Reca

ll 

Accu

racy 

1 
contain 0.79  0.87  

0.84  
0.83  0.93  

0.88 
0.93  0.92  

0.93  
free 0.89  0.81  0.93  0.84  0.93  0.94  

2 
contain 0.79  0.68  

0.82  
0.72  0.83  

0.82 
0.82  0.85  

0.88  
free 0.83  0.90  0.89  0.81  0.91  0.89  

3 
contain 0.84  0.71  

0.89  
0.68  0.83  

0.85 
0.89  0.94  

0.95  
free 0.90  0.95  0.94  0.86  0.98  0.96  

4 
contain 0.89  0.85  

0.93  
0.80  0.96  

0.92 
0.89  0.92  

0.94  
free 0.94  0.96  0.98  0.91  0.97  0.95  

5 
contain 0.74  0.15  

0.62  
0.86  0.74  

0.84 
0.95  0.81  

0.90  
free 0.61  0.96  0.83  0.92  0.87  0.97  

6 
contain 0.35  0.50  

0.89  
0.22  0.71  

0.80 
0.47  0.78  0.92  

free 0.96  0.92  0.97  0.81  0.98  0.93   

 117 
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